chemical evolution of super-agb stars the giant branches lorentz center, may 2009 enrique...

51
Chemical evolution of Super-AGB stars Chemical evolution of Super-AGB stars The Giant Branches Lorentz Center, May 2009 Enrique García-Berro 1,2 1 Universitat Politècnica de Catalunya 2 Institut d’Estudis Espacials de Catalunya

Upload: florence-marsh

Post on 18-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Chemical evolution of Super-AGB stars

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs

The Giant Branches Lorentz Center, May 2009

Enrique García-Berro1,2

1Universitat Politècnica de Catalunya2Institut d’Estudis Espacials de Catalunya

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions2

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions3

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Introduction

• Stars which develop electron-degenerate cores made of matter which has experienced complete H-, He- and C-burning received little attention until recently.

• Stars in a suitable mass range develop CO cores and TP at the AGB (TP-AGB phase).

• Stars more massive (9 to 11 M) ignite carbon off-center in partially degenerate conditions and develop an ONe core.

4

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Introduction

• They also undergo a TP phase (TP-SAGB).

• In early studies the emphasis was placed on the composition and growth of the degenerate core:– Miyaji et al. (1980)– Nomoto (1984, 1987)– Miyaji & Nomoto (1987)

• The evolution of the envelope was completely disregarded.

5

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Introduction

• This range of masses is important for various reasons:– AIC: carbon-exhausted cores more massive

than 1.37 M are expected to undergo electron-capture induced collapse (Nomoto, 1984).

– Massive white dwarfs (M > 1.1 M) are presumably ONe white dwarfs (Liebert & Vennes, 2004).

– Many novae show excesses of Ne, which can be due to mixing between the accreted matter and the underlying 22Ne of an ONe white dwarf.

6

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions7

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs From the main sequence to C-burning

• HR diagram quite standard (9 M, Z)

• 1st and 2nd ascent to the giant branch

8

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs From the main sequence to C-burning

• H- and He-burning

• 1st dredge-up

9

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs From the main sequence to C-burning

• Abundances at the end of the 1st dredge-up (Siess 2006):

10

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs From the main sequence to C-burning

• Envelope mass fractions for a grid of metallicities can be found in Siess (2007):

11

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs From the main sequence to C-burning

• Efficient neutrino cooling of the central regions of the star.

• Carbon is ignited off-center.

12

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Strong C flashes, LC of up to 107 L.

• Associated convective regions form.

• The bulk of energy production occurs in the convective regions.

• But the peak energy generation rate occurs at the base of the convective region.

13

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Expansion and cooling switch-off the He-burning shell.

• H is extinguished.

• The second dredge-up occurs when carbon has already processed the core.

14

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• The evolution of the surface luminosity and of the radius are similar, the effective temperature controls the process.

• Surface decoupled from the core.

15

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• In massive models, the He-driven convective shell merges with the convective envelope (dredge-out).

16

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Each carbon flash produces expansion and cooling of the region where it occurs.

• Efficient conduction, readjustment.

17

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Key reactions during the C-burning phase

18

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• The burning front moves inwards and reaches the center during the second flash.

19

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• The flame speed agrees with the Timmes & Woosley (1994) theoretical calculation.

20

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

21

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

22

• Abundances in the degenerate core:

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

23

• Abundances in the CO buffer: no Ne22

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Abundances at the end of the 2nd dredge-up (Siess 2006):

24

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Carbon burning

• Envelope mass fractions for a grid of metallicities can be found in Siess (2007):

25

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

26

• After the carbon burning phase the H burning shell is resuscitated.

• All the models but the 11 M undergo the thermally pulsing SAGB phase.

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

27

• Mini-pulses.

• For the 10 M:

– LHemax= 3 106 L

– LHemin= 102 L

– LHmax= 6 104 L

– LHmin= 102 L

– TCSB= 3.6 108 K

– =220 yr

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

28

• The mass overlap between successive convective shells is typically r=0.24.

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

29

• Temperatures are rather high.

• A fraction of about 0.56 of 22Ne is burnt into 25Mg.

• The mass fraction dredged-up is 0.07.

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

30

• At the end of the 2nd dredge-up the surface abundances are:

(C:N:O)=(2.35:4.25:6.36)

• When half of the initial 12C in the envelope has been burned:

(C:N:O)=(1.17:5.43:6.26)

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs The thermally pulsing phase

• HBB (Siess & Arnould 2008)

31

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions32

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Initial-final mass relationship

• Mass of the degenerate core vs. mass of the ignition point.

1.331.3312.0

1.311.3011.5

1.221.2111.0

1.151.1410.5

1.091.0510.0

1.071.009.3

MONe+COMONeMZAMS

33

Mass of the core at the 1st TP

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Initial-final mass relationship

• Dobbie et al. (2009), Prasaepe, GD 50 & PG 0136+251

GD 50

PG 0136+251

34

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Initial-final mass relationship

• But:– If mass loss is not strong enough during the

TP-SAGB the core may grow to beyond the Chandresekhar mass.

– Depending on the metallicity, third dredge-up may inhibit core growth. It also depends on the numerical code.

– Competition between these processes determines final fate.

35

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions36

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Number of pulses

• Depending on the mass-loss rate the number of pulses can be very large (Izzard & Poelarends 2006):

37

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Thermohaline instability

• Central carbon is not burned, the flame does not arrive to the center (Siess 2009):

38

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Thermohaline instability

• The central carbon is ~4%, enough to completely disrupt the star (Gutiérrez, Canal & García-Berro 2005).

39

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• Two sets of models: without overshooting, and with overshooting.– Eldridge & Tout (2004), Schröder, Pols &

Eggleton (1997)– Set convection when

δadrad 2

OV

16ζ20ζ2.5

δδ

0.12δOV gas

rad

P

40

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• For a Z=0 model (Gil-Pons et al. 2007):

41

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• Diffusive treatment (Herwig 2000):

42

0.0160.0f

fHH

rrz

νHD

H

2zexpDD

P

edge

P0

0OV

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• Effects of overshooting and code selection (Z=10-5, M=5 M):

OVOV Code X(12C) X(14N) X(16O) Z

NoNo EVOLVE 5.8×10-7 3.2×10-6 3.3×10-6 1.1010×10-5

ff=0.0=0.0 LPCODE 1.2×10-6 1.4×10-6 1.2×10-6 1.0219×10-5

ff=0.002=0.002 LPCODE 1.4×10-6 1.7×10-6 3.9×10-6 1.0654×10-5

ff=0.004=0.004 LPCODE 0.6×10-6 1.5×10-6 0.8×10-6 1.8361×10-5

ff=0.008=0.008 LPCODE 3.2×10-6 3.0×10-6 3.2×10-6 1.3200×10-5

ff=0.016=0.016 LPCODE 5.8×10-5 1.1×10-5 1.0×10-5 1.0272×10-5

43

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• No overshooting (Z=0)

44

MMZAMSZAMS X(C)X(C) X(N)X(N) X(O)X(O) C:N:OC:N:O ZZenvenv

5 5 MM 5.9×10-9 2.0×10-9 1.1×10-11 1 : 0.3 : 0.02 8.0×10-9

6 6 MM 1.2×10-7 3.1×10-9 4.1×10-11 1 : 0.03 : 4 × 10-4 1.2×10-7

7 7 MM 2.8×10-6 5.7×10-9 5.2×10-9 1 : 0.002 : 0.002 2.8×10-6

8 8 MM 9.0×10-5 7.4×10-7 1.3×10-6 1 : 0.008 : 0.001 9.1×10-5

9 9 MM 2.1×10-4 2.0×10-6 2.9×10-6 1 : 0.01 : 0.015 2.1×10-4

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Convection

• Overshooting

45

MMZAMSZAMS X(C)X(C) X(N)X(N) X(O)X(O) C:N:OC:N:O ZZenvenv

5 5 MM 3.0×10-7 2.0×10-8 9.4×10-11 1 : 0.07 : 3×10-4 3.2×10-7

6 6 MM 3.3×10-5 3.8×10-7 1.6×10-7 1 : 8×10-4 : 4×10-4 3.3×10-7

7 7 MM 3.6×10-4 2.7×10-6 6.0×10-6 1 : 0.01 : 0.02 2.7×10-4

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Final fate

• It depends on the adopted mass-loss rate and dredge-up efficiency (Poelarends 2008).

46

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Overview

• Introduction

• Overview of the evolution– From the main sequence to carbon burning– Carbon burning in partially degenerate

conditions– The thermally pulsing phase

• Initial-final mass relationship

• Open issues

• Conclusions47

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Conclusions

• I have presented a summary of the state-of the-art of self-consistent calculations of the evolution of heavy-weight intermediate mass stars.

• Solar metallicity stars with masses larger than ~8 M burn carbon off-center in partially degenerate conditions.

• Solar metallicity stars with masses larger than ~10.5 M undergo electron captures.

48

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Conclusions and future prospects

• SAGB stars undergo a second dredge-up of variable extension.

• A thermally pulse SAGB exists.

• Via radiative winds, may loose their envelopes and form ONe white dwarfs.

• The results are sensitive to the C12()O16

reaction rate, to the mass-loss rate, to metallicity, to convective prescription…

• Stars in the upper range of masses could end up their evolution as EC-SNe.

49

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs Wish list

• More detailed nucleosynthetic calculations during the TP-SAGB phase are needed.

• Mass loss rates are needed as well, since the final fate depends sensitively on them.

50

Chemical evolution of Super-AGB stars

Ch

em

ica

l evo

lutio

n o

f Su

pe

r-A

GB

sta

rs

The Giant Branches Lorentz Center, May 2009

Enrique García-Berro1,2

1Universitat Politècnica de Catalunya2Institut d’Estudis Espacials de Catalunya