chemical solubility and agricultural performance of p...

14
S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 227 Chemical solubility and agricultural performance of P-containing recycling fertilizers Sylvia Kratz*,1Silvia Haneklaus* and Ewald Schnug* *1 Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 50, 38116 Braunschweig, Germany corresponding author: [email protected] Abstract 158 P-containing fertilizers, standard mineral and recyc- ling products, were analyzed for their chemical solubility using 10 different methods. Correlations between methods were highly significant, indicating that a reduction of of- ficial methods is viable. A modified Neubauer pot trial was carried out with different P-recycling products to investi- gate which method was best suited to describe their plant availability. The best correlation between short-term plant P uptake and chemical solubility was found for water ex- traction, while mid to long-term P availability is better de- scribed by extractions with ammonium citrate. For reasons of practicability it is recommended to use the EU method of neutral ammonium citrate extraction to evaluate the nutritive value of P-recycling fertilizers. The tradable (so- called total) P content of a fertilizer can be described by the EU mineral acid extraction with H 2 SO 4 + HNO 3 or aqua regia digestion. Keywords: Recycling fertilizers, P solubility, chemical ex- traction methods, P plant availability, Neubauer pot trial Zusammenfassung Löslichkeit und agronomische Qualität von P-hal- tigen Recyclingdüngern 158 phosphorhaltige Düngemittel, darunter Standard- mineraldünger und Recyclingprodukte, wurden mit 10 verschiedenen Methoden auf ihre chemische Löslichkeit untersucht. Hoch signifikante Korrelationen zwischen den Methoden legten nahe, dass es möglich ist, die Vielzahl der offiziellen Methoden zur Beschreibung der P-Löslich- keit zu reduzieren. Mithilfe eines modifizierten Neubauer- Keimpflanzenversuches wurde unter Einsatz verschiedener P-Recyclingprodukte untersucht, welche Methode am besten zur Beschreibung der Pflanzenverfügbarkeit die- ser Produkte geeignet ist. Die beste Korrelation zwischen kurzfristiger Pflanzenaufnahme und chemischer Löslich- keit wurde für die Wasserextraktion gefunden, während sich die mittel- bis langfristige P-Verfügbarkeit besser mit- tels Extraktionen mit Ammoniumcitrat beschreiben ließ. Aus Praktikabilitätsgründen ist die EU-Methode zur Extrak- tion mit neutralem Ammoniumcitrat zu empfehlen, um das Düngepotential von P-Recyclingdüngern zu bewerten. Der marktfähige (“so genannte totale”) P-Gehalt eines Düngers kann mittels Mineralsäureextraktion nach EU- Vorschrift (H 2 SO 4 + HNO 3 ) oder Königswasseraufschluss beschrieben werden. Schlüsselwörter: Recyclingdünger, P-Löslichkeit, chemische Extraktionsmethoden, P-Pflanzenverfügbarkeit, Neubauer- Keimpflanzenversuch

Upload: vuongliem

Post on 08-Mar-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 227

Chemical solubility and agricultural performance of P-containing recycling fertilizers

SylviaKratz*,1SilviaHaneklaus*andEwaldSchnug*

*1 JuliusKühn-Institut,FederalResearchCentreforCultivatedPlants,InstituteforCropandSoilScience,Bundesallee50,38116Braunschweig,Germanycorrespondingauthor:[email protected]

Abstract

158P-containingfertilizers,standardmineralandrecyc-lingproducts,wereanalyzedfor theirchemicalsolubilityusing10differentmethods.Correlationsbetweenmethodswerehighlysignificant,indicatingthatareductionofof-ficialmethodsisviable.AmodifiedNeubauerpottrialwascarriedoutwithdifferentP-recyclingproductsto investi-gatewhichmethodwasbestsuitedtodescribetheirplantavailability.Thebestcorrelationbetweenshort-termplantPuptakeandchemicalsolubilitywasfoundforwaterex-traction,whilemidtolong-termPavailabilityisbetterde-scribedbyextractionswithammoniumcitrate.ForreasonsofpracticabilityitisrecommendedtousetheEUmethodof neutral ammonium citrate extraction to evaluate thenutritivevalueofP-recycling fertilizers.The tradable (so-calledtotal)PcontentofafertilizercanbedescribedbytheEUmineralacidextractionwithH2SO4+HNO3oraqua regiadigestion.

Keywords: Recycling fertilizers, P solubility, chemical ex-traction methods, P plant availability, Neubauer pot trial

Zusammenfassung

Löslichkeit und agronomische Qualität von P-hal-tigen Recyclingdüngern

158 phosphorhaltige Düngemittel, darunter Standard-mineraldünger und Recyclingprodukte, wurden mit 10verschiedenenMethoden auf ihre chemische Löslichkeituntersucht.HochsignifikanteKorrelationenzwischendenMethoden legtennahe,dassesmöglich ist,dieVielzahlderoffiziellenMethodenzurBeschreibungderP-Löslich-keitzureduzieren.MithilfeeinesmodifiziertenNeubauer-KeimpflanzenversucheswurdeunterEinsatzverschiedenerP-Recyclingprodukte untersucht, welche Methode ambesten zur Beschreibung der Pflanzenverfügbarkeit die-serProduktegeeignetist.DiebesteKorrelationzwischenkurzfristiger Pflanzenaufnahme und chemischer Löslich-keitwurde fürdieWasserextraktiongefunden,währendsichdiemittel-bislangfristigeP-Verfügbarkeitbessermit-tels Extraktionen mit Ammoniumcitrat beschreiben ließ.AusPraktikabilitätsgründenistdieEU-MethodezurExtrak-tion mit neutralem Ammoniumcitrat zu empfehlen, umdasDüngepotentialvonP-Recyclingdüngernzubewerten.Der marktfähige (“so genannte totale”) P-Gehalt einesDüngers kann mittels Mineralsäureextraktion nach EU-Vorschrift (H2SO4 + HNO3) oder Königswasseraufschlussbeschriebenwerden.

Schlüsselwörter: Recyclingdünger, P-Löslichkeit, chemische Extraktionsmethoden, P-Pflanzenverfügbarkeit, Neubauer-Keimpflanzenversuch

Page 2: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

228

1 Introduction

The German Fertilization Ordinance (Düngeverord-nung–DüV)holds anobligation for farmers to fertilizetheir crops according to Good Agricultural Practice, i.e.accordingtocropnutrientdemands.In§5DüV,thebal-ancesurplusforphosphateislimitedto20kgP2O5/ha*yr.PrerequisiteforthisisanefficientPfertilizationwithmini-mizedPlosses.Inordertorealizethis,apreciseestimateof theplant available (“efficient”) shareof fertilizer P isneeded.Theextractionwithchemicalsolventsgivesafirstorientationabouttheefficiencyoffertilizers.TheGermanFertilizerOrdinance(Düngemittelverordnung–DüMV,An-nex2, Table4)offers11options todescribephosphatesolubility, most of them identical to themethods givenby theEU regulation2003/2003on fertilizers.The largenumberofdifferentmethodshashistoricalroots.Itisim-perativethatmethodsarecomparableinordertocalculatereliablefertilizerrates.Forthisreason,theGermanFederalMinistryforNutrition,AgricultureandConsumerProtec-tion(BMELV)initiatedaresearchprojectonthe“Standard-izationofphosphateanalysisandcharacterizationoffertil-izers”,whichwascarriedoutbytheJuliusKühn-Instituteintheyears2008and2009.Theprojecthadthreemainaims:

• to reduce the multitude of chemical extraction me-thodsforcharacterizingphosphatesolubility,

• tofindaclearandsimpledefinitionofmethodswithregardtotheirexplanatorycontentaboutthesolubilityofthefertilizer,i.e.

- Water:immediatelyavailable(initialeffect) -Weak acid: available within the first vegetation period

- Strongacid(mineralacid):maximumamountofP whichmaypotentiallybecomeavailable/tradable totalcontent,

• toexaminethecorrelationbetweenchemicallyextrac-tablePcontentandagronomicalefficiencyusingare-presentativeselectionofPcontainingfertilizerswhicharecurrentlymarketedincludingorganicfertilizers(far-myardmanure,sewagesludge,compost,animalresi-dues)and„new“products(suchasfertilizersbasedonsewagesludgeash).

2 Material and methods

2.1 Laboratory screening of fertilizers

P-containingfertilizersweremainlysuppliedbybranchesofthegovernmentalfertilizercontrol(Düngemittelverkehrs-kontrolle). Further samples of „new“ products such asthose fromwastewater treatmentoranimalwastepro-

ductswereprovidedbyBerlinerWasserbetriebe(BWB),awastewatertreatmentplantinGifhorn,theFederalInsti-tuteforMaterialsResearchandTesting(BAM)Berlin,Ash-DecUmweltAG,ReFoodGmbHandtheAssociationforTechnologyandStructuresinAgriculture(KTBL)DarmstadtaswellasfromthecollectionsofJKI.Table1givesanover-viewofthesamplesanalyzedinthisproject.

Table1:

Overviewoftheanalyzedfertilizersamples(N=158)

Group Type descriptionNo. of

samples

Mineral fertilizers 77

StraightPfertilizersSingle(SSP)andTripleSuper-phosphate(TSP)

2+6

(Soft)groundrockphosphate 4

Partiallyacidulatedrockphosphate

7

Compoundfertilizers NPKfertilizer 30

NPfertilizer 15

PKfertilizer 11

LimewithP 2

Organic and organo-mineral fertilizers and products based on them

81

Sewagesludge OrganicNPfertilizer 11

OrganicPandNP(MAP)fromwastewaterprecipitation

1+1

Sewagesludgeash 6

P,PKandNPKfromthermo-chemicallytreatedsewagesludgeash

22+5+2

Biowastecompost OrganicNPK/PKfertilizer 5

Fermentationresidues OrganicNPKfertilizer 4

Slurry(cattleandpig) OrganicNPKfertilizer 16

Meatandbonemeal(+ash)OrganicNP(+mineralP)fertilizer

6+1

Vegetableresidues(vinasse/melasse)

OrganicNPKfertilizer 1

Total: 158

Samplepreparation:Inthecaseofmineralfertilizersandmineralproductsfromsewagesludgeash/meatandbonemealash,theoriginalsubstance,conditionedat40°Candfine-groundtoaparticlesizeof<60µminaRetschRS1vibratingdiscmillwithzirconiumoxidegrindingequip-ment,wasusedforallextractionsanddigests.Fermenta-tionresiduesandslurriesdeliveredas liquidsamples (ex-ceptforonesolidsample)weredriedinaventilatedovenat60°Candfine-groundtoaparticlesizeof<60µminatungstencarbidemortarorvibratorydiscmillwithzirco-niumoxidegarniturebeforeextraction.

Page 3: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 229

Thefollowingmethodswereusedtodescribethesolu-bilityofthefertilizersamples(Table2).Fortheslurries,onlyaselectionof theabove listedmethodswasapplied (W,CAL,CA,AR).

Table2:

ChemicalextractionmethodsusedforthedescriptionofPsolubility

Code Method

MinALUFA MineralaciddigestaccordingtoVDLUFAII4.1.1.2(HNO3+H2SO4+CuSO4)

MinAEU MineralaciddigestaccordingtoEU-method3.1.1(HNO3+H2SO4)

AR Aqua regiadigestaccordingtoDINEN13346/2001-04

FA Extractionwith2%formicacid(VDLUFAII4.1.2)

CA Extractionwith2%citricacid(VDLUFAII4.1.3)

NACEU ExtractionwithneutralammoniumcitrateaccordingtoEU-method3.1.4

W+NACFN ExtractionwithwaterandneutralACaccordingtoFresenius-Neubauer(VDLUFAII4.1.4)

AAC ExtractionwithalkalineammoniumcitrateaccordingtoPetermannat20°C(VDLUFAII4.1.5)

W Extractionwithwater(VDLUFAII4.1.7)

CAL ExtractionwithcalciumacetatelactateaccordingtoSchül-ler(1969)/BGKeVbookofmethods

P determination was done colorimetrically (Molyb-denum-Blue) according to Murphy & Riley (1962) with(NH4)6Mo7O24x4H2O.TheLUFA-andtheEU-methodformineralaciddigestion

yieldedcomparableresults(R2=0.999,p<0.01),there-foretheEU-methodwasusedexclusivelyforthecompletesampleset.Highlycorrelatingresultswerealsoobtainedfor AR andMinAEU digestion (P-AR (mg/kg) = 0.986*P-MinA(mg/kg)+1595(withp<0.0005;R2=0.993)).ThusexistingdataforARdigestionofsewageslusdgeashprod-uctscouldbeusedforcalculatingtheMinAEUcontent.

2.2 Modified Neubauer trial

TheaimoftheNeubauertrialwastoexaminethecor-relationbetweenchemicalPsolubilityofPrecyclingfertil-izersandPuptakeandeffectsonyield,respectively.Thequestion tobeansweredwaswhichchemicalextractionmethodisbestsuitedtoassessthebioavailabilityofPinrecycling fertilizers. To answer this question, amodifiedshort-termNeubauer trialwassetup:PrincipleoftheNeubauermethodistouseplantroots

as “reagents” to determine the amount of “root solu-ble” and thus plant available nutrients.A largenumberofplants(100ryeseeds)onasmallamountof(fertilized)substratemakessurethatrootsolublenutrientsareusedupwithin a short periodof time (14 to18days), given

thatabioticfactorsareoptimum(NeubauerandSchneider,1923;Neubauer,1931).450 g of fertilized substratewere filled into transpar-

entpolystyrolvessels(diameter12cm,height6cm)andseededwith100ryeseeds.Theexperimentwasdesignedasan“exhaustiontrial”,meaningthatafterafirstcutofshootsafter16days(atBBCH12/13)(Straußetal.,1994)plantswerefurthercultivateduntilvisiblesymptomsofnu-trientdeficiencywereobserved,accompaniedbyretardedgrowth.Asecondandathirdcutwerecarriedoutafter29(BBCH12)and43days(BBCH11/12),togetherwitharecoveryofroots.Astestplant,thesummerryecultivarArantes (thousand

grainweight:41.3g,germinability:89%),wasusedun-dressed.ThetestsubstratewasP-freequartzsand[grad-ing:“fine“sand:0.1to0.4mm,coarsesand0.7to1.2mm].Quartzsandwasfilledintothevesselsinthreelayers:Thebottomlayerconsistedof50gcoarseand100gfinesand,whichwasmixedwith the ground test fertilizers.Thislayerwasalsosprinkledwiththesupplementalfertiliz-ersolutions.Ontopofthis,alayerof150gfinesandwasplaced.Ryeseedswereevenlyspreadontopofthesecondlayerandcoveredwithathirdlayerof150gfinesand.SeedingdatewasMay20,2009.Thefirstcutwashar-

vested16dayslateratBBCH12/13(Straußetal.,1994)onJune5,2009.Thesecondcutwasperformed29daysaftersowingatBBCH12onJune18,2009andthethirdcutafter43daysatBBCH11/12onJuly2,2009.Allpotswerebrought toapproximately65%offield

capacitywithde-ionizedwater.Duringthetrial,waterwassuppliedindividuallyaccordingtopotweight.

Fertilizationstrategy:• Definedamountsof P coming fromdifferent P recy-cling fertilizers seeTable3+4 (calculationbasedontotalPsolubleinMinAEU)

• Plevels(severePdeficiency–optimum–Psurplus):20–40–60mgP(determinationofoptimumratewascalculatedbasedonPuptakeofshootdrymatterinapilottrialatanassumedPutilizationof20%)

• Supplementationof liquidN forall treatmentsup totheNamountsuppliedbyanN-containingtestfertili-zer(withoutconsiderationoffertilizerno.7)(Table5).Additionally,Nwasappliedatarateof10and5mg/potN,respectively,aftereachcut.

• UniformsupplementationofK,Ca,MgandSinliquidform(calculationbasedondrymatteryield fromthepilotexperimentandaveragenutrientcontent,consi-deringnutrientinputbytestfertilizers)(Table5)

• No micronutrients (as indicated by the pilot experi-ment)

• Controltreatmentswithseveralstandardmineralfer-tilizers(singlesuperphosphate,fullysolubleNP,partly

Page 4: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

230

digestedrockphosphate),analyticalgrademonocalci-umphosphate(MCP)andazeroPtreatment,suppliedwithallothermacronutrientsinliquidformlikethetestfertilizers

Table3:

TestfertilizersusedintheNeubauertrial

Tr.1 Sample name

Description

ZeroP

1 OrgNPBM OrgNPfrombonemeal(Beckhornbonemealsteamed)

2 OrgNPMBM OrgNPfrommeatandbonemealcat.3(AntonKnollcompany)

3 MBMA Ashfrommeatandbonemealcat.1(Rethmann/ReFood)

4 OrgNPSS OrgNPfromsewagesludge(precipitation,WWTPGifhorn)

5 Struvite MAP(struvite)fromwastewaterprecipitation(BerlinerWasserbetriebe)

6 P-SSATC StraightPfromthermochemicallytreatedsewagesludgeash(MgCl2-type,BAM)

7 NPK-SSATC NPKfromthermochemicallytreatedsewagesludgeash(MgCl2-type,AshDec)

Controls:

8 MCP Monocalciumphosphateanalyticalgrade(p.a.)

9 SSP Singlesuperphosphate

10 DAP Diammoniumphosphate

11 paRP Partlyacidulatedrockphosphate

1Tr.=treatment

Table5:

Fertilizersolutionsandnutrientdosageappliedperpot intheNeu-bauertrial

Nutrient Compound used Dosage (mg pure nutrient per pot)

N NH4NO3,KNO3,Ca(NO3)2 89.5

K KNO3,K2SO4 60.0

Ca Ca(NO3)2 20.0

Mg MgSO4 4.0

S MgSO4,K2SO4 5.3

ForthedeterminationofP,theplantmaterialwasdriedinaventilatedovenat60°Cuntil constancyofweight.Then thematerial was fine-ground to a particle size of< 0.12 mm employing an ultra-centrifugal mill (RetschZM1)withtitaniumgrindingequipment.0.5gplantmate-rialwasdigestedwith4mlHNO3+1mlH2O2inamicro-wave(CEM/Mars)at600Wattfor27minutes,raisingthetemperatureupto200°C.Aftercoolingdownthedigestwasfilledupto50mlwithdeionizedwater.Pconcentra-tionwasdeterminedbyICP-OES(SpectroM120S).

3 Results and discussion

3.1 Laboratory investigations

Figure 1 showsmedian, quartiles and ranges of P2O5contents of the different fertilizer types determined inmineralacid(MinAEU)andaqua regia(AR).Pcontentsintheseextractantsaregenerally termed“so-called total”,

Table4:

Pcontentandrelativesolubility(in%ofMinA-P2O5)ofthefertilizersusedintheNeubauertrial

Tr. Type MinA-P2O5 (%) Relative solubility (in % of MinA-P2O5) in ...

FA CA NACEU W+NACFN AAC W

1 OrgNPBM 15.0 76 34 27 33 8.5 0.93

2 OrgNPMBM 17.4 91 74 48 65 16.0 0.99

3 MBMA 25.9 48 50 15 15 7.0 0.01

4 OrgNPSS 8.9 57 84 88 86 80.0 0.40

5 Struvite 27.6 97 100 92 51 6.3 0.73

6 P-SSATC 21.4 75 65 21 21 4.8 0.13

7 NPK-SSATC 7.4 101 103 92 92 70.0 73.00

8 MCP 57.4 97 98 97 98 95.0 96.00

9 SSP 20.9 101 88 84 87 83.0 76.00

10 DAP 45.8 115 101 102 103 107.0 87.00

11 paRP 41.6 76 69 65 71 66.0 53.00

FA-formicacid;CA–citricacid;NACEU-neutralammoniumcitrate;W+NACFN-waterandneutralAC;AAC-alkalineammoniumcitrate;W–water(Tr.=treatment)

Page 5: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 231

Figure1:

Mineralacid(MinA)andaqua regia(AR)solubleP2O5contentsoftheanalyzedfertilizers(%oforiginalsubstance)–median,quartilesandranges

(1=organicfertilizers,2=solublemineralfertilizers,3=rockphosphates(RP),4=Pfertilizerswithlime,5=productsfromsewagesludgeash(SSA),6=productsfromwastewater(WW)treatment,7=meatandbonemealash)=outlier,*=extremevalue,numbersrefertoBMELV-samplenumberandthusareonlydescriptive

60

50

40

30

20

10

0

Fertilizer type

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

124

60

50

40

30

20

10

0

Fertilizer type

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

7015

12

3

1***P

O_

Min

A(%

)2

5

PO

_A

R(%

)2

5

becauseonlynon-destructivemethodssuchasXRFdeter-mine the real total content (Haneklausetal.,1994).Ex-pectedly(seeabove)bothmethodsyieldedsimilarresults.Similarly, therewas a strong relationship between the

GermanandEU-method forextractionwithneutralam-moniumcitrate(Table6).

Table6:

PearsoncorrelationcoefficientsfortherelationshipbetweenGermanandEU-methodforthedeterminationofPsolubilityinneutralammo-niumcitrate(W+NACFNandNACEU)

Group of samples n r p

Allsamples 143 0.993 0.01

Mineralfertilizersonly 75 0.999 0.01

Organicfertilizersonly 27 0.983 0.01

Sewagesludgeash(products)only 35 0.676 0.01

While there was a very strong and highly significantcorrelationbetweentheGermanandtheEU-methodformineralaswellas fororganic fertilizers, itwasdistinctlyweakerforsewagesludgeashesandtheirproducts.Ascanbeseenfromthecorrelationmatrices(Table7to

10),therewerecloserelationshipsbetweenallexaminedextractionmethodswhenallfertilizerswereviewedasonegroup. However, when the different types of fertilizersweregroupedseparately,therewereobviousdifferences:Whilecommonmineralfertilizersshowedverystrongandhighlysignificant(p<0.01)correlationsinallcases,sew-

agesludgeashesandtheirproductsshowedaheteroge-neous picture,with only occasionally significant correla-tionsbetweendifferentextracts.Itisspeculatedthatthismightbeduetotheheterogeneityintheproducts.Incon-trasttotheashproducts,thegroupoforganicfertilizersshowedformostextractions–exceptwater–mediumtovery strong, significant to highly significant correlations.Thereasonfortheunpredictableresultsforthewaterex-tractionisprobablythefactthatthedriedorganicsampleshadhydrophobicsurfacesandwerethereforedifficulttomoisteninwater.Figure2givesanoverviewofrelativePsolubilitiesoffer-

tilizertypesindifferentextractants.Sincethelargegroupofash-basedfertilizerswasnotdigestedinmineralacid,relativesolubilitiesarereferredtoaqua regiahere.Relativesolubilityinthegroupoforganicfertilizers(1-org)showedahighvariability.Acomparablebehaviorwasalsofoundinotherextractstestedinthisstudy(figuresnotshownhere).Thiswasnotonlybecause thisgroupwas composedofdifferentsubtypes(farmyardmanure,biowastecompost,sewagesludge,meatandbonemeal, fermentation resi-duesandvegetableresidues)butalsoduetotheinternalheterogeneityofeachofthesesubgroups,whichdidnotallowapreciseevaluationoftheirquality.The products from sewage sludge ash also showed a

highlyvariablesolubility(type5:SSA,SSA-P,SSA-PK,SSA-NPK), inparticular thegroupofP fertilizers fromunpro-cessed thermochemically treated ash. This group com-prised22samples(SSA-P).Obviously,thismaterialwasstill

Page 6: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

232

Table7:

Pearsoncorrelationcoefficientsfortherelationshipbetweendifferentextractionmethods,calculatedforallfertilizers(seeTable1)

MinAEU AR FA CA W+NACFN NACEU AAC W

MinAEU 1

AR 0.992** 1

FA 0.967** 0.942** 1

CA 0.958** 0.942** 0.981** 1

W+NACFN 0.944** 0.877** 0.961** 0.956** 1

NACEU 0.941** 0.890** 0.960** 0.962** 0.993** 1

AAC 0.902** 0.838** 0.911** 0.918** 0.969** 0.966** 1

W 0.889** 0.827** 0.923** 0.923** 0.964** 0.959** 0.966** 1

CAL 0.920** 0.926** 0.961** 0.966** 0.974** 0.976** 0.957** 0.973**

MinALUFA-Mineralaciddigest;MinAEU-Mineralaciddigest;AR-Aqua regia;FA-2%formicacid;CA-2%citricacid;NACEU-neutralammoniumcitrate;W+NACFN-waterandneutralAC;

AAC-alkalineammoniumcitrate;W-water;CAL-calciumacetatelactate;Significances:**=p<0.01,*=p<0.05,n.s.=notsignificant

Table8:

Pearsoncorrelationcoefficientsfortherelationshipbetweendifferentextractionmethods,calculatedformineralfertilizers(seeTable1)

MinAEU AR FA CA W+NACFN NACEU AAC W

MinAEU 1

AR 0.997** 1

FA 0.974** 0.978** 1

CA 0.959** 0.962** 0.987** 1

W+NACFN 0.954** 0.958** 0.984** 0.994** 1

NACEU 0.948** 0.953** 0.983** 0.994** 0.999** 1

AAC 0.922** 0.924** 0.948** 0.967** 0.970** 0.972** 1

W 0.924** 0.926** 0.957** 0.977** 0.979** 0.981** 0.968** 1

CAL 0.912** 0.918** 0.949** 0.958** 0.969** 0.971** 0.947** 0.967**

MinALUFA-Mineralaciddigest;MinAEU-Mineralaciddigest;AR-Aqua regia;FA-2%formicacid;CA-2%citricacid;NACEU-neutralammoniumcitrate;W+NACFN-waterandneutralAC;

AAC-alkalineammoniumcitrate;W-water;CAL-calciumacetatelactate;Significances:**=p<0.01,*=p<0.05,

n.s.=notsignificant

Table9:

Pearsoncorrelationcoefficientsfortherelationshipbetweendifferentextractionmethods,calculatedforproductsfromsewagesludgeash(seeTable1)

MinAEU AR FA CA W+NACFN NACEU AAC W

MinAEU 1

AR n.c. 1

FA n.c. n.s. 1

CA n.c. 0.341* 0.820** 1

W+NACFN n.c. n.s. 0.550** 0.467** 1

NACEU n.c. 0.378* n.s. n.s. 0.676** 1

AAC n.c. n.s. -0.472** -0.414* n.s. 0.515** 1

W n.c. -0.503** n.s. n.s. n.s. n.s. 0.416* 1

CAL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.

MinALUFA-Mineralaciddigest;MinAEU-Mineralaciddigest;AR-Aqua regia;FA-2%formicacid;CA-2%citricacid;NACEU-neutralammoniumcitrate;W+NACFN-waterandneutralAC;

AAC-alkalineammoniumcitrate;W-water;CAL-calciumacetatelactate;Significances:**=p<0.01,*=p<0.05,

n.s.=notsignificant,n.c.=notcalculated

Page 7: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 233

Figure2:

Relativesolubility(referredtoaqua regia(AR))ofdifferentfertilizertypesinwater(W),neutralammoniumcitrate(NACEU),citricacid(CA)andformicacid(FA)–median,quartilesandranges

(1=organicfertilizers,2=solublemineralfertilizers,3=rockphosphates(RP),4=Pfertilizerswithlime,5=productsfromsewagesludgeash(SSA),6=productsfromwastewater(WW)treatment,7=meatandbonemealash)=outlier,*=extremevalue,numbersrefertoBMELV-samplenumber

120

100

80

60

40

20

0

Fertilizer type

CA

(%A

R)

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

120

100

80

60

40

20

0

Fertilizer type

NA

C(%

AR

)E

U

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

Fertilizer type

120

100

80

60

40

20

0

W(%

AR

)

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

2

104

3198

1926

2427

39

98

5999

70

61

17

28

99

19

13117

170

22

19

17

33

3359

27

26

19

* *

**

*

140

120

100

80

60

40

20

0

Fertilizer type

FA

(%A

R)

1-org2-m

inPK

5-SSA-P

6-WW

-P

2-minN

P

3-paRP

5-SSA

7-MBM

A

2-minN

PK

3-RP

5-SSA-N

PK

2-minP

4-P-lim

e

6-WW

-NP

103

23

23

33

61

rather heterogeneous in its speciationdespite the treat-mentandmilling.Thestandardmineralfertilizers(types2,3and4)stood

outwiththeir inmostcasescomparably lowvariationindifferentextractants.Formineralfertilizersandsewagesludgeashproducts,

thewaterextractdidnotfollowthetrenddescribedhere:While the ash products showedmostly a uniformly low

watersolubility,thestandardmineralfertilizersdisplayedvaryingwater solubilitydependingon theirdifferentde-greeofacidulation.Duetotheobservedvariation insolubilitybothwithin

andbetweengroupsitwasnotpossibletoderivereliablestatisticalparameterssuchasconfidenceintervalsormeansolubility factorsfromthissampleset.Thiswill requirealargersetofsamples.

Page 8: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

234

Table10:

Pearsoncorrelationcoefficientsfortherelationshipbetweendifferentextractionmethods,calculatedfororganicfertilizers(seeTable1)

MinAEU AR FA CA W+NACFN NACEU AAC W

MinAEU 1

AR 0.984** 1

FA 0.951** 0.952** 1

CA 0.933** 0.900** 0.834** 1

W+NACFN 0.945** 0.899** 0.844** 0.977** 1

NACEU 0.897** 0.825** 0.744** 0.958** 0.983** 1

AAC 0.755** 0.631** 0.505* 0.875** 0.866** 0.934** 1

W n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1

CAL 0.777** 0.584** 0.878** 0.821** 0.741** 0.692** n.s. 0.902**

MinALUFA-Mineralaciddigest;MinAEU-Mineralaciddigest;AR-Aqua regia;FA-2%formicacid;CA-2%citricacid;NACEU-neutralammoniumcitrate;W+NACFN-waterandneutralAC;

AAC-alkalineammoniumcitrate;W-water;CAL-calciumacetatelactate;Significances:**=p<0.01,*=p<0.05,

n.s.=notsignificant

3.2 Modified Neubauer trial

3.2.1 Dry matter yield

Thetotalyieldofallthreecutsincludingrootsdifferedsignificantlybetweenzerocontrolandallothertreatments(Table11).Ingeneral,differencesbetweenPformsprovedtobenotsignificant.Acleardifferentiationbetweencon-ventionalandrecyclingfertilizerswasnotpossible.Treat-ment7(NPK-SSATC)displayedloweryieldsatcut2and3,whichmightbeduetotheexcessiveNsupplyforcedbytheparticularcompositionofthisfertilizer(unsuitableN:P-ratio)1.Inaddition,supplementationofpotassiumbyuseofKClmighthaveweakenedtheplantsinthistreatment,since therewas no buffering in the sand substrate (salteffect). Surprisingly, treatment 8 (MCP) produced loweryieldsthanallothertreatmentsalthoughitsPcontentwascompletely water-soluble. Treatment 10 (diammoniumphosphate)showedsignificantlyhigheryieldsthansomeoftheothertreatments.

1 Treatment7wasamultinutrient(NPK)fertilizerbasedonsewagesludgeash.InordertotestthequalityofthePcomponent,itwasdecidedtosupplyPsolelyfromthatfertilizerdespitethefactthatthismeantanexcessiveNsup-plyatthesametime(Plevel20:126mgN,Plevel60:378mgNperpot).Whileplantswereabletotoleratethisuptothefirstcut,therewasaclearyielddepressionatPlevels40and60atcut2,followedbyatotalcollapseoftheplantsbeforecut3.

Table11:

Meandrymatter yields (gDM/pot) of the different fertilizer treat-mentsintheNeubauertrial,cuts1to3(shoots)+roots(drymatteryieldzeroP:1.78g/pot)(Tr.=treatment)

P level 20 P level 40 P level 60

Tr. DM (g/pot) Tr. DM (g/pot) Tr. DM (g/pot)

6 3.53a 7 2.80a 7 3.01a

11 3.61ab 8 2.83a 6 3.30ab

3 3.74abc 9 2.93ab 8 3.68ab

5 3.82abc 4 3.73bc 9 3.72b

9 3.98abc 11 3.74bc 11 3.81b

2 3.99abc 6 3.87c 4 3.82b

4 4.00abc 1 3.91c 5 3.82b

7 4.06abc 5 3.95c 10 3.88b

8 4.11abc 10 4.00c 2 3.89b

1 4.25bc 2 4.11c 3 3.90b

10 4.42c 3 4.11c 1 3.93b

differentlettersindicatesignificantdifferencesbetweentreatments(Tukey,p<0.05)

3.2.2 P content of plants

IncreasingPlevelsfrom20to60mgperpotweredis-playedinanincreasingPcontentofshoots(Table12).Thiseffectwasnotclearintreatment3:cuts1to3,treatment4:cut3,treatment6:cut1andtreatment9:cut2.In the treatments suppliedwith recycling fertilizers (tr.

1to7),Pcontentsofshootsincreasedconsistentlyfromcut1tocut3.Incomparisontothisfinding,thePcontentin the treatments fertilizedwith standardmineral fertil-izers (fully water-soluble products aswell as rock phos-phatebasedproducts, tr.8 to11) remainedconstantordecreased.

Page 9: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 235

Table12:

MeanPcontentofshoots inthedifferentPfertilizertreatmentsoftheNeubauertrial

P level 20 P level 40 P level 60

Tr. P (mg/kg) Tr. P (mg/kg) Tr. P (mg/kg)

Cut1(ContentofzeroPtreatment:4019mg/kgP)

1 3182a 1 3181a 1 3072a

5 3253a 3 3603a 3 3650ab

2 3523ab 2 3853a 2 3856ab

3 3570ab 5 3859a 5 4194bc

4 4079bc 4 4654b 6 5010cd

6 4649c 6 4983b 4 5248d

7 6025d 9 7916c 11 9040e

8 6101d 7 8090c 9 9432e

11 6201d 11 8457cd 7 10562fg

9 6466d 8 8527cd 10 10649g

10 6475d 10 9319e 8 11061g

Cut2(ContentofzeroPtreatment:5229mg/kgP)

1 3682a 1 4102a 3 4216a

3 4340ab 3 4190ab 1 4410a

2 4512bc 2 5256bc 6 5750b

7 4591bcd 6 5515cd 2 6043b

4 4658bcd 4 5712cd 4 6083b

10 4720bcde 5 6240cde 5 6753bc

5 4921bcde 7 6632def 9 7881d

9 5038bcde 11 6956efg 11 7887d

6 5146cde 10 7227efg 7 8254de

8 5301de 9 7678fg 8 9105e

11 5455e 8 7871g 10 9359e

Cut3(nomorebiomassproductionfromzeroPtreatment)

1 4226 3 4408 3 4450

3 4666 1 4590 1 4691

7 4729 6 5732 6 5913

2 4858 2 6498 4 6493

10 5032 11 6617 2 7430

9 5086 4 6619 9 7442

6 5134 10 6948 11 7779

4 5291 9 7027 5 8755

8 5408 8 7294 8 8793

11 5489 5 7578 10 9311

5 6557

differentlettersindicatesignificantdifferencesbetweentreatments(Tukey,p<0.05)

(forcut3,noanalysisofvariancewaspossible,becauseduetoscarceplantbiomass

repetitionswerejoinedintoamixedsampleforchemicalanalysis)

Drymatter yieldsof all 11 treatmentsdecreased fromcut1tocut3(Table11).Thus,theobserveddifferencesinPcontentbetweenrecyclingandmineralfertilizerscannotbeexplainedbyadilutioneffectduetoincreasingbiomass

production.Rather,adifferentqualityorPavailabilityofthefertilizercanbeassumedasthemainreason.Thestan-dardmineralfertilizerswereinstantlyavailableandthere-foretakenuptoalargerextentbeforethefirstcut,whilePinrecyclingfertilizerswasmoreslowlyavailable,yetre-leasedandtakenupcontinuouslybytheplantsthrough-outtheentireexperimentof43days.

3.2.3 Plant P uptake

Tables13to15giveanoverviewofthenetplantPup-take (roots, shoots and total produced biomass). Net PuptakewascalculatedbysubtractingthePuptakeofthezeroP treatment (representingP reserves in seeds) fromthatofthefertilizedtreatments.ThePutilizationratewascalculatedforcut1andtotalyield(includingroots).PlantssuppliedwithmineralPfertilizersclearlyshowa

highertotalPuptakethanthosewhichreceivedrecyclingfertilizers (Table13).Graded ratesof standardmineralPfertilizerswere reflected in increasingPuptake. In com-parison,Pwastakenupatlowratesfromrecyclingfertil-izersandresponsestothedoseweremarginalatbest.ThisindicatesthelimitedPpotentialoftherecyclingfertilizers.In thegroupofmineral fertilizers,diammoniumphos-

phate(tr.10)showedthehighestPuptake,while inthegroupof recycling fertilizers, struvite (tr.5)was theonewith the highest P uptake. However, the difference be-tween treatment 5 and treatments 4 (org NPSS), 2 (orgNPMBM) and6 (P-SSATC)proved tobenot significant (seeTable13).Bonemeal(tr.1)andmeatandbonemealash(tr.3)displayedthelowestPuptakeofalltestedproducts.OneexceptiontothegeneraldifferencebetweenmineralandrecyclingfertilizerswasNPK-SSATC(tr.7),ahighlysol-ubleproduct,whichcontainedTSPtoadjustitsPcontent.ThisproductyieldedasimilarPeffectasstandardmineralPfertilizersatthefirstcut.ItsunsuitableN:Pratio,however,increasinglyimpaireditsperformancewithgradedPlevels(seefootnote1).Withreferencetothetotalproducedbiomass(rootsand

shoots), utilization rates were extraordinarily high withup to 92%of the P supply. This ismore than 4 timeshigher than theaverage valueof20%given in the lit-erature(Finck,1992).Thisdifferencecanbeexplainedbytheparticular set-upof theNeubauer testwith its largenumberofseedsonasmallamountofsubstrate,whichisexplicitlydesignedtoachievecompleteutilizationofPoranestimateofthetotalpotentiallyavailableP.Theresultsofthisexperimentsuggestthatthepotentialofthetestedfertilizers should preferably be evaluated and comparedbasedontheresultsforPlevel20ashighutilizationrateswerealreadyrealizedatthatlevel.Lookingindividuallyatthedifferentcuts(Table14),the

first harvest reflected differences between treatments in

Page 10: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

236

Table13:

MeannetPuptakeandutilizationrate(UR,in%ofPsupply)oftotaldrymatteryield(cut1to3includingroots)inthedifferentPfertilizertreat-ments(Tr.=treatment)

P level 20 P level 40 P level 60

Tr. P uptake (mg) UR (%) Tr. P uptake (mg) UR (%) Tr. P uptake (mg) UR (%)

1 07.9a 40

3 08.1a 40 1 08.0a 20 1 08.3a 14

2 09.4a 47 3 09.4ab 23 3 09.1ab 15

6 09.5ab 47 6 11.5ab 29 6 10.9abc 18

5 10.0ab 50 4 11.8ab 30 2 12.5abc 21

4 10.3ab 51 2 12.1b 30 4 13.9bc 23

11 13.0bc 65 5 12.7b 32 5 15.1c 25

7 14.9cd 74 9 17.8c 44 11 24.0d 40

9 15.7cd 78 8 18.4c 46 9 24.7d 41

8 16.0cd 80 11 21.5cd 54 8 25.5d 42

10 18.3d 92 10 24.2d 61 10 29.3d 49

differentlettersindicatesignificantdifferencesbetweentreatments(Tukey,p<0.05)

thesamewayasthesumofallcuts.Thismirrorsthead-vantageofthewater-solublePfertilizersduringtheinitialgrowthstage.Incut1,theplantsfertilizedwithNPK-SSATC(tr.7)werestillperformingextraordinarilywell.Thiswasthe only recycling fertilizer reaching the same level of Puptake as themineral fertilizers. Following treatment 7,thesecondhighestPuptakeofrecyclingfertilizerswasob-servedforP-SSATC(tr.6)andorgNPSS(tr.4),respectively.Bonemeal(tr.1)displayedthelowestPuptake.With15to52%atPlevel20and5to23%ofPsupplyatPlevel60,Putilizationratesatcut1wereratherhigh.Atthesecondharvest(cut2,after29days)differences

between standard mineral and recycling fertilizers wereconsiderably smaller. The reasonmightbe thatby then,thenon-water solubleportionof the recycling fertilizershadbecomeavailable.Apparently,theinitialadvantageofthewater-solublePwasover timecompensatedat leastpartiallybynonwater-solubleP forms (particularly thosesolubleinneutralammoniumcitrate).However,Puptakeintherecyclingfertilizertreatmentswasstillbelowthatinthestandardmineral fertilizerstreatments, thoughthesedifferenceswerenotsignificantinallcases(Table14).Thistime,therecyclingfertilizerwiththehighestPuptakewasstruvite(tr.5),followedbymeatandbonemeal(tr.2).Intreatment7 (NPK-SSATC), P uptake at P level 40 and60was clearly reduced due to the yield depression,which,asdiscussedabove,hadbeencausedpresumablybytheunsuitableN:PratioresultinginanexcessiveNsupply.

Atthethirdharvest,thedifferenceinPuptake2betweenstandardmineralandrecyclingfertilizerswasinmostcasesnolongersignificant,ornotobservedatall.Obviously,theinitialadvantageofthemineralfertilizersbytheirwater-solublePwasalmostleveledoutbytheslowlyavailablePportionoftherecyclingfertilizersbythen(Table14).How-ever,comparedtocut1withPuptakesupto15mgperpot, Puptake at cut3was comparably low in all treat-ments.ThisindicatesthatplantavailablePreservesweremoreor lessusedupat that time.Thisassumptionwasstrengthened by the observation of signs of root decay(browncolor)ofdifferentextentfrompottopot,andbyamassivelyreducedbiomassproductioncomparedtocut1.The P content in the substrate determined by CAL-P,however,deliverednoadditionalevidence(seeFigure2).Recyclingtreatment7didnotproduceanybiomassafter

cut2.Thebestrecyclingtreatmentwasagainstruvite(tr.5) followedbyorgNPMBM (tr.2).Bonemeal (tr.1),meatandbonemealash(tr.3)andP-SSATC(tr.6)alldisplayedaverylowPuptake.Like changes in root morphology, P uptake of roots

variedconsiderablybetweenthedifferent fertilizer treat-ments(Table15).ThereexistedacleardifferencebetweenstandardmineralandrecyclingfertilizerswithregardtoPuptakeinrelationshiptothePlevel:Exceptfortreatment7(NPK-SSATC),onlythestandardmineralfertilizersshowedanincreaseinPuptakewithincreasingPlevel.

2 SincethezeroPtreatmentdidnotproduceanymorebiomassaftercut2,netPuptakeofshootsatcut3isidenticalwithgrossPuptake.

Page 11: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 237

Table14:

MeannetPuptakeandutilizationrate(UR,in%ofPsupply,onlyforcut1)ofdrymatteryieldinthedifferentPfertilizertreatmentsfortheindi-vidualcuts

P level 20 P level 40 P level 60

Tr. P uptake (mg) UR (%) Tr. P uptake (mg) UR (%) Tr. P uptake (mg) UR (%)

Cut1

1 2.92a 15 1 2.82a 7 1 2.95a 5

5 2.95a 15 3 3.99a 10 3 3.81a 6

3 3.63a 18 5 4.07a 10 2 4.87a 8

2 3.64a 18 2 4.58a 11 5 5.1a 8

4 4.37a 22 4 4.83a 12 6 5.3a 9

6 5.00ab 25 6 5.3a 13 4 6.4a 11

11 7.2bc 36 9 10.1b 25 9 12.3b 21

8 8.2cd 41 7 10.7b 27 11 12.3b 21

9 8.7cd 43 8 10.9b 27 8 13.0b 22

7 8.7cd 44 11 11.9bc 30 7 13.1b 22

10 10.4d 52 10 14.2c 36 10 14.1b 23

Cut2

3 1.59a 7 1.01a 7 1.22a

6 1.60a 1 1.92ab 3 1.86ab

1 1.67ab 3 1.95ab 1 1.94ab

4 1.88ab 6 1.96ab 6 2.17abc

7 2.02abc 4 2.05b 4 2.49abcd

2 2.09abc 2 2.63bc 2 2.67bcde

9 2.12abc 5 2.83bcd 5 3.50cde

11 2.14abc 8 3.32cd 9 3.65def

5 2.23abc 9 3.46cd 11 3.87def

8 2.49bc 10 3.58cd 8 3.97ef

10 2.77c 11 3.74d 10 4.94f

Cut3

6 1.98a 7 0 7 0

3 2.11a 6 2.44a 3 2.37a

1 2.36ab 3 2.48ab 1 2.46a

7 2.49ab 1 2.57ab 6 2.63a

9 2.53ab 4 2.81ab 4 3.07a

11 2.54ab 12 3.37ab 9 3.80ab

4 2.57ab 8 3.43ab 2 3.81ab

2 2.68ab 9 3.51ab 12 4.02ab

12 2.76ab 2 3.74ab 11 4.22ab

8 2.95ab 10 3.82ab 8 4.25ab

10 3.38b 5 3.94ab 5 5.1b

5 3.48b 11 3.97b 10 5.3b

differentlettersindicatesignificantdifferencesbetweentreatments(Tukey,p<0.05)

Since the test substrate did not contain any P, P-CALcontentsattheendoftheexperimentshouldgiveanindi-cationifandtowhichextenttheplantavailableamounts

ofPsuppliedbyfertilizationwereinfactexhaustedbytheplants(seeabove).ThenetP-CALcontentwascalculatedbysubtractingtheP-CALcontentofthezeroPtreatment.

Page 12: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

238

Figure3demonstratesthatPwasmoreorlesscompletelytakenupbyplantsonlyatP level20.Adirect compari-sonshows that,asexpected, standardmineral fertilizersdeliveredhigheramountsofCAL-solublePthanrecyclingfertilizers.TheonlyexceptionwasNPK-SSATC(tr.7),whichshowedveryhighCALcontents.Asexplainedabove,thissewagesludgeashbasedfertilizerwasenrichedwithtri-plesuperphosphatetomaintainapredefinedPcontent,inadditiontheproductcontainedKCl,whichexplainsitshighersolubility.Thewitheringoftheplantsaftercut1inthis treatmentcausedthehighexcesssubstrate-Pat theend of the trial. Apart from this treatment, the highestamount of plant-available P among the recycling fertil-izerswas supplied byOrgNPMBM, Org NPSSand struvite,whilethelowestamountsofplant-availablePcamefromP-SSATC,MBMAandorgNPBM.

Table15:

MeannetPuptakeofrootsinthedifferentfertilizertreatments

P level 20 P level 40 P level 60

Tr. P uptake (mg) Tr. P uptake (mg) Tr. P uptake (mg)

3 0.72a 8 0.21a 6 0.83a

6 0.89a 1 0.67ab 1 0.90a

2 0.94a 9 0.70ab 3 1.08a

1 0.99a 3 0.97abc 2 1.11a

11 1.19ab 2 1.19abc 5 1.48a

5 1.38ab 7 1.45abcd 4 2.03a

4 1.44ab 6 1.78bcd 11 3.55b

7 1.67ab 5 1.82bcd 7 3.81b

10 1.73ab 11 1.97bcd 8 4.23b

9 2.35b 4 2.11cd 10 4.94b

8 2.37b 10 2.60d 9 4.98b

differentlettersindicatesignificantdifferencesbetweentreatments(Tukey,p<0.05)

3.2.4 Relationship between chemical solubility and P up-take in the Neubauer trial

ThehighestPuptakeswererealizedbythoserecyclingfertilizerswhichdisplayedthehighestsolubilityinneutralammoniumcitrate(andcitricacid).Acorrelationanalysiswas performed to investigate the statistical relationship

Figure3:

Plant-availablenetPcontent(P-CAL)inthesubstrateofdifferentfertilizertreatmentsafterthefinalharvest(soiltestlevelA=low;fertilizerde-scriptionseeTable3)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

org NP (BM) org NP (MBM) MBMA org NP (SS) Struvite P-SSA(TC) NPK-SSA(TC) MCP SSP DAP pa RP

Fertilizer type

NetP

-CA

L(m

g/k

g)

P level 20 mg

P level 40 mg

P level 60 mg

upper limit of soil test level A

Page 13: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

S. Kratz, S. Haneklaus, E. Schnug / Landbauforschung - vTI Agriculture and Forestry Research 4 2010 (60)227-240 239

betweenchemicalsolubilityofthefertilizersandPuptakeintheNeubauertrial.Table16showsthat–lookingatthemeanofall11testedtreatments–thestrongestcorrela-tionwas found betweenwater-soluble P and P uptake.Also,astrongcorrelationwasfoundbetweenPsolubilityin alkaline ammonium citrate (AAC) and P uptake, fol-lowed by solubility in water+neutral ammonium citrate(W+NAC).ThiswastruefortotalPuptake(allcuts)andPuptakeatcut1. Incontrasttothis,atcut2thestron-gestcorrelationwithPuptakewasfoundforPsolubilityinmineralacid,followedbywaterandammoniumcitrate,whileatcut3,extractionwithNACEUshowedthebestcor-relation,followedbythestrongerextractantsformic(FA)andcitricacid(CA).Thisresultmirrorsthestrongerinitialeffectofwater-solublefertilizersandtheslowreleaseofnon-watersolublePforms.Lookingseparatelyatstandardmineralorrecyclingfer-

tilizers, the extracts with ammonium citrate correlatedbestwithPuptake inthecaseofmineralfertilizers.Sig-nificantcorrelationswerefound,however,theywereonlyweak(Table17).

Table16:

Pearsoncorrelationcoefficients(r)fortherelationshipbetweenabsolute(MinA)/relativePsolubilityindifferentchemicalextractsandPuptakeinthepottrial,calculatedforall11testfertilizersincommon

Shoots cut 1 Shoots cut 2 Shoots cut 3 Roots Shoots cut 1 to 3 + roots

n 142 139 134 141 133

MinA-P(%) 0.494** 0.565** 0.368** 0.292** 0.619**

FA(%MinA) 0.541** 0.435** 0.472** 0.362** 0.552**

CA(%MinA) 0.489** 0.352** 0.458** 0.392** 0.503**

NACEU(%MinA) 0.590** 0.453** 0.488** 0.473** 0.615**

W+NACFN(%MinA) 0.704** 0.450** 0.402** 0.501** 0.684**

AAC(%MinA) 0.773** 0.451** 0.285** 0.531** 0.724**

W(%MinA) 0.849** 0.469** 0.310** 0.520** 0.777**

Significances:**=p<0.01,*=p<0.05

Table17:

Pearsoncorrelationcoefficients(r)fortherelationshipbetweenabsolute(MinA)/relativePsolubilityindifferentchemicalextractsandPuptakeinthepottrial,calculatedformineralfertilizers(Types9to11)

Shoots cut 1 Shoots cut 2 Shoots cut 3 Roots Shoots cut 1 to 3 + roots

n 48 48 48 48 48

MinA-P(%) 0.289* 0.193 0.257 0.025 0.239

FA(%MinA) 0.228 0.197 0.215 0.195 0.250

CA(%MinA) 0.180 0.217 0.239 0.181 0.230

NACEU(%MinA) 0.293* 0.218 0.243 0.202 0.295*

W+NACFN(%MinA) 0.295* 0.221 0.248 0.202 0.297*

AAC(%MinA) 0.278 0.247 0.281 0.195 0.297*

W(%MinA) 0.227 0.186 0.201 0.196 0.245

Significances:**=p<0.01,*=p<0.05

For the recycling fertilizers, the strongest correlationswithnetPuptake(shootsandroots)wereobservedforex-tractionswithcitricacid(CA),followedbyneutralammo-nium citrate (NACEU orW+NACFN).However, therewerealsocleardifferencesbetweenthefirstandthefinalyield:Whilethepositiveinitialeffectofwater-solublefertilizerswasseenatcut1,atcut3therewerestrongerrelation-shipsbetweenPuptakeandthemorepowerfulextract-antscitricacid(CA),NACEUandformicacid(FA)(Table18),confirming again that the prompt advantage of water-soluble P forms can be at least partly compensated byslowlyavailablePformswithtime.

Page 14: Chemical solubility and agricultural performance of P ...literatur.ti.bund.de/digbib_extern/bitv/dn047466.pdf · Chemical solubility and agricultural performance of P-containing recycling

240

Table18:

Pearsoncorrelationcoefficients(r)fortherelationshipbetweenabsolute(MinA)/relativePsolubilityindifferentchemicalextractsandPuptakeinthepottrial,calculatedforrecyclingfertilizers(Types1to7)

Shoots cut 1 Shoots cut 2 Shoots cut 3 Roots Shoots cut 1 to 3 + roots

n 84 81 76 84 76

MinA-P(%) -0.550** 0.303** 0.222 -0.365** -0.150

FA(%MinA) 0.414** 0.241* 0.469** 0.249* 0.395**

CA(%MinA) 0.590** 0.277* 0.488** 0.530** 0.722**

NACEU(%MinA) 0.479** 0.271* 0.480** 0.540** 0.625**

W+NACFN(%MinA) 0.588** 0.086 0.283* 0.518** 0.550**

AAC(%MinA) 0.611** -0.170 -0.060 0.516** 0.385**

W(%MinA) 0.865** -0.323** -0.093 0.461** 0.387**

Significances:**=p<0.01,*=p<0.05

4 Conclusions

Itcanbeconcludedfromtheclosecorrelationsbetweenvariouschemicalextractionmethodsfoundformineralaswellasorganicfertilizersthatitiseasilypossibletoreducethenumberofstandardmethodstothreeorfour.Thiswillbemuchmoredifficultforproductsfromsewagesludgeash.However,withregardtotheheterogeneityofthesematerialsitisquestionablewhethertheirqualitycanasyetbedefinedwithsufficientaccuracytomakethematrad-ablefertilizer,i.e.moredevelopmentandresearchontheproductionengineeringside(stabilityandabilitytocontrolthethermochemicalprocess)isnecessary.Thisshouldin-cludethequestiontowhichextentnewconstituentsun-predictablydevelopingduringthethermochemicalprocessimpairthedeterminationofPsolubilitywithconventionalchemicalextractionmethods.The statistical calculations on correlations between

chemical solubility and agricultural performance in theNeubauerpottrialconfirmedarelationshipbetweenwa-tersolubilityofafertilizerandits initialeffect,whilethemid-termeffectofnon-watersolublefertilizerswasbestdescribedbyanextractionwithammoniumcitrate.Sinceitiseasiertohandleinthelaboratory,theEUmethodofneutralammoniumcitrateextractionwithoutaprecedingwaterextractionisrecommended.Inordertoestimatethetradable total P contentofa fertilizer, it is suggested tomaintainthemineralacidextractionalreadypracticedonEUlevel.However,sincethismethodshowsclosecorrela-tionwith theaqua regiaextraction, it isalsopossible tochoosethelatteroneforso-calledtotalP.Anadvantageoftheaqua regiaextractisthefactthatthisisatthesametime thestandardmethod toquantify totalheavymetalcontentsinfertilizersandsoils.

References

Bundesgütegemeinschaft Kompost (1998) Methodenbuch zur Analyse vonKompost.Stuttgart:VerlAbfallNow,154p

DINEN13346:2001-4CharakterisierungvonSchlämmen–BestimmungvonSpurenelementenundPhosphor-ExtraktionsverfahrenmitKönigswasser.Berlin:Beuth

FinckA(1992)DüngerundDüngung:GrundlagenundAnleitungzurDüngungderKulturpflanzen.Weinheim:VCH,488p

SchnugE,HaneklausS,VogelW(1994)Determinationofenvironmentalele-mentsincontaminatedsoilbyaquaregiaextractionandX-rayfluorescencespectroscopy (X-RF). In: Etchevers BJD (ed) 15thWorld Congress of SoilScience,Acapulco,Mexico,July10-16,1994:transactions;vol.3a,Com-missionII:symposia.Mexico:InternSocSoilScience,pp509-516

MurphyJ,RileyJP(1962)Amodifiedsinglesolutionmethodforthedetermina-tionofphosphateinnaturalwaters.AnalChimActa27:31-36

Neubauer H, SchneiderW (1923) Die Nährstoffaufnahme der KeimpflanzenundihreAnwendungaufdieBestimmungdesNährstoffgehaltsderBöden.ZPflanzenernDüngungAWissTeil2:329-362

NeubauerH(1931)DieKeimpflanzenmethodenachNeubauerundSchneider.In:HoncampF(ed)DüngemittelundDüngung.Berlin:Springer,pp882-902,HandbuchderPflanzenernährungundDüngerlehre2

SchüllerH(1969)DieCAL-Methode,eineneueMethodezurBestimmungdespflanzenverfügbarenPhosphatsimBoden.ZPflanzenernBodenkd123:48-63

StraußR, BleiholderH, BommT vanden,Buhr L,HackH,HeßM,KloseR,MeierU,WeberE(1994)EinheitlicheCodierungderphänologischenEnt-wicklungsstadienmono-unddikotyler Pflanzen : erweiterteBBCH-Skala:Allgemein,Kulturen.Basel:Ciba-Geigy

VDLUFA (2007) Die Untersuchung von Düngemitteln. Darmstadt : VDLUFA-Verl,VDLUFA-MethodenbuchBandII

Legal norms

Düngemittelverordnung(DüMV)vom16.12.2008,BGBlI(60):2524-2581,ge-ändertam03.11.2004,Bundesgesetzblatt:Teil1/BundesministerderJu-stizI:2767

Düngeverordnung (DüV)–VerordnungüberdieAnwendungvonDüngemit-teln, Bodenhilfsstoffen und Kultursubstraten nach den Grundsätzen dergutenfachlichenPraxisbeimDüngenvom27.02.2007,Bundesgesetzblatt:Teil1/BundesministerderJustiz,p221

EU-VerordnungüberDüngemittelVO(EG)2003/2003v.13.10.2003,EU-Amts-blattL304,mitÄnderungsverordnungenVO(EG)Nr.2076/2004,EU-Amts-blattL359,S.25ff.undVO(EG)Nr.162/2007,AmtsblattderEuropäischenUnion2007/L51:7