chemical task

Upload: fela-fitrin

Post on 05-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Chemical Task

    1/26

    CHEMICAL TASK

    IRON

    BY:

    DIMAS GUNTUR . A . (07)

    ERDIANSYAH (08)

    FELA FITRIN (11)

  • 8/2/2019 Chemical Task

    2/26

    PREFACE

    All praise to Allah, and for it give, we can to make a checimal task about

    IRON with fluent and nothing a hindrance.

    In this book, we will to explaining about IRON which is the one of the

    element in the world.

    Says to finish, Wasallamualaikum Wr.Wb.

    Malang, November 2011

    Writer

  • 8/2/2019 Chemical Task

    3/26

    CONTENTS

  • 8/2/2019 Chemical Task

    4/26

    Iron is a chemical element with the symbol Fe (from Latin:ferrum) and atomic number 26. It isa metal in the first transition series. It is the most common element (by mass) forming the planetEarth as a whole, forming much of Earth's outer and inner core. It is the fourth most common

    element in the Earth's crust. Iron's very common presence in rocky planets like Earth is due to its

    abundant production as a result of fusion in high-mass stars, where the production ofnickel-56

    (which decays to iron) is the last nuclear fusion reaction that is exothermic. This allowsradioactive nickel to become the last element to be produced before collapse of a supernova

    leads to events that scatters this precursor radionuclide of iron into space.

    Like other Group 8 elements, iron exists in a wide range ofoxidation states, 2 to + 6, although

    +2 and +3 are the most common. Elemental iron occurs in meteoroids and other low oxygenenvironments, but is reactive to oxygen and water. Fresh iron surfaces appear lustrous silvery-

    gray, but oxidize in normal air to give iron oxides, also known as rust. Unlike many other metals

    which form passivating oxide layers, iron oxides occupy more volume than iron metal, and thus

    iron oxides flake off and expose fresh surfaces for corrosion.

    Iron metal has been used since ancient times, though lower-melting copper alloys were used firstin history. Pure iron is soft (softer than aluminium), but is unobtainable by smelting. Thematerial is significantly hardened and strengthened by impurities from the smelting process, such

    as carbon. A certain proportion of carbon (between 0.2% and 2.1%) produces steel, which may

    be up to 1000 times harder than pure iron. Crude iron metal is produced in blast furnaces, whereore is reduced by coke to cast iron, which has a high carbon content. Further refinement with

    oxygen reduces the carbon content to the correct proportion to make steel. Steels and low carbon

    iron alloys with other metals (alloy steels) are by far the most common metals in industrial use,

    due to their great range of desirable properties.

    Iron chemical compounds, which include ferrous and ferric compounds, have many uses. Iron

    oxide mixed with aluminium powder can be ignited to create a thermite reaction, used in weldingand purifying ores. It forms binary compounds with the halogens and the chalcogens. Among its

    organometallic compounds, ferrocene was the first sandwich compound discovered.

    Iron plays an important role in biology, forming complexes with molecular oxygen in

    hemoglobin and myoglobin; these two compounds are common oxygen transport proteins in

    vertebrates. Iron is also the metal used at the active site of many important redox enzymesdealing with cellular respiration and oxidation and reduction in plants and animals.

    http://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Latin_languagehttp://en.wikipedia.org/wiki/Atomic_numberhttp://en.wikipedia.org/wiki/Metalhttp://en.wikipedia.org/wiki/First_transition_serieshttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crusthttp://en.wikipedia.org/wiki/Nickel-56http://en.wikipedia.org/wiki/Nuclear_fusion_reactionhttp://en.wikipedia.org/wiki/Exothermichttp://en.wikipedia.org/wiki/Type_II_supernovahttp://en.wikipedia.org/wiki/Precursor_%28chemistry%29http://en.wikipedia.org/wiki/Radionuclidehttp://en.wikipedia.org/wiki/Group_8_elementhttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Meteoroidhttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Rusthttp://en.wikipedia.org/wiki/Aluminiumhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Steelhttp://en.wikipedia.org/wiki/Blast_furnacehttp://en.wikipedia.org/wiki/Coke_%28fuel%29http://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloy_steelhttp://en.wikipedia.org/wiki/Thermitehttp://en.wikipedia.org/wiki/Halogenshttp://en.wikipedia.org/wiki/Chalcogenshttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Myoglobinhttp://en.wikipedia.org/wiki/Oxygen_transporthttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Cellular_respirationhttp://en.wikipedia.org/wiki/Cellular_respirationhttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Oxygen_transporthttp://en.wikipedia.org/wiki/Myoglobinhttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Chalcogenshttp://en.wikipedia.org/wiki/Halogenshttp://en.wikipedia.org/wiki/Thermitehttp://en.wikipedia.org/wiki/Alloy_steelhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Coke_%28fuel%29http://en.wikipedia.org/wiki/Blast_furnacehttp://en.wikipedia.org/wiki/Steelhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Aluminiumhttp://en.wikipedia.org/wiki/Rusthttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Meteoroidhttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Group_8_elementhttp://en.wikipedia.org/wiki/Radionuclidehttp://en.wikipedia.org/wiki/Precursor_%28chemistry%29http://en.wikipedia.org/wiki/Type_II_supernovahttp://en.wikipedia.org/wiki/Exothermichttp://en.wikipedia.org/wiki/Nuclear_fusion_reactionhttp://en.wikipedia.org/wiki/Nickel-56http://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crusthttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/First_transition_serieshttp://en.wikipedia.org/wiki/Metalhttp://en.wikipedia.org/wiki/Atomic_numberhttp://en.wikipedia.org/wiki/Latin_languagehttp://en.wikipedia.org/wiki/Chemical_element
  • 8/2/2019 Chemical Task

    5/26

    Besi adalah unsur kimia dengan simbol Fe (dari bahasa Latin: zat besi) dan nomor atom 26. Ini

    adalah logam dalam seri transisi pertama. Ini adalah elemen yang paling umum (massa)

    membentuk planet Bumi secara keseluruhan, banyak membentuk inti bumi luar dan dalam. Ini

    adalah elemen yang paling umum keempat dalam kerak bumi. Kehadiran besi sangat umum diplanet berbatu seperti Bumi adalah karena produksi berlimpah sebagai hasil dari fusi di bintang-

    bintang bermassa tinggi, dimana produksi nikel-56 (yang meluruh menjadi zat besi) adalah

    reaksi fusi nuklir yang terakhir eksotermik. Hal ini memungkinkan nikel radioaktif untukmenjadi elemen terakhir yang diproduksi sebelum runtuhnya supernova mengarah ke peristiwa

    yang menyebarkan ini prekursor radionuklida dari besi ke ruang angkasa.

    Seperti Kelompok lainnya 8 unsur, zat besi ada di berbagai negara oksidasi, -2 ke + 6, meskipun

    +2 dan +3 adalah yang paling umum. Unsur besi terjadi pada meteoroid dan lingkungan oksigen

    rendah, tetapi reaktif terhadap oksigen dan air. Permukaan besi berkilau keperakan muncul segar

    abu-abu, namun teroksidasi di udara normal untuk memberikan oksida besi, juga dikenal sebagai

    karat. Tidak seperti logam lain yang membentuk lapisan oksida pasivator, oksida besi menempativolume lebih dari logam besi, dan dengan demikian besi oksida mengelupas off dan mengekspos

    permukaan segar untuk korosi.

    Besi logam telah digunakan sejak zaman kuno, meskipun lebih rendah-lebur paduan tembaga

    digunakan pertama dalam sejarah. Besi murni yang lunak (lembut dari aluminium), tapi tak dpt

    diperoleh dengan peleburan. Materi yang signifikan mengeras dan diperkuat dengan kotoran dariproses peleburan, seperti karbon. Sebagian tertentu dari karbon (antara 0,2% dan 2,1%)

    memproduksi baja, yang mungkin sampai 1000 kali lebih keras dari besi murni. Logam besi

    mentah yang diproduksi di tanur tiup, dimana bijih dikurangi dengan kokas untuk melemparkanbesi, yang memiliki kandungan karbon tinggi. Perbaikan lebih lanjut dengan oksigen mengurangi

    kandungan karbon dengan proporsi yang benar untuk membuat baja. Baja dan paduan besikarbon rendah dengan logam lain (baja paduan) yang jauh logam yang paling umum digunakan

    industri, karena berbagai besar mereka sifat yang diinginkan.

    Senyawa kimia besi, yang meliputi senyawa besi dan besi, memiliki banyak kegunaan. Besi

    oksida dicampur dengan bubuk aluminium dapat dinyalakan untuk menciptakan reaksi termit,yang digunakan dalam pengelasan dan bijih memurnikan. Ini membentuk senyawa biner dengan

    halogen dan chalcogens. Diantara senyawa organologam nya, ferrocene adalah senyawa

    sandwich yang pertama kali ditemukan.

    Besi memainkan peran penting dalam biologi, membentuk kompleks dengan molekul oksigen di

    hemoglobin dan mioglobin, dua senyawa adalah protein transportasi umum oksigen dalamvertebrata. Besi juga merupakan logam yang digunakan pada situs aktif enzim banyak redokspenting berurusan dengan respirasi seluler dan oksidasi dan reduksi pada tumbuhan dan hewan.

  • 8/2/2019 Chemical Task

    6/26

    Contents

    [hide]

    1 Characteristics

    http://d/TUGAS%20FELA/Iron.htmhttp://d/TUGAS%20FELA/Iron.htmhttp://d/TUGAS%20FELA/Iron.htmhttp://d/TUGAS%20FELA/Iron.htm%23Characteristicshttp://d/TUGAS%20FELA/Iron.htm%23Characteristicshttp://d/TUGAS%20FELA/Iron.htm%23Characteristicshttp://d/TUGAS%20FELA/Iron.htm
  • 8/2/2019 Chemical Task

    7/26

    o 1.1 Mechanical propertieso 1.2 Phase diagram and allotropeso 1.3 Isotopeso 1.4 Nucleosynthesiso 1.5 Occurrence

    1.5.1 Planetary occurrence 1.5.2 In-use stocks in society

    2 Chemistry and compoundso 2.1 Binary compoundso 2.2 Coordination and organometallic compounds

    3 Historyo 3.1 Wrought irono 3.2 Cast irono 3.3 Steelo 3.4 Foundations of modern chemistryo 3.5 Recent discoveries

    4 Industrial productiono 4.1 Blast furnaceo 4.2 Direct iron reductiono 4.3 Further processes

    5 Applicationso 5.1 Metallurgicalo 5.2 Of compounds

    6 Biological roleo 6.1 Bioinorganic compoundso 6.2 Health and dieto 6.3 Uptake and storageo

    6.4 Regulation of uptakeo 6.5 Permeable reactive barriers

    7 Precautions 8 See also 9 References 10 Books 11 External links

    Characteristics

    Mechanical properties

    Characteristic values oftensile strength(TS) andBrinell hardness(BH) of different forms of

    iron.[1][2]

    MaterialTS

    (MPa)

    BH

    (Brinell)

    Iron whiskers 11000

    http://d/TUGAS%20FELA/Iron.htm%23Mechanical_propertieshttp://d/TUGAS%20FELA/Iron.htm%23Mechanical_propertieshttp://d/TUGAS%20FELA/Iron.htm%23Phase_diagram_and_allotropeshttp://d/TUGAS%20FELA/Iron.htm%23Phase_diagram_and_allotropeshttp://d/TUGAS%20FELA/Iron.htm%23Isotopeshttp://d/TUGAS%20FELA/Iron.htm%23Isotopeshttp://d/TUGAS%20FELA/Iron.htm%23Nucleosynthesishttp://d/TUGAS%20FELA/Iron.htm%23Nucleosynthesishttp://d/TUGAS%20FELA/Iron.htm%23Occurrencehttp://d/TUGAS%20FELA/Iron.htm%23Occurrencehttp://d/TUGAS%20FELA/Iron.htm%23Planetary_occurrencehttp://d/TUGAS%20FELA/Iron.htm%23Planetary_occurrencehttp://d/TUGAS%20FELA/Iron.htm%23In-use_stocks_in_societyhttp://d/TUGAS%20FELA/Iron.htm%23In-use_stocks_in_societyhttp://d/TUGAS%20FELA/Iron.htm%23Chemistry_and_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Chemistry_and_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Binary_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Binary_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Coordination_and_organometallic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Coordination_and_organometallic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Historyhttp://d/TUGAS%20FELA/Iron.htm%23Historyhttp://d/TUGAS%20FELA/Iron.htm%23Wrought_ironhttp://d/TUGAS%20FELA/Iron.htm%23Wrought_ironhttp://d/TUGAS%20FELA/Iron.htm%23Cast_ironhttp://d/TUGAS%20FELA/Iron.htm%23Cast_ironhttp://d/TUGAS%20FELA/Iron.htm%23Steelhttp://d/TUGAS%20FELA/Iron.htm%23Steelhttp://d/TUGAS%20FELA/Iron.htm%23Foundations_of_modern_chemistryhttp://d/TUGAS%20FELA/Iron.htm%23Foundations_of_modern_chemistryhttp://d/TUGAS%20FELA/Iron.htm%23Recent_discoverieshttp://d/TUGAS%20FELA/Iron.htm%23Recent_discoverieshttp://d/TUGAS%20FELA/Iron.htm%23Industrial_productionhttp://d/TUGAS%20FELA/Iron.htm%23Industrial_productionhttp://d/TUGAS%20FELA/Iron.htm%23Blast_furnacehttp://d/TUGAS%20FELA/Iron.htm%23Blast_furnacehttp://d/TUGAS%20FELA/Iron.htm%23Direct_iron_reductionhttp://d/TUGAS%20FELA/Iron.htm%23Direct_iron_reductionhttp://d/TUGAS%20FELA/Iron.htm%23Further_processeshttp://d/TUGAS%20FELA/Iron.htm%23Further_processeshttp://d/TUGAS%20FELA/Iron.htm%23Applicationshttp://d/TUGAS%20FELA/Iron.htm%23Applicationshttp://d/TUGAS%20FELA/Iron.htm%23Metallurgicalhttp://d/TUGAS%20FELA/Iron.htm%23Metallurgicalhttp://d/TUGAS%20FELA/Iron.htm%23Of_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Of_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Biological_rolehttp://d/TUGAS%20FELA/Iron.htm%23Biological_rolehttp://d/TUGAS%20FELA/Iron.htm%23Bioinorganic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Bioinorganic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Health_and_diethttp://d/TUGAS%20FELA/Iron.htm%23Health_and_diethttp://d/TUGAS%20FELA/Iron.htm%23Uptake_and_storagehttp://d/TUGAS%20FELA/Iron.htm%23Uptake_and_storagehttp://d/TUGAS%20FELA/Iron.htm%23Regulation_of_uptakehttp://d/TUGAS%20FELA/Iron.htm%23Regulation_of_uptakehttp://d/TUGAS%20FELA/Iron.htm%23Permeable_reactive_barriershttp://d/TUGAS%20FELA/Iron.htm%23Permeable_reactive_barriershttp://d/TUGAS%20FELA/Iron.htm%23Precautionshttp://d/TUGAS%20FELA/Iron.htm%23Precautionshttp://d/TUGAS%20FELA/Iron.htm%23See_alsohttp://d/TUGAS%20FELA/Iron.htm%23See_alsohttp://d/TUGAS%20FELA/Iron.htm%23Referenceshttp://d/TUGAS%20FELA/Iron.htm%23Referenceshttp://d/TUGAS%20FELA/Iron.htm%23Bookshttp://d/TUGAS%20FELA/Iron.htm%23Bookshttp://d/TUGAS%20FELA/Iron.htm%23External_linkshttp://d/TUGAS%20FELA/Iron.htm%23External_linkshttp://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Brinell_hardnesshttp://en.wikipedia.org/wiki/Brinell_hardnesshttp://en.wikipedia.org/wiki/Brinell_hardnesshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Monocrystalline_whiskerhttp://en.wikipedia.org/wiki/Monocrystalline_whiskerhttp://en.wikipedia.org/wiki/Monocrystalline_whiskerhttp://en.wikipedia.org/wiki/Brinell_scalehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://en.wikipedia.org/wiki/Brinell_hardnesshttp://en.wikipedia.org/wiki/Tensile_strengthhttp://d/TUGAS%20FELA/Iron.htm%23External_linkshttp://d/TUGAS%20FELA/Iron.htm%23Bookshttp://d/TUGAS%20FELA/Iron.htm%23Referenceshttp://d/TUGAS%20FELA/Iron.htm%23See_alsohttp://d/TUGAS%20FELA/Iron.htm%23Precautionshttp://d/TUGAS%20FELA/Iron.htm%23Permeable_reactive_barriershttp://d/TUGAS%20FELA/Iron.htm%23Regulation_of_uptakehttp://d/TUGAS%20FELA/Iron.htm%23Uptake_and_storagehttp://d/TUGAS%20FELA/Iron.htm%23Health_and_diethttp://d/TUGAS%20FELA/Iron.htm%23Bioinorganic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Biological_rolehttp://d/TUGAS%20FELA/Iron.htm%23Of_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Metallurgicalhttp://d/TUGAS%20FELA/Iron.htm%23Applicationshttp://d/TUGAS%20FELA/Iron.htm%23Further_processeshttp://d/TUGAS%20FELA/Iron.htm%23Direct_iron_reductionhttp://d/TUGAS%20FELA/Iron.htm%23Blast_furnacehttp://d/TUGAS%20FELA/Iron.htm%23Industrial_productionhttp://d/TUGAS%20FELA/Iron.htm%23Recent_discoverieshttp://d/TUGAS%20FELA/Iron.htm%23Foundations_of_modern_chemistryhttp://d/TUGAS%20FELA/Iron.htm%23Steelhttp://d/TUGAS%20FELA/Iron.htm%23Cast_ironhttp://d/TUGAS%20FELA/Iron.htm%23Wrought_ironhttp://d/TUGAS%20FELA/Iron.htm%23Historyhttp://d/TUGAS%20FELA/Iron.htm%23Coordination_and_organometallic_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Binary_compoundshttp://d/TUGAS%20FELA/Iron.htm%23Chemistry_and_compoundshttp://d/TUGAS%20FELA/Iron.htm%23In-use_stocks_in_societyhttp://d/TUGAS%20FELA/Iron.htm%23Planetary_occurrencehttp://d/TUGAS%20FELA/Iron.htm%23Occurrencehttp://d/TUGAS%20FELA/Iron.htm%23Nucleosynthesishttp://d/TUGAS%20FELA/Iron.htm%23Isotopeshttp://d/TUGAS%20FELA/Iron.htm%23Phase_diagram_and_allotropeshttp://d/TUGAS%20FELA/Iron.htm%23Mechanical_properties
  • 8/2/2019 Chemical Task

    8/26

    Ausformed (hardened) steel 2930 8501200

    Martensitic steel 2070 600

    Bainitic steel 1380 400

    Pearlitic steel 1200 350

    Cold-worked iron 690 200Small-grain iron 340 100

    Carbon-containing iron 140 40

    Pure, single-crystal iron 10 3

    Mechanical properties of iron and its alloys are evaluated using a variety of tests, such as the

    Brinell test,Rockwell test, ortensile strengthtests, among others; the results on iron are so

    consistent that iron is often used to calibrate measurements or to relate the results of one test toanother.[2][3]Those measurements reveal that mechanical properties of iron crucially depend on

    purity: Purest research-purpose single crystals of iron are softer than aluminium. Addition of

    only 10parts per millionof carbon doubles their strength.[1]

    The hardness increases rapidly with

    carbon content up to 0.2% and saturates at ~0.6%.[4]The purest industrially produced iron (about99.99% purity) has a hardness of 2030 Brinell.

    [5]

    Phase diagram and allotropes

    Main article:Allotropes of iron

    Iron represents an example ofallotropyin a metal. There are at least four allotropic forms of

    iron, known as , , , and ; at very high pressures, some controversial experimental evidence

    exists for a phase stable at very high pressures and temperatures.[6]

    Low-pressurephase diagramof pure iron

    As molten iron cools down it crystallizes at 1538 C into its allotrope, which has abody-centered cubic(bcc) crystal structure. As it cools further itscrystal structurechanges toface-

    centered cubic(fcc) at 1394 C, when it is known as -iron, oraustenite. At 912 C the crystal

    structure again becomes bcc as -iron, orferrite, is formed, and at 770 C (theCurie point, Tc)

    iron becomesmagnetic. As the iron passes through the Curie temperature there is no change in

    http://en.wikipedia.org/wiki/Martensitehttp://en.wikipedia.org/wiki/Martensitehttp://en.wikipedia.org/wiki/Bainitehttp://en.wikipedia.org/wiki/Bainitehttp://en.wikipedia.org/wiki/Pearlitehttp://en.wikipedia.org/wiki/Pearlitehttp://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Rockwell_scalehttp://en.wikipedia.org/wiki/Rockwell_scalehttp://en.wikipedia.org/wiki/Rockwell_scalehttp://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Tensile_strengthhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-corr-1http://d/TUGAS%20FELA/Iron.htm%23cite_note-corr-1http://d/TUGAS%20FELA/Iron.htm%23cite_note-corr-1http://en.wikipedia.org/wiki/Parts-per_notationhttp://en.wikipedia.org/wiki/Parts-per_notationhttp://en.wikipedia.org/wiki/Parts-per_notationhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://d/TUGAS%20FELA/Iron.htm%23cite_note-3http://d/TUGAS%20FELA/Iron.htm%23cite_note-3http://d/TUGAS%20FELA/Iron.htm%23cite_note-3http://d/TUGAS%20FELA/Iron.htm%23cite_note-4http://d/TUGAS%20FELA/Iron.htm%23cite_note-4http://d/TUGAS%20FELA/Iron.htm%23cite_note-4http://en.wikipedia.org/wiki/Allotropes_of_ironhttp://en.wikipedia.org/wiki/Allotropes_of_ironhttp://en.wikipedia.org/wiki/Allotropes_of_ironhttp://en.wikipedia.org/wiki/Allotropyhttp://en.wikipedia.org/wiki/Allotropyhttp://en.wikipedia.org/wiki/Allotropyhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://en.wikipedia.org/wiki/Phase_diagramhttp://en.wikipedia.org/wiki/Phase_diagramhttp://en.wikipedia.org/wiki/Phase_diagramhttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Crystal_structurehttp://en.wikipedia.org/wiki/Crystal_structurehttp://en.wikipedia.org/wiki/Crystal_structurehttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Ferrite_%28iron%29http://en.wikipedia.org/wiki/Ferrite_%28iron%29http://en.wikipedia.org/wiki/Ferrite_%28iron%29http://en.wikipedia.org/wiki/Curie_pointhttp://en.wikipedia.org/wiki/Curie_pointhttp://en.wikipedia.org/wiki/Curie_pointhttp://en.wikipedia.org/wiki/Magnetichttp://en.wikipedia.org/wiki/Magnetichttp://en.wikipedia.org/wiki/Magnetichttp://en.wikipedia.org/wiki/File:Pure_iron_phase_diagram_(EN).pnghttp://en.wikipedia.org/wiki/File:Pure_iron_phase_diagram_(EN).pnghttp://en.wikipedia.org/wiki/File:Pure_iron_phase_diagram_(EN).pnghttp://en.wikipedia.org/wiki/File:Pure_iron_phase_diagram_(EN).pnghttp://en.wikipedia.org/wiki/Magnetichttp://en.wikipedia.org/wiki/Curie_pointhttp://en.wikipedia.org/wiki/Ferrite_%28iron%29http://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Face-centered_cubichttp://en.wikipedia.org/wiki/Crystal_structurehttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Body-centered_cubichttp://en.wikipedia.org/wiki/Phase_diagramhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://en.wikipedia.org/wiki/Allotropyhttp://en.wikipedia.org/wiki/Allotropes_of_ironhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-4http://d/TUGAS%20FELA/Iron.htm%23cite_note-3http://d/TUGAS%20FELA/Iron.htm%23cite_note-pure-0http://en.wikipedia.org/wiki/Parts-per_notationhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-corr-1http://d/TUGAS%20FELA/Iron.htm%23cite_note-corr-1http://en.wikipedia.org/wiki/Tensile_strengthhttp://en.wikipedia.org/wiki/Rockwell_scalehttp://en.wikipedia.org/wiki/Brinell_scalehttp://en.wikipedia.org/wiki/Pearlitehttp://en.wikipedia.org/wiki/Bainitehttp://en.wikipedia.org/wiki/Martensite
  • 8/2/2019 Chemical Task

    9/26

    crystalline structure, but there is a change in "domain structure", where each domain contains

    iron atoms with a particular electronic spin. In unmagnetized iron, all the electronic spins of theatoms within one domain are in the same direction; the neighboring domains point in various

    directions and thus cancel out. In magnetized iron, the electronic spins of all the domains are

    aligned, so that the magnetic effects of neighboring domains reinforce each other. Although each

    domain contains billions of atoms, they are very small, about 10 micrometres across .

    [7]

    . Atpressures above approximately 10 GPa and temperatures of a few hundred kelvin or less, -iron

    changes into ahexagonal close-packed(hcp) structure, which is also known as-iron; the higher-

    temperature -phase also changes into -iron, but does so at higher pressure. The-phase, if itexists, would appear at pressures of at least 50 GPa and temperatures of at least 1500 K; it has

    been thought to have an orthorhombic or a double hcp structure.[6]

    Iron is of greatest importance when mixed with certain other metals and with carbon to form

    steels. There are many types of steels, all with different properties, and an understanding of the

    properties of theallotropes of ironis key to the manufacture of good quality steels.

    -iron, also known as ferrite, is the most stable form of iron at normal temperatures. It is a fairlysoft metal that can dissolve only a small concentration of carbon (no more than 0.021% by massat 910 C).[8]

    Above 912 C and up to 1400 C -iron undergoes aphase transitionfrom bcc to the fcc

    configuration of -iron, also calledaustenite. This is similarly soft and metallic but can dissolve

    considerably more carbon (as much as 2.04% by mass at 1146 C). This form of iron is used in

    the type ofstainless steelused for making cutlery, and hospital and food-service equipment.[7]

    The high-pressure phases of iron are important as endmember models for the solid parts of

    planetary cores. Theinner coreof theEarthis generally assumed to consist essentially of an iron-

    nickelalloywith (or ) structure.

    The melting point of iron is experimentally well constrained for pressures up to approximately

    50 GPa. For higher pressures, different studies placed the --liquidtriple pointat pressures

    differing by tens of gigapascals and yielded differences of more than 1000 K for the melting

    point. Generally speaking,molecular dynamicscomputer simulations of iron melting and shockwave experiments suggest higher melting points and a much steeper slope of the melting curve

    than static experiments carried out indiamond anvil cells.[9]

    Isotopes

    Main article:Isotopes of iron

    Naturally occurring iron consists of four stableisotopes: 5.845% of54Fe, 91.754% of56Fe,2.119% of

    57Fe and 0.282% of

    58Fe. Of these stable isotopes, only

    57Fe has a nuclearspin(1/2).

    Thenuclide54

    Fe is predicted to undergodouble beta decay, but this process had never beenobserved experimentally for these nuclei, and only the lower limit on the half-life was

    established: t1/2>3.11022

    years.

    http://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://en.wikipedia.org/wiki/Hexagonal_close-packedhttp://en.wikipedia.org/wiki/Hexagonal_close-packedhttp://en.wikipedia.org/wiki/Hexagonal_close-packedhttp://en.wikipedia.org/wiki/Hexaferrumhttp://en.wikipedia.org/wiki/Hexaferrumhttp://en.wikipedia.org/wiki/Hexaferrumhttp://en.wikipedia.org/wiki/Hexaferrumhttp://en.wikipedia.org/wiki/Beta_ferritehttp://en.wikipedia.org/wiki/Beta_ferritehttp://en.wikipedia.org/wiki/Beta_ferritehttp://en.wikipedia.org/wiki/Beta_ferritehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://en.wikipedia.org/wiki/Allotropes_of_ironhttp://en.wikipedia.org/wiki/Allotropes_of_ironhttp://en.wikipedia.org/wiki/Allotropes_of_ironhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-7http://d/TUGAS%20FELA/Iron.htm%23cite_note-7http://d/TUGAS%20FELA/Iron.htm%23cite_note-7http://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Stainless_steelhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Triple_pointhttp://en.wikipedia.org/wiki/Triple_pointhttp://en.wikipedia.org/wiki/Triple_pointhttp://en.wikipedia.org/wiki/Molecular_dynamicshttp://en.wikipedia.org/wiki/Molecular_dynamicshttp://en.wikipedia.org/wiki/Molecular_dynamicshttp://en.wikipedia.org/wiki/Diamond_anvil_cellhttp://en.wikipedia.org/wiki/Diamond_anvil_cellhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-melting-8http://d/TUGAS%20FELA/Iron.htm%23cite_note-melting-8http://d/TUGAS%20FELA/Iron.htm%23cite_note-melting-8http://en.wikipedia.org/wiki/Isotopes_of_ironhttp://en.wikipedia.org/wiki/Isotopes_of_ironhttp://en.wikipedia.org/wiki/Isotopes_of_ironhttp://en.wikipedia.org/wiki/Isotopehttp://en.wikipedia.org/wiki/Isotopehttp://en.wikipedia.org/wiki/Isotopehttp://en.wikipedia.org/wiki/Spin_%28physics%29http://en.wikipedia.org/wiki/Spin_%28physics%29http://en.wikipedia.org/wiki/Spin_%28physics%29http://en.wikipedia.org/wiki/Nuclidehttp://en.wikipedia.org/wiki/Nuclidehttp://en.wikipedia.org/wiki/Nuclidehttp://en.wikipedia.org/wiki/Double_beta_decayhttp://en.wikipedia.org/wiki/Double_beta_decayhttp://en.wikipedia.org/wiki/Double_beta_decayhttp://en.wikipedia.org/wiki/Double_beta_decayhttp://en.wikipedia.org/wiki/Nuclidehttp://en.wikipedia.org/wiki/Spin_%28physics%29http://en.wikipedia.org/wiki/Isotopehttp://en.wikipedia.org/wiki/Isotopes_of_ironhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-melting-8http://en.wikipedia.org/wiki/Diamond_anvil_cellhttp://en.wikipedia.org/wiki/Molecular_dynamicshttp://en.wikipedia.org/wiki/Triple_pointhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Inner_corehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6http://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Austenitehttp://en.wikipedia.org/wiki/Phase_transitionhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-7http://en.wikipedia.org/wiki/Allotropes_of_ironhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-beta-iron-5http://en.wikipedia.org/wiki/Beta_ferritehttp://en.wikipedia.org/wiki/Hexaferrumhttp://en.wikipedia.org/wiki/Hexagonal_close-packedhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Metallo-6
  • 8/2/2019 Chemical Task

    10/26

    60Fe is anextinct radionuclideof longhalf-life(2.6 million years).

    [10]It is not found on Earth, but

    its ultimate decay product is forms part of the natural abundance of the stable nuclide nickel-60.

    Much of the past work on measuring the isotopic composition of Fe has focused on determining60

    Fe variations due to processes accompanyingnucleosynthesis(i.e.,meteoritestudies) and ore

    formation. In the last decade however, advances inmass spectrometrytechnology have allowedthe detection and quantification of minute, naturally occurring variations in the ratios of the

    stable isotopesof iron. Much of this work has been driven by theEarthandplanetary sciencecommunities, although applications to biological and industrial systems are beginning to

    emerge.[11]

    The most abundant iron isotope 56Fe is of particular interest to nuclear scientists as it represents

    the most common endpoint of nucleosynthesis. It is often cited, falsely, as the isotope of highest

    binding energy, a distinction which actually belongs tonickel-62.[12]

    Since56

    Ni is easily

    produced from lighter nuclei in thealpha processinnuclear reactionsin supernovae (seesiliconburning process), nickel-56 (14alpha particles) is the endpoint of fusion chains insideextremely

    massive stars, since addition of another alpha particle would result in zinc-60, which requires agreat deal more energy. This nickel-56, which has a half-life of about 6 days, is therefore madein quantity in these stars, but soon decays by two successive positron emissions within supernova

    decay products in thesupernova remnantgas cloud, first to radioactive cobalt-56, and then stable

    iron-56. This last nuclide is therefore common in the universe, relative to other stablemetalsofapproximately the sameatomic weight.

    In phases of the meteorites Semarkona and Chervony Kuta correlation between theconcentration of60Ni, thedaughter productof60Fe, and the abundance of the stable iron isotopes

    could be found which is evidence for the existence of60Fe at the time offormation of the solar

    system. Possibly the energy released by the decay of60

    Fe contributed, together with the energy

    released by decay of the radionuclide

    26

    Al, to the remelting anddifferentiationofasteroidsaftertheir formation 4.6 billion years ago[citation needed]. The abundance of60Ni present inextraterrestrial

    material may also provide further insight into the origin of thesolar systemand its early history.

    Nuclei of iron atoms have some of the highest binding energies per nucleon, surpassed only by

    thenickel isotope62

    Ni. This is formed bynuclear fusionin stars. Although a further tiny energy

    gain could be extracted by synthesizing62

    Ni, conditions in stars are unsuitable for this process tobe favored. Elemental distribution on Earth greatly favors iron over nickel, and also presumably

    in supernova element production.[13]

    Iron-56is the heaviest stable isotope produced by the alpha process instellar nucleosynthesis;

    elements heavier than iron and nickel require asupernovafor their formation. Iron is the most

    abundant element in the core ofred giants, and is the most abundant metal iniron meteoritesandin the dense metalcores of planetssuch asEarth.

    Nucleosynthesis

    Iron is created by extremely large, extremely hot (over 2.5 billion kelvin) stars, through a process

    called thesilicon burning process. It is the heaviest stable element to be produced in this manner.

    http://en.wikipedia.org/wiki/Extinct_radionuclidehttp://en.wikipedia.org/wiki/Extinct_radionuclidehttp://en.wikipedia.org/wiki/Extinct_radionuclidehttp://en.wikipedia.org/wiki/Half-lifehttp://en.wikipedia.org/wiki/Half-lifehttp://en.wikipedia.org/wiki/Half-lifehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-NUBASE-9http://d/TUGAS%20FELA/Iron.htm%23cite_note-NUBASE-9http://d/TUGAS%20FELA/Iron.htm%23cite_note-NUBASE-9http://en.wikipedia.org/wiki/Nickel-60http://en.wikipedia.org/wiki/Nickel-60http://en.wikipedia.org/wiki/Nickel-60http://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Mass_spectrometryhttp://en.wikipedia.org/wiki/Mass_spectrometryhttp://en.wikipedia.org/wiki/Mass_spectrometryhttp://en.wikipedia.org/wiki/Stable_isotopehttp://en.wikipedia.org/wiki/Stable_isotopehttp://en.wikipedia.org/wiki/Earth_sciencehttp://en.wikipedia.org/wiki/Earth_sciencehttp://en.wikipedia.org/wiki/Earth_sciencehttp://en.wikipedia.org/wiki/Planetary_sciencehttp://en.wikipedia.org/wiki/Planetary_sciencehttp://en.wikipedia.org/wiki/Planetary_sciencehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-10http://d/TUGAS%20FELA/Iron.htm%23cite_note-10http://d/TUGAS%20FELA/Iron.htm%23cite_note-10http://en.wikipedia.org/wiki/Nickel-62http://en.wikipedia.org/wiki/Nickel-62http://d/TUGAS%20FELA/Iron.htm%23cite_note-11http://d/TUGAS%20FELA/Iron.htm%23cite_note-11http://d/TUGAS%20FELA/Iron.htm%23cite_note-11http://en.wikipedia.org/wiki/Alpha_processhttp://en.wikipedia.org/wiki/Alpha_processhttp://en.wikipedia.org/wiki/Alpha_processhttp://en.wikipedia.org/wiki/Nuclear_reactionhttp://en.wikipedia.org/wiki/Nuclear_reactionhttp://en.wikipedia.org/wiki/Nuclear_reactionhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Alpha_particlehttp://en.wikipedia.org/wiki/Alpha_particlehttp://en.wikipedia.org/wiki/Alpha_particlehttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Supernova_remnanthttp://en.wikipedia.org/wiki/Supernova_remnanthttp://en.wikipedia.org/wiki/Supernova_remnanthttp://en.wikipedia.org/wiki/Metallicityhttp://en.wikipedia.org/wiki/Metallicityhttp://en.wikipedia.org/wiki/Metallicityhttp://en.wikipedia.org/wiki/Atomic_masshttp://en.wikipedia.org/wiki/Atomic_masshttp://en.wikipedia.org/wiki/Atomic_masshttp://en.wikipedia.org/wiki/Daughter_producthttp://en.wikipedia.org/wiki/Daughter_producthttp://en.wikipedia.org/wiki/Daughter_producthttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Planetary_differentiationhttp://en.wikipedia.org/wiki/Planetary_differentiationhttp://en.wikipedia.org/wiki/Planetary_differentiationhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wiktionary.org/wiki/extraterrestrialhttp://en.wiktionary.org/wiki/extraterrestrialhttp://en.wiktionary.org/wiki/extraterrestrialhttp://en.wikipedia.org/wiki/Solar_systemhttp://en.wikipedia.org/wiki/Solar_systemhttp://en.wikipedia.org/wiki/Solar_systemhttp://en.wikipedia.org/wiki/Isotopes_of_nickelhttp://en.wikipedia.org/wiki/Isotopes_of_nickelhttp://en.wikipedia.org/wiki/Isotopes_of_nickelhttp://en.wikipedia.org/wiki/Nuclear_fusionhttp://en.wikipedia.org/wiki/Nuclear_fusionhttp://en.wikipedia.org/wiki/Nuclear_fusionhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-12http://d/TUGAS%20FELA/Iron.htm%23cite_note-12http://d/TUGAS%20FELA/Iron.htm%23cite_note-12http://en.wikipedia.org/wiki/Iron-56http://en.wikipedia.org/wiki/Iron-56http://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Red_gianthttp://en.wikipedia.org/wiki/Red_gianthttp://en.wikipedia.org/wiki/Red_gianthttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Planetary_corehttp://en.wikipedia.org/wiki/Planetary_corehttp://en.wikipedia.org/wiki/Planetary_corehttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Planetary_corehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Red_gianthttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/Iron-56http://d/TUGAS%20FELA/Iron.htm%23cite_note-12http://en.wikipedia.org/wiki/Nuclear_fusionhttp://en.wikipedia.org/wiki/Isotopes_of_nickelhttp://en.wikipedia.org/wiki/Solar_systemhttp://en.wiktionary.org/wiki/extraterrestrialhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Planetary_differentiationhttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Formation_and_evolution_of_the_solar_systemhttp://en.wikipedia.org/wiki/Daughter_producthttp://en.wikipedia.org/wiki/Atomic_masshttp://en.wikipedia.org/wiki/Metallicityhttp://en.wikipedia.org/wiki/Supernova_remnanthttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Metallicity#Population_III_starshttp://en.wikipedia.org/wiki/Alpha_particlehttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Nuclear_reactionhttp://en.wikipedia.org/wiki/Alpha_processhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-11http://en.wikipedia.org/wiki/Nickel-62http://d/TUGAS%20FELA/Iron.htm%23cite_note-10http://en.wikipedia.org/wiki/Planetary_sciencehttp://en.wikipedia.org/wiki/Earth_sciencehttp://en.wikipedia.org/wiki/Stable_isotopehttp://en.wikipedia.org/wiki/Mass_spectrometryhttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Nickel-60http://d/TUGAS%20FELA/Iron.htm%23cite_note-NUBASE-9http://en.wikipedia.org/wiki/Half-lifehttp://en.wikipedia.org/wiki/Extinct_radionuclide
  • 8/2/2019 Chemical Task

    11/26

    The process starts with the second largest stable nucleus created by silicon burning: calcium.

    One stable nucleus of calcium fuses with one helium nucleus, creating unstable titanium. Beforethe titanium decays, it can fuse with another helium nucleus, creating unstable chromium. Before

    the chromium decays, it can fuse with another helium nucleus, creating unstable iron. Before the

    iron decays, it can fuse with another helium nucleus, creating unstable nickel-56. Any further

    fusion of nickel-56 consumes energy instead of producing energy, so after the production ofnickel-56, the star does not produce the energy necessary to keep the core from collapsing.

    Eventually, the nickel-56 decays to unstable cobalt-56 which, in turn decays to stableiron-56

    When the core of the star collapses, it creates aSupernova. Supernovas also create additionalforms of stable iron via ther-process.

    Occurrence

    See also Category:Iron minerals.

    Planetary occurrence

    Iron meteoritesof similar composition of Earth's inner and outer core

    Iron is the sixth mostabundant elementin theUniverse, formed as the final step of

    nucleosynthesis, bysilicon fusingin massive stars. Metallic iron is rarely found on the surface of

    the earth because it tends to oxidize, but its oxides are pervasive and represent the primary ores.While it makes up about 5% of theEarth's crust, both the Earth'sinnerandoutercore are

    believed to consist largely of an iron-nickelalloy constituting 35% of the mass of the Earth as a

    whole. Iron is consequently the most abundant element on Earth, but only the fourth mostabundant element in the Earth's crust.[14][15]Most of the iron in the crust is found combined with

    oxygen asiron oxideminerals such ashematiteandmagnetite. Large deposits of iron are found

    inbanded iron formations. These geological formations are a type of rock consisting of repeated

    thin layers ofiron oxides, eithermagnetite(Fe3O4) orhematite(Fe2O3), alternating with bands ofiron-poorshaleandchert. The banded iron formations are common in the time between3,700

    million years ago and1,800million years ago[16][17]

    About 1 in 20meteoritesconsist of the unique iron-nickel mineralstaenite(3580% iron) and

    kamacite(9095% iron). Although rare,iron meteoritesare the main form of natural metallic

    iron on the Earth's surface.[18]

    It was proven byMssbauer spectroscopythat the red color of the

    surface ofMarsis derived from an iron oxide-richregolith.[19]

    http://en.wikipedia.org/wiki/Iron-56http://en.wikipedia.org/wiki/Iron-56http://en.wikipedia.org/wiki/Iron-56http://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/R-processhttp://en.wikipedia.org/wiki/R-processhttp://en.wikipedia.org/wiki/R-processhttp://en.wikipedia.org/wiki/Category:Iron_mineralshttp://en.wikipedia.org/wiki/Category:Iron_mineralshttp://en.wikipedia.org/wiki/Category:Iron_mineralshttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Abundance_of_the_chemical_elementshttp://en.wikipedia.org/wiki/Abundance_of_the_chemical_elementshttp://en.wikipedia.org/wiki/Abundance_of_the_chemical_elementshttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Crust_%28geology%29http://en.wikipedia.org/wiki/Crust_%28geology%29http://en.wikipedia.org/wiki/Crust_%28geology%29http://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Nickelhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-13http://d/TUGAS%20FELA/Iron.htm%23cite_note-13http://d/TUGAS%20FELA/Iron.htm%23cite_note-13http://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Banded_iron_formationshttp://en.wikipedia.org/wiki/Banded_iron_formationshttp://en.wikipedia.org/wiki/Banded_iron_formationshttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Shalehttp://en.wikipedia.org/wiki/Shalehttp://en.wikipedia.org/wiki/Shalehttp://en.wikipedia.org/wiki/Cherthttp://en.wikipedia.org/wiki/Cherthttp://en.wikipedia.org/wiki/Cherthttp://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=3,700http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=3,700http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=3,700http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=1,800http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=1,800http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=1,800http://d/TUGAS%20FELA/Iron.htm%23cite_note-15http://d/TUGAS%20FELA/Iron.htm%23cite_note-15http://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Meteoritehttp://en.wikipedia.org/wiki/Taenitehttp://en.wikipedia.org/wiki/Taenitehttp://en.wikipedia.org/wiki/Taenitehttp://en.wikipedia.org/wiki/Kamacitehttp://en.wikipedia.org/wiki/Kamacitehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Iron_meteoritehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-17http://d/TUGAS%20FELA/Iron.htm%23cite_note-17http://d/TUGAS%20FELA/Iron.htm%23cite_note-17http://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Regolithhttp://en.wikipedia.org/wiki/Regolithhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://en.wikipedia.org/wiki/File:Widmanstatten_hand.jpghttp://en.wikipedia.org/wiki/File:Widmanstatten_hand.jpghttp://en.wikipedia.org/wiki/File:Widmanstatten_hand.jpghttp://en.wikipedia.org/wiki/File:Widmanstatten_hand.jpghttp://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://en.wikipedia.org/wiki/Regolithhttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-17http://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Kamacitehttp://en.wikipedia.org/wiki/Taenitehttp://en.wikipedia.org/wiki/Meteoritehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-15http://d/TUGAS%20FELA/Iron.htm%23cite_note-15http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=1,800http://toolserver.org/~verisimilus/Timeline/Timeline.php?Ma=3,700http://en.wikipedia.org/wiki/Cherthttp://en.wikipedia.org/wiki/Shalehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Banded_iron_formationshttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Hematitehttp://en.wikipedia.org/wiki/Iron_oxidehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-13http://d/TUGAS%20FELA/Iron.htm%23cite_note-13http://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Outer_corehttp://en.wikipedia.org/wiki/Inner_corehttp://en.wikipedia.org/wiki/Crust_%28geology%29http://en.wikipedia.org/wiki/Silicon_burning_processhttp://en.wikipedia.org/wiki/Nucleosynthesishttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Abundance_of_the_chemical_elementshttp://en.wikipedia.org/wiki/Iron_meteoritehttp://en.wikipedia.org/wiki/Category:Iron_mineralshttp://en.wikipedia.org/wiki/R-processhttp://en.wikipedia.org/wiki/Supernovahttp://en.wikipedia.org/wiki/Iron-56
  • 8/2/2019 Chemical Task

    12/26

    In-use stocks in society

    According to theInternational Resource Panel'sMetal Stocks in Society report, the global per

    capita stock of iron in use in society is 2200kg. Much of this is in more-developed countries

    (700014000kg per capita) rather than less-developed countries (2000kg per capita).

    Chemistry and compounds

    See also Category:Iron compounds.

    Oxidation

    stateRepresentative compound

    2 Disodium tetracarbonylferrate(Collman's reagent)

    1

    0 Iron pentacarbonyl

    1 Cyclopentadienyliron dicarbonyl dimer("Fp2")

    2 Ferrous sulfate,ferrocene

    3 Ferric chloride,ferrocenium tetrafluoroborate

    4 Barium ferrate(IV)

    5

    6 Potassium ferrate

    Iron forms compounds mainly in the +2 and +3oxidation states. Traditionally, iron(II)compounds are calledferrous, and iron(III) compoundsferric. Iron also occurs in higher

    oxidation states, an example being the purplepotassium ferrate(K2FeO4) which contains iron inits +6 oxidation state. Iron(IV) is a common intermediate in many in biochemical oxidation

    reactions.[20][21]Numerousorganometalliccompounds contain formal oxidation states of +1, 0,

    1, or even 2. The oxidation states and other bonding properties are often assessed using thetechnique ofMssbauer spectroscopy.[22]There are also manymixed valence compoundsthat

    contain both iron(II) and iron(III) centers, such asmagnetiteandPrussian blue

    (Fe4(Fe[CN]6)3).[21]

    The latter is used as the traditional "blue" inblueprints.[23]

    Hydratediron(III) chloride, also known as ferric chloride

    http://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://d/TUGAS%20FELA/Iron.htm%23cite_note-18http://en.wikipedia.org/wiki/International_Resource_Panelhttp://en.wikipedia.org/wiki/International_Resource_Panelhttp://en.wikipedia.org/wiki/International_Resource_Panelhttp://en.wikipedia.org/wiki/Metal_Stocks_in_Society_reporthttp://en.wikipedia.org/wiki/Metal_Stocks_in_Society_reporthttp://en.wikipedia.org/wiki/Metal_Stocks_in_Society_reporthttp://en.wikipedia.org/wiki/Category:Iron_compoundshttp://en.wikipedia.org/wiki/Category:Iron_compoundshttp://en.wikipedia.org/wiki/Category:Iron_compoundshttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Ferrous_sulfatehttp://en.wikipedia.org/wiki/Ferrous_sulfatehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferrocenium_tetrafluoroboratehttp://en.wikipedia.org/wiki/Ferrocenium_tetrafluoroboratehttp://en.wikipedia.org/wiki/Ferrocenium_tetrafluoroboratehttp://en.wikipedia.org/w/index.php?title=Barium_ferrate%28IV%29&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Barium_ferrate%28IV%29&action=edit&redlink=1http://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Ferroushttp://en.wikipedia.org/wiki/Ferroushttp://en.wikipedia.org/wiki/Ferroushttp://en.wikipedia.org/wiki/Ferrichttp://en.wikipedia.org/wiki/Ferrichttp://en.wikipedia.org/wiki/Ferrichttp://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/wiki/Potassium_ferratehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-19http://d/TUGAS%20FELA/Iron.htm%23cite_note-19http://d/TUGAS%20FELA/Iron.htm%23cite_note-19http://en.wikipedia.org/wiki/Organometallic_chemistryhttp://en.wikipedia.org/wiki/Organometallic_chemistryhttp://en.wikipedia.org/wiki/Organometallic_chemistryhttp://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-21http://d/TUGAS%20FELA/Iron.htm%23cite_note-21http://d/TUGAS%20FELA/Iron.htm%23cite_note-21http://en.wikipedia.org/wiki/Mixed_valence_compoundhttp://en.wikipedia.org/wiki/Mixed_valence_compoundhttp://en.wikipedia.org/wiki/Mixed_valence_compoundhttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Blueprinthttp://en.wikipedia.org/wiki/Blueprinthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-22http://d/TUGAS%20FELA/Iron.htm%23cite_note-22http://d/TUGAS%20FELA/Iron.htm%23cite_note-22http://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/File:Iron(III)_chloride_hexahydrate.jpghttp://en.wikipedia.org/wiki/File:Iron(III)_chloride_hexahydrate.jpghttp://en.wikipedia.org/wiki/File:Iron(III)_chloride_hexahydrate.jpghttp://en.wikipedia.org/wiki/File:Iron(III)_chloride_hexahydrate.jpghttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-22http://en.wikipedia.org/wiki/Blueprinthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Magnetitehttp://en.wikipedia.org/wiki/Mixed_valence_compoundhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-21http://en.wikipedia.org/wiki/M%C3%B6ssbauer_spectroscopyhttp://en.wikipedia.org/wiki/Organometallic_chemistryhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-19http://d/TUGAS%20FELA/Iron.htm%23cite_note-19http://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/wiki/Ferrichttp://en.wikipedia.org/wiki/Ferroushttp://en.wikipedia.org/wiki/Oxidation_statehttp://en.wikipedia.org/wiki/Potassium_ferratehttp://en.wikipedia.org/w/index.php?title=Barium_ferrate%28IV%29&action=edit&redlink=1http://en.wikipedia.org/wiki/Ferrocenium_tetrafluoroboratehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferrous_sulfatehttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Category:Iron_compoundshttp://en.wikipedia.org/wiki/Metal_Stocks_in_Society_reporthttp://en.wikipedia.org/wiki/International_Resource_Panel
  • 8/2/2019 Chemical Task

    13/26

    The iron compounds produced on the largest scale in industry areiron(II) sulfate(FeSO47H2O)

    andiron(III) chloride(FeCl3). The former is one of the most readily available sources of iron(II),but is less stable to aerial oxidation thanMohr's salt((NH4)2Fe(SO4)26H2O). Iron(II) compounds

    tend to be oxidized to iron(III) compounds in the air.[21]

    Unlike many other metals, iron does not form amalgams with mercury. As a result, mercury istraded in standardized 76 pound flasks (34 kg) made of iron.[24]

    Binary compounds

    Iron reacts with oxygen in the air to form variousoxide and hydroxide compounds; the mostcommon areiron(II,III) oxide(Fe3O4), andiron(III) oxide(Fe2O3).Iron(II) oxidealso exists,

    though it is unstable at room temperature. These oxides are the principal ores for the production

    of iron (seebloomeryand blast furnace). They are also used in the production offerrites, useful

    magnetic storagemedia in computers, and pigments. The best known sulfide isiron pyrite(FeS2), also known as fool's gold owing to its golden luster .

    [21]

    The binary ferrous and ferric halides are well known, with the exception of ferric iodide. Theferrous halides typically arise from treating iron metal with the corresponding binary halogen

    acid to give the corresponding hydrated salts.[21]

    Fe + 2 HX FeX2 + H2

    Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides,ferricchloridebeing the most common:

    2 Fe + 3 X2 2 FeX3 (X = F, Cl, Br)

    Coordination and organometallic compounds

    See also:organoiron chemistry

    Prussian blue

    Several cyanide complexes are known. The most famous example isPrussian blue,(Fe4(Fe[CN]6)3).Potassium ferricyanideandpotassium ferrocyanideare also known; the

    formation of Prussian blue upon reaction with iron(II) and iron(III) respectively forms the basisof a "wet" chemical test.[21]Prussian blue is also used as an antidote forthalliumand radioactive

    caesiumpoisoning.[25][26]

    Prussian blue can be used in laundry bluing to correct the yellowish tint

    left by ferrous salts in water.[27]

    http://en.wikipedia.org/wiki/Iron%28II%29_sulfatehttp://en.wikipedia.org/wiki/Iron%28II%29_sulfatehttp://en.wikipedia.org/wiki/Iron%28II%29_sulfatehttp://en.wikipedia.org/wiki/Water_of_crystallizationhttp://en.wikipedia.org/wiki/Water_of_crystallizationhttp://en.wikipedia.org/wiki/Water_of_crystallizationhttp://en.wikipedia.org/wiki/Water_of_crystallizationhttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Mohr%27s_salthttp://en.wikipedia.org/wiki/Mohr%27s_salthttp://en.wikipedia.org/wiki/Mohr%27s_salthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-23http://d/TUGAS%20FELA/Iron.htm%23cite_note-23http://d/TUGAS%20FELA/Iron.htm%23cite_note-23http://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://en.wikipedia.org/wiki/Iron%28II,III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II,III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II,III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II%29_oxidehttp://en.wikipedia.org/wiki/Bloomeryhttp://en.wikipedia.org/wiki/Bloomeryhttp://en.wikipedia.org/wiki/Bloomeryhttp://en.wikipedia.org/wiki/Ferrite_%28magnet%29http://en.wikipedia.org/wiki/Ferrite_%28magnet%29http://en.wikipedia.org/wiki/Ferrite_%28magnet%29http://en.wikipedia.org/wiki/Magnetic_storagehttp://en.wikipedia.org/wiki/Magnetic_storagehttp://en.wikipedia.org/wiki/Iron_pyritehttp://en.wikipedia.org/wiki/Iron_pyritehttp://en.wikipedia.org/wiki/Iron_pyritehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Organoiron_chemistryhttp://en.wikipedia.org/wiki/Organoiron_chemistryhttp://en.wikipedia.org/wiki/Organoiron_chemistryhttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Potassium_ferricyanidehttp://en.wikipedia.org/wiki/Potassium_ferricyanidehttp://en.wikipedia.org/wiki/Potassium_ferricyanidehttp://en.wikipedia.org/wiki/Potassium_ferrocyanidehttp://en.wikipedia.org/wiki/Potassium_ferrocyanidehttp://en.wikipedia.org/wiki/Potassium_ferrocyanidehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Thalliumhttp://en.wikipedia.org/wiki/Thalliumhttp://en.wikipedia.org/wiki/Thalliumhttp://en.wikipedia.org/wiki/Caesiumhttp://en.wikipedia.org/wiki/Caesiumhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-24http://d/TUGAS%20FELA/Iron.htm%23cite_note-24http://d/TUGAS%20FELA/Iron.htm%23cite_note-24http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://en.wikipedia.org/wiki/File:Prussian_blue.jpghttp://en.wikipedia.org/wiki/File:Prussian_blue.jpghttp://en.wikipedia.org/wiki/File:Prussian_blue.jpghttp://en.wikipedia.org/wiki/File:Prussian_blue.jpghttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-24http://d/TUGAS%20FELA/Iron.htm%23cite_note-24http://en.wikipedia.org/wiki/Caesiumhttp://en.wikipedia.org/wiki/Thalliumhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Potassium_ferrocyanidehttp://en.wikipedia.org/wiki/Potassium_ferricyanidehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Prussian_bluehttp://en.wikipedia.org/wiki/Organoiron_chemistryhttp://en.wikipedia.org/wiki/Ferric_chloridehttp://en.wikipedia.org/wiki/Ferric_chloridehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Iron_pyritehttp://en.wikipedia.org/wiki/Magnetic_storagehttp://en.wikipedia.org/wiki/Ferrite_%28magnet%29http://en.wikipedia.org/wiki/Bloomeryhttp://en.wikipedia.org/wiki/Iron%28II%29_oxidehttp://en.wikipedia.org/wiki/Iron%28III%29_oxidehttp://en.wikipedia.org/wiki/Iron%28II,III%29_oxidehttp://en.wikipedia.org/wiki/Iron_oxidehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-23http://d/TUGAS%20FELA/Iron.htm%23cite_note-HollemanAF-20http://en.wikipedia.org/wiki/Mohr%27s_salthttp://en.wikipedia.org/wiki/Iron%28III%29_chloridehttp://en.wikipedia.org/wiki/Water_of_crystallizationhttp://en.wikipedia.org/wiki/Iron%28II%29_sulfate
  • 8/2/2019 Chemical Task

    14/26

    Ferrocene

    Several carbonyl compounds of iron are known. The premier iron(0) compound is iron

    pentacarbonyl, Fe(CO)5, which is used to producecarbonyl ironpowder, a highly reactive form

    of metallic iron. Thermolysis of iron pentacarbonyl gives the trinuclear cluster,triirondodecacarbonyl. Collman's reagent,disodium tetracarbonylferrate, is a useful reagent for organic

    chemistry; it contains iron in the 2 oxidation state.Cyclopentadienyliron dicarbonyl dimer

    contains iron in the rare +1 oxidation state.[28]

    Ferroceneis an extremely stable complex. The firstsandwich compound, it contains an iron(II)center with twocyclopentadienylligands bonded through all ten carbon atoms. This arrangement

    was a shocking novelty when it was first discovered,[29]

    but the discovery of ferrocene has led toa new branch of organometallic chemistry. Ferrocene itself can be used as the backbone of a

    ligand, e.g.dppf. Ferrocene can itself be oxidized to theferroceniumcation (Fc+); the

    ferrocene/ferrocenium couple is often used as a reference in electrochemistry.[30]

    History

    Main article:History of ferrous metallurgy

    Wrought iron

    The symbol for Mars has been used since antiquity to represent iron.

    http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Carbonyl_ironhttp://en.wikipedia.org/wiki/Carbonyl_ironhttp://en.wikipedia.org/wiki/Carbonyl_ironhttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-27http://d/TUGAS%20FELA/Iron.htm%23cite_note-27http://d/TUGAS%20FELA/Iron.htm%23cite_note-27http://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Ferrocenehttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Cyclopentadienylhttp://en.wikipedia.org/wiki/Cyclopentadienylhttp://en.wikipedia.org/wiki/Cyclopentadienylhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-28http://d/TUGAS%20FELA/Iron.htm%23cite_note-28http://d/TUGAS%20FELA/Iron.htm%23cite_note-28http://en.wikipedia.org/wiki/Dppfhttp://en.wikipedia.org/wiki/Dppfhttp://en.wikipedia.org/wiki/Dppfhttp://en.wikipedia.org/wiki/Ferroceniumhttp://en.wikipedia.org/wiki/Ferroceniumhttp://en.wikipedia.org/wiki/Ferroceniumhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-29http://d/TUGAS%20FELA/Iron.htm%23cite_note-29http://d/TUGAS%20FELA/Iron.htm%23cite_note-29http://en.wikipedia.org/wiki/History_of_ferrous_metallurgyhttp://en.wikipedia.org/wiki/History_of_ferrous_metallurgyhttp://en.wikipedia.org/wiki/History_of_ferrous_metallurgyhttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Mars_symbol.svghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/File:Ferrocene-2D.pnghttp://en.wikipedia.org/wiki/History_of_ferrous_metallurgyhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-29http://en.wikipedia.org/wiki/Ferroceniumhttp://en.wikipedia.org/wiki/Dppfhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-28http://en.wikipedia.org/wiki/Cyclopentadienylhttp://en.wikipedia.org/wiki/Sandwich_compoundhttp://en.wikipedia.org/wiki/Ferrocenehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-27http://en.wikipedia.org/wiki/Cyclopentadienyliron_dicarbonyl_dimerhttp://en.wikipedia.org/wiki/Disodium_tetracarbonylferratehttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Triiron_dodecacarbonylhttp://en.wikipedia.org/wiki/Carbonyl_ironhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Iron_pentacarbonylhttp://en.wikipedia.org/wiki/Ferrocene
  • 8/2/2019 Chemical Task

    15/26

    TheDelhi iron pillaris an example of the iron extraction and processing methodologies of India.

    The iron pillar at Delhi has withstood corrosion for the last 1600 years.

    Iron objects of great age are much rarer than objects made of gold or silver due to the ease ofcorrosion of iron.[31]Beads made ofmeteoriciron in 3500 B.C. or earlier were found in Gerzah,

    Egypt by G. A. Wainwright.[32]The beads contain 7.5% nickel, which is a signature of meteoric

    origin since iron found in the Earth's crust has very little to no nickel content. Meteoric iron washighly regarded due to its origin in the heavens and was often used to forge weapons and tools or

    whole specimens placed in churches.[32]Items that were likely made of iron by Egyptians date

    from 2500 to 3000 BC.[31]

    Iron had a distinct advantage over bronze in warfare implements. It

    was much harder and more durable than bronze, although susceptible to rust. However, this iscontested.HittitologistTrevor Bryceargues that before advanced iron-working techniques were

    developed inEuropeandIndia,cast-ironweapons used by earlyMesopotamianarmies had a

    tendency to shatter in combat, due to their high carbon content.[33]

    The first iron production started in theMiddle Bronze Agebut it took several centuries before

    iron displaced bronze. Samples ofsmeltediron fromAsmar, Mesopotamia and Tall ChagarBazaar in northern Syria were made sometime between 2700 and 3000 BC.[34]TheHittites

    appear to be the first to understand the production of iron from its ores and regard it highly in

    their society.[27]

    They began to smelt iron between 1500 and 1200 BC and the practice spread to

    the rest of the Near East after their empire fell in 1180 BC.[34]

    The subsequent period is called the

    Iron Age. Iron smelting, and thus the Iron Age, reached Europe two hundred years later andarrived inZimbabwe, Africa by the 8th century.[34]

    Artifacts from smelted iron occur inIndiafrom 1800 to 1200 BC,[35]and in theLevantfrom

    about 1500 BC (suggesting smelting inAnatoliaor theCaucasus).[36][37]

    TheBook of Genesis, fourth chapter, verse 22 contains the first mention of iron in theOld

    Testamentof theBible; "Tubal-cain, an instructor of every artificer in brass and iron."[31]

    Other

    http://en.wikipedia.org/wiki/Iron_pillar_of_Delhihttp://en.wikipedia.org/wiki/Iron_pillar_of_Delhihttp://en.wikipedia.org/wiki/Iron_pillar_of_Delhihttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://en.wikipedia.org/wiki/Meteorhttp://en.wikipedia.org/wiki/Meteorhttp://en.wikipedia.org/wiki/Meteorhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://en.wikipedia.org/wiki/Hittiteshttp://en.wikipedia.org/wiki/Hittiteshttp://en.wikipedia.org/wiki/Trevor_Brycehttp://en.wikipedia.org/wiki/Trevor_Brycehttp://en.wikipedia.org/wiki/Trevor_Brycehttp://en.wikipedia.org/wiki/Europehttp://en.wikipedia.org/wiki/Europehttp://en.wikipedia.org/wiki/Europehttp://en.wikipedia.org/wiki/Indiahttp://en.wikipedia.org/wiki/Indiahttp://en.wikipedia.org/wiki/Indiahttp://en.wikipedia.org/wiki/Cast-ironhttp://en.wikipedia.org/wiki/Cast-ironhttp://en.wikipedia.org/wiki/Mesopotamiahttp://en.wikipedia.org/wiki/Mesopotamiahttp://en.wikipedia.org/wiki/Mesopotamiahttp://d/TUGAS%20FELA/Iron.htm%23cite_note-32http://d/TUGAS%20FELA/Iron.htm%23cite_note-32http://d/TUGAS%20FELA/Iron.htm%23cite_note-32http://en.wikipedia.org/wiki/Middle_Bronze_Agehttp://en.wikipedia.org/wiki/Middle_Bronze_Agehttp://en.wikipedia.org/wiki/Middle_Bronze_Agehttp://en.wikipedia.org/wiki/Smeltinghttp://en.wikipedia.org/wiki/Smeltinghttp://en.wikipedia.org/wiki/Smeltinghttp://en.wikipedia.org/wiki/Asmarhttp://en.wikipedia.org/wiki/Asmarhttp://en.wikipedia.org/wiki/Asmarhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/Hittiteshttp://en.wikipedia.org/wiki/Hittiteshttp://en.wikipedia.org/wiki/Hittiteshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/Iron_Agehttp://en.wikipedia.org/wiki/Iron_Agehttp://en.wikipedia.org/wiki/Zimbabwehttp://en.wikipedia.org/wiki/Zimbabwehttp://en.wikipedia.org/wiki/Zimbabwehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/History_of_metallurgy_in_the_Indian_subcontinenthttp://en.wikipedia.org/wiki/History_of_metallurgy_in_the_Indian_subcontinenthttp://en.wikipedia.org/wiki/History_of_metallurgy_in_the_Indian_subcontinenthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Tewari-34http://d/TUGAS%20FELA/Iron.htm%23cite_note-Tewari-34http://d/TUGAS%20FELA/Iron.htm%23cite_note-Tewari-34http://en.wikipedia.org/wiki/Levanthttp://en.wikipedia.org/wiki/Levanthttp://en.wikipedia.org/wiki/Levanthttp://en.wikipedia.org/wiki/Anatoliahttp://en.wikipedia.org/wiki/Anatoliahttp://en.wikipedia.org/wiki/Anatoliahttp://en.wikipedia.org/wiki/Caucasushttp://en.wikipedia.org/wiki/Caucasushttp://en.wikipedia.org/wiki/Caucasushttp://d/TUGAS%20FELA/Iron.htm%23cite_note-35http://d/TUGAS%20FELA/Iron.htm%23cite_note-35http://d/TUGAS%20FELA/Iron.htm%23cite_note-35http://en.wikipedia.org/wiki/Book_of_Genesishttp://en.wikipedia.org/wiki/Book_of_Genesishttp://en.wikipedia.org/wiki/Book_of_Genesishttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Biblehttp://en.wikipedia.org/wiki/Biblehttp://en.wikipedia.org/wiki/Biblehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://en.wikipedia.org/wiki/File:QtubIronPillar.JPGhttp://en.wikipedia.org/wiki/File:QtubIronPillar.JPGhttp://en.wikipedia.org/wiki/File:QtubIronPillar.JPGhttp://en.wikipedia.org/wiki/File:QtubIronPillar.JPGhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://en.wikipedia.org/wiki/Biblehttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Old_Testamenthttp://en.wikipedia.org/wiki/Book_of_Genesishttp://d/TUGAS%20FELA/Iron.htm%23cite_note-35http://d/TUGAS%20FELA/Iron.htm%23cite_note-35http://en.wikipedia.org/wiki/Caucasushttp://en.wikipedia.org/wiki/Anatoliahttp://en.wikipedia.org/wiki/Levanthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-Tewari-34http://en.wikipedia.org/wiki/History_of_metallurgy_in_the_Indian_subcontinenthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/Zimbabwehttp://en.wikipedia.org/wiki/Iron_Agehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-Iron_2008-26http://en.wikipedia.org/wiki/Hittiteshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/Asmarhttp://en.wikipedia.org/wiki/Smeltinghttp://en.wikipedia.org/wiki/Middle_Bronze_Agehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-32http://en.wikipedia.org/wiki/Mesopotamiahttp://en.wikipedia.org/wiki/Cast-ironhttp://en.wikipedia.org/wiki/Indiahttp://en.wikipedia.org/wiki/Europehttp://en.wikipedia.org/wiki/Trevor_Brycehttp://en.wikipedia.org/wiki/Hittiteshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://en.wikipedia.org/wiki/Meteorhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829-30http://en.wikipedia.org/wiki/Iron_pillar_of_Delhi
  • 8/2/2019 Chemical Task

    16/26

    verses allude to iron mining (Job 28:2), iron used as a stylus (Job 19:24), furnace (Deuteronomy

    4:20), chariots (Joshua 17:16), nails (I Chron. 22:3), saws and axes (II Sam. 12:31), and cookingutensils (Ezekiel 4:3).[38]The metal is also mentioned in theNew Testament, for example in Acts

    chapter 12 verse 10, "[Peter passed through] the iron gate that leadeth unto the city" of

    Antioch.[39]

    TheQuran referredto Iron 1400 years ago.

    Iron working was introduced to Greecein the late 11th century BC.[40]

    The spread of

    ironworking in Central and Western Europe is associated withCelticexpansion. According toPliny the Elder, iron use was common in theRomanera.[32]The annual iron output of theRoman

    Empireis estimated at 84,750t,[41]

    while the similarly populous Han China produced around

    5,000 t.[42]

    During the Industrial Revolution in Britain,Henry Cortbegan refining iron frompig ironto

    wrought iron(or bar iron) using innovative production systems. In 1783 he patented the puddling

    processfor refining iron ore. It was later improved by others includingJoseph Hall.

    Cast iron

    Cast ironwas first produced inChinaabout 550 BC,[43]but was hardly in Europe until the

    medieval period.[44][45]

    During themedievalperiod, means were found in Europe of producing

    wrought iron from cast iron (in this context known aspig iron) usingfinery forges. For all theseprocesses,charcoalwas required as fuel.

    Coalbrookdale by Night, 1801. Blast furnaces light the iron making town ofCoalbrookdale.

    Medievalblast furnaceswere about 10 feet (3.0 m) tall and made of fireproof brick; forced airwas usually provided by hand-operated bellows.[45]Modern blast furnaces have grown much

    bigger.

    In 1709,Abraham Darby Iestablished acoke-fired blast furnace to produce cast iron. Theensuing availability of inexpensive iron was one of the factors leading to the Industrial

    Revolution. Toward the end of the 18th century, cast iron began to replace wrought iron for

    certain purposes, because it was cheaper. Carbon content in iron wasn't implicated as the reasonfor the differences in properties of wrought iron, cast iron and steel until the 18th century.[34]

    Since iron was becoming cheaper and more plentiful, it also became a major structural material

    following the building of the innovativefirst iron bridgein 1778.

    http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829.E2.80.9330-37http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829.E2.80.9330-37http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829.E2.80.9330-37http://en.wikipedia.org/wiki/New_Testamenthttp://en.wikipedia.org/wiki/New_Testamenthttp://en.wikipedia.org/wiki/New_Testamenthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196830-38http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196830-38http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196830-38http://en.wikipedia.org/wiki/Al-Hadid#Iron_in_the_Qur.27anhttp://en.wikipedia.org/wiki/Al-Hadid#Iron_in_the_Qur.27anhttp://en.wikipedia.org/wiki/Al-Hadid#Iron_in_the_Qur.27anhttp://en.wikipedia.org/wiki/Ancient_Greecehttp://en.wikipedia.org/wiki/Ancient_Greecehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-39http://d/TUGAS%20FELA/Iron.htm%23cite_note-39http://d/TUGAS%20FELA/Iron.htm%23cite_note-39http://en.wikipedia.org/wiki/Celtshttp://en.wikipedia.org/wiki/Celtshttp://en.wikipedia.org/wiki/Celtshttp://en.wikipedia.org/wiki/Pliny_the_Elderhttp://en.wikipedia.org/wiki/Pliny_the_Elderhttp://en.wikipedia.org/wiki/Ancient_Romehttp://en.wikipedia.org/wiki/Ancient_Romehttp://en.wikipedia.org/wiki/Ancient_Romehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://en.wikipedia.org/wiki/Roman_Empirehttp://en.wikipedia.org/wiki/Roman_Empirehttp://en.wikipedia.org/wiki/Roman_Empirehttp://en.wikipedia.org/wiki/Roman_Empirehttp://en.wikipedia.org/wiki/Tonneshttp://en.wikipedia.org/wiki/Tonneshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-40http://d/TUGAS%20FELA/Iron.htm%23cite_note-40http://d/TUGAS%20FELA/Iron.htm%23cite_note-40http://d/TUGAS%20FELA/Iron.htm%23cite_note-41http://d/TUGAS%20FELA/Iron.htm%23cite_note-41http://d/TUGAS%20FELA/Iron.htm%23cite_note-41http://en.wikipedia.org/wiki/Henry_Corthttp://en.wikipedia.org/wiki/Henry_Corthttp://en.wikipedia.org/wiki/Henry_Corthttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Wrought_ironhttp://en.wikipedia.org/wiki/Wrought_ironhttp://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Joseph_Hall_%28metallurgist%29http://en.wikipedia.org/wiki/Joseph_Hall_%28metallurgist%29http://en.wikipedia.org/wiki/Joseph_Hall_%28metallurgist%29http://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Chinahttp://en.wikipedia.org/wiki/Chinahttp://en.wikipedia.org/wiki/Chinahttp://d/TUGAS%20FELA/Iron.htm%23cite_note-42http://d/TUGAS%20FELA/Iron.htm%23cite_note-42http://d/TUGAS%20FELA/Iron.htm%23cite_note-42http://d/TUGAS%20FELA/Iron.htm%23cite_note-43http://d/TUGAS%20FELA/Iron.htm%23cite_note-43http://d/TUGAS%20FELA/Iron.htm%23cite_note-43http://en.wikipedia.org/wiki/Medievalhttp://en.wikipedia.org/wiki/Medievalhttp://en.wikipedia.org/wiki/Medievalhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Finery_forgehttp://en.wikipedia.org/wiki/Finery_forgehttp://en.wikipedia.org/wiki/Finery_forgehttp://en.wikipedia.org/wiki/Charcoalhttp://en.wikipedia.org/wiki/Charcoalhttp://en.wikipedia.org/wiki/Charcoalhttp://en.wikipedia.org/wiki/Coalbrookdale_by_Nighthttp://en.wikipedia.org/wiki/Coalbrookdale_by_Nighthttp://en.wikipedia.org/wiki/Coalbrookdalehttp://en.wikipedia.org/wiki/Coalbrookdalehttp://en.wikipedia.org/wiki/Coalbrookdalehttp://en.wikipedia.org/wiki/Blast_furnaceshttp://en.wikipedia.org/wiki/Blast_furnaceshttp://en.wikipedia.org/wiki/Blast_furnaceshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-ReferenceA-44http://d/TUGAS%20FELA/Iron.htm%23cite_note-ReferenceA-44http://d/TUGAS%20FELA/Iron.htm%23cite_note-ReferenceA-44http://en.wikipedia.org/wiki/Abraham_Darby_Ihttp://en.wikipedia.org/wiki/Abraham_Darby_Ihttp://en.wikipedia.org/wiki/Abraham_Darby_Ihttp://en.wikipedia.org/wiki/Coke_%28fuel%29http://en.wikipedia.org/wiki/Coke_%28fuel%29http://en.wikipedia.org/wiki/Coke_%28fuel%29http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/The_Iron_Bridgehttp://en.wikipedia.org/wiki/The_Iron_Bridgehttp://en.wikipedia.org/wiki/The_Iron_Bridgehttp://en.wikipedia.org/wiki/File:Philipp_Jakob_Loutherbourg_d._J._002.jpghttp://en.wikipedia.org/wiki/File:Philipp_Jakob_Loutherbourg_d._J._002.jpghttp://en.wikipedia.org/wiki/File:Philipp_Jakob_Loutherbourg_d._J._002.jpghttp://en.wikipedia.org/wiki/File:Philipp_Jakob_Loutherbourg_d._J._002.jpghttp://en.wikipedia.org/wiki/The_Iron_Bridgehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196832-33http://en.wikipedia.org/wiki/Coke_%28fuel%29http://en.wikipedia.org/wiki/Abraham_Darby_Ihttp://d/TUGAS%20FELA/Iron.htm%23cite_note-ReferenceA-44http://en.wikipedia.org/wiki/Blast_furnaceshttp://en.wikipedia.org/wiki/Coalbrookdalehttp://en.wikipedia.org/wiki/Coalbrookdale_by_Nighthttp://en.wikipedia.org/wiki/Charcoalhttp://en.wikipedia.org/wiki/Finery_forgehttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Medievalhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-43http://d/TUGAS%20FELA/Iron.htm%23cite_note-43http://d/TUGAS%20FELA/Iron.htm%23cite_note-42http://en.wikipedia.org/wiki/Chinahttp://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Joseph_Hall_%28metallurgist%29http://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Puddling_%28metallurgy%29http://en.wikipedia.org/wiki/Wrought_ironhttp://en.wikipedia.org/wiki/Pig_ironhttp://en.wikipedia.org/wiki/Henry_Corthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-41http://d/TUGAS%20FELA/Iron.htm%23cite_note-40http://en.wikipedia.org/wiki/Tonneshttp://en.wikipedia.org/wiki/Roman_Empirehttp://en.wikipedia.org/wiki/Roman_Empirehttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196831-31http://en.wikipedia.org/wiki/Ancient_Romehttp://en.wikipedia.org/wiki/Pliny_the_Elderhttp://en.wikipedia.org/wiki/Celtshttp://d/TUGAS%20FELA/Iron.htm%23cite_note-39http://en.wikipedia.org/wiki/Ancient_Greecehttp://en.wikipedia.org/wiki/Al-Hadid#Iron_in_the_Qur.27anhttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196830-38http://en.wikipedia.org/wiki/New_Testamenthttp://d/TUGAS%20FELA/Iron.htm%23cite_note-FOOTNOTEWeeks196829.E2.80.9330-37
  • 8/2/2019 Chemical Task

    17/26

    Steel

    See also:Steelmaking

    Steel (with smaller carbon content than pig iron but more than wrought iron) was first produced

    in antiquity by using abloomery. Blacksmiths inLuristanin western Iran were making goodsteel by 1000 BC.

    [34]Then improved versions,Wootz steelby India andDamascus steelby

    China were developed around 300 B.C. and 500 A.D. respectively. These methods werespecialized, and so steel did not become a major commodity until the 1850s.[46]

    New methods of producing it bycarburizingbars of iron in thecementation processweredevised in the 17th century AD. In theIndustrial Revolution, new methods of producing bar iron

    without charcoal were devised and these were later applied to produce steel. In the late 1850s,

    Henry Bessemerinvented a new steelmaking process, involving blowing air through molten pig

    iron, to produce mild steel. This made steel much more economical, thereby leading to wroughtiron no longer being produced.[citation needed]

    Foundations of modern chemistry

    Antoine Lavoisierused the reaction of water steam with metallic iron inside an incandescent iron

    tube to producehydrogenin his experiments leading to the demonstration of the mass

    conservation. Anaerobic oxidation of iron at high temperature can be schematically representedby the following reactions:

    Fe + H2O FeO + H2

    2 Fe + 3 H2O Fe2O3 + 3 H2

    3 Fe + 4 H2O Fe3O4 + 4 H2

    Recent discoveries

    discovery ofMssbauer effect many enzymes use iron in the catalytic center Nickel-56 is the natural end product