chi han charge multiplexing

38
Charge Locking Quantum Multiplexer and Triple Addressing System CHI HAN CHONG 21/5/2014

Upload: chong-han

Post on 19-Jul-2015

19 views

Category:

Science


0 download

TRANSCRIPT

Page 1: Chi han charge multiplexing

Charge Locking Quantum Multiplexer and Triple Addressing

System

CHI HAN CHONG

21/5/2014

Page 2: Chi han charge multiplexing

Outline• Quantum MUX

• Double charge locking in two-way MUX

• Attempts of adding a top gate

• Polyimide

• Three-way MUX

• Split gate test

Page 3: Chi han charge multiplexing

Quantum Multiplexer

• Path selector [1]

• Single input quantum device with

many tunable outputs

Source: Al-Taie et al, APL 102, 243102 (2013)

[1] Debashis D.2010. Basic electronics. India: Dorling Kindersley Pvt Ltd. Pg 557

Page 4: Chi han charge multiplexing

Quantum multiplexer

• Ward et al - measurement of multiple quantum devices in a single chip using Si/Ge QDs [2]

• Al-Taie et al – 256 split gates on a single GaAs/AlGaAs chip [3]

• Hornibrook et al – Frequency multiplexing → read spin qubits [4]

[2] D. R. Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith and M. A. Eriksson, Appl. Phys. Lett. 102, 213107 (2013)[3] H. Al-Taie, L. W. Smith, B. Xu, P. See, J. P. Griffiths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, & C. G. Smith, APL 102, 243102 (2013)[4] J. M. Hornibrook, J. I. Colless, A. C. Mahoney, X. G. Croot, S. Blanvillain, H. Lu,A. C. Gossard, and D. J. Reillyy, arXiv1312.5064 (2013)

Page 5: Chi han charge multiplexing

Advantages

• 1 cooldown , many measurements [3]

• Automated measurements → save time & £ £

• Same environment

Page 6: Chi han charge multiplexing

Two –way charge locking MUX

- Output proliferation of 2n

- Locking occurs by pinching off quantum wires (QW)

2DEG under Mesa/QW

Gold leadneg. bias

High e- density No e-

Page 7: Chi han charge multiplexing

Locking processes for a four output 2-wayMUX

Router Mesa

Mesa Skeleton

Device Mesa

Detection

Credits: Dr Reuben Puddy

Page 8: Chi han charge multiplexing

Locking processes for a four output MUX

Router Mesa

Mesa Skeleton

Device Mesa

Detection

Polyimide insulator (Shield the 2DEG from elec. potential)

Page 9: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

Devgate

DS

Surface gate

Addressing gates

Router gate

locking gate

Page 10: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

Ramp to - 1V

0V

0V

0V

0V

Source Drain

Devgate

Surface gate

Min pinch ≈ -0.4V

Page 11: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

DS

0V

0V

-2V

-0.2V

-2V

-0.5V

Caveat : Leads can’t be positive than 2DEG by 0.4V

Page 12: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

DS

0V

-0.5V

-2V

-2V0V

-0.2V

Ramped up in steps together

Page 13: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

DS

-1V

-0.5V

-2V

-2V

-1V

-1V

Page 14: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

DS

-1V

0V

-2V

-2V

-2V

-2V

Page 15: Chi han charge multiplexing

• Aim: Check the rate of charge leakage

• Vary Router gate voltage

• Isolated & observe source

Locking Stability Plot for 4-way MUX

Page 16: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

DS

-1V

-2V

-2V

-2V

-2V

Less potential, less depletion, more current

Page 17: Chi han charge multiplexing

Top gate

- Capacitive coupling : 2DEG & gates

- Coat Polyimide on MUX +gold top

- Increase capacitance of circuit→ more stability?

polyimide

Gold top

Credits: Dr Reuben Puddy- - - - - - - - - - - - - - -

+ + + + + + + + + + + + + Gold topPolyimideMUX

Page 18: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

Devgate

DS

Surface gate

Addressing gates

Router gate

Cured in oven at high T + dry N2

Page 19: Chi han charge multiplexing

Polyimide insulator

mesa

Ohmic contact

Gold leads

Devgate

DS

Surface gate

Addressing gates

Router gate

Gold evaporated on Polyimide

Page 20: Chi han charge multiplexing

Findings• Curing with gates: 275 oC +N2 (For Polyimde)

≥350oC

• Leaks if Tcure is low

Collaboration with Yousun

Page 21: Chi han charge multiplexing

Findings• Polyimide can be removed :

- Set gas dial to ‘1’

- High Power

- Variable ashing rates,

600nm in 4, 300s ashes

Microwave asher

Credits: Joanna Waldie

Page 22: Chi han charge multiplexing

Brown stains (only seen after gold deposition) ~50nm

Postulate:Burnt residue

Possible Solution:Low power, Progressively short ashing times

Page 23: Chi han charge multiplexing

Three-way MUX

Credits: Prof Charles Smith Modified by: Dr Reuben Puddy

Vpinch for leads ≠ Vpinch for split gates

mesa

Ohmic contact

Gold leads

Polyimide insulator

Page 24: Chi han charge multiplexing

Three-way MUX

Credits: Prof Charles Smith Modified by: Dr Reuben Puddy

0V

-1V

Page 25: Chi han charge multiplexing

Three-way MUX

Credits: Prof Charles Smith Modified by: Dr Reuben Puddy

0V

-2V

Page 26: Chi han charge multiplexing

Three-way MUX

Credits: Prof Charles Smith Modified by: Dr Reuben Puddy

-1V

-1V

Output proliferation 30.5(n-1)Vbias

Page 27: Chi han charge multiplexing

Split-gate designs

- Need specific pinch off voltages

- 3 sizes(WxL): 800x400 nm , 800x800 nm, 800x1600 nm

W

L

Page 28: Chi han charge multiplexing

Pinch off measurements

L=400nm Vp≈ -(0.973±0.002)V for I<1x10-7 L=800nm Vp ≈ -(0.830±0.002)V for I<1x10-7

Page 29: Chi han charge multiplexing

L1600nm Vp ≈ -(0.764±0.002)V for I<1x10-7

Page 30: Chi han charge multiplexing

Prob density

Split gates

Page 31: Chi han charge multiplexing

Pinch off vs split gate length at fixed VSD

Vb = 10μV, RMS [5]

[5] Iqbal et al , J. Appl. Phys. 113, 024507 (2013)

Page 32: Chi han charge multiplexing

Higher bias

Page 33: Chi han charge multiplexing

No hysteresis

Page 34: Chi han charge multiplexing
Page 35: Chi han charge multiplexing

Why Vpinch differs with polarity?

• VSD (DC bias) steps up energy levels at source

• Gate bias → Barrier

• Polarity of VSD affects size of Vg – VSD energy gap

VSD

Potential /V

Vg

Ei

Ei+1

EF EF

Ej

Ej+1

Position/μm

Credits: Dr Reuben Puddy

Page 36: Chi han charge multiplexing

Why Vpinch differs with VSD polarity?

• Larger difference in potential → higher barrier

VSD = -0.5

Potential /V

Vg = -1

EF EF

Ej

Ej+1

Position/μm

VSD = +0.5

EF‘

negative axis

Page 37: Chi han charge multiplexing

Conclusion

• Pinch off voltage is dependent on L of split gate and VSD

• Adding split gates enable triple addressing

• Gate contacts undergo chemical changes at high T >300 oC

• Polyimide can be (almost) removed using a microwave asher

Page 38: Chi han charge multiplexing

References• [1] Debashis D.2010. Basic electronics. India: Dorling Kindersley Pvt Ltd. Pg 557

• [2] D. R. Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith and M. A. Eriksson.2013. Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing. [e-journal] Appl. Phys. Lett. 102, 213107 (2013)

• [3] H. Al-Taie, L. W. Smith, B. Xu, P. See, J. P. Griffiths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, & C. G. Smith.2013. Cryogenic on-chip multiplexer for the study of quantum transport tin 256 split gate devices. [e-journal] APL 102, 243102 (2013)

• [4] J. M. Hornibrook, J. I. Colless, A. C. Mahoney, X. G. Croot, S. Blanvillain, H. Lu,A. C. Gossard, and D. J. Reillyy.2013. Frequency Multiplexing for readout of Spin Qubits.[e-journal] arXiv1312.5064 (2013)

• [5] M. J. Iqbal, J. P. de. Jong, D. Reuter, A. D. Wieck and C. H. van der Wal.2013. Split-gate quantum point contacts with tunable channel length. [e-journal] J. Appl. Phys. 113, 024507 (2013)