[chi2016] gaussmarbles: spherical magnetic tangibles for interacting with portable physical...

38
GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints Han-Chih Kuo, Rong-Hao Liang, Long-Fei Lin, Bing-Yu Chen National Taiwan University

Upload: rong-hao-liang

Post on 15-Apr-2017

294 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints Han-Chih Kuo, Rong-Hao Liang, Long-Fei Lin, Bing-Yu Chen National Taiwan University

Page 2: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints
Page 3: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints
Page 4: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints
Page 5: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interactive Surface Constructive Assembly Token+Constraint

Token+Constraint Systems for Tangible Interaction with Digital Information (Ullmer et al. TOCHI ‘05)

Tangible User Interfaces

Page 6: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interactive Surface Constructive Assembly Token+Constraint

MagGetz (Hwang et al. UIST ’13)

Tangible Magnetic Appcessories (Bianchi et al. TEI ’13)

Tangible Remote Controllers for Wall-size Displays (Jansen et al. CHI ’12)

Tracking Token+Constraint Interactions on Portable PlatformsToken + Strict Constraint

Page 7: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints
Page 8: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Tracking Ball+Constraint Interactions on Stationary PlatformsBall + Loose ConstraintinFORM (Follmer et al. UIST ’13)

Page 9: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Ball + Constraint Interactions on Portable Platforms

Page 10: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Tracking Ball+Constraint Interactions on Stationary Displays

camera camera

magnetic-field camera

SURWRW\SH�� ZH� SULQWHG� WKH� IL[WXUHV� RXW� RI� SODVWLF� XVLQJ� D�'LPHQVLRQ� (OLWH� �'� SULQWHU�� :KLOH� SULQWHG� SODVWLF� ZDV�VDWLVIDFWRU\� IRU� SURWRW\SLQJ� WKH� IL[WXUHV�� ZH� EHOLHYH� WKDW�VWURQJHU�SODVWLF�RU�HYHQ�DOXPLQXP�LV�SUHIHUUHG��7R�SURYLGH�DGGLWLRQDO�UREXVWQHVV�WR�EUHDNLQJ��IOH[LEOH�KLQJHV�VLPLODU�WR�WKRVH�XVHG�LQ�H\H�JODVVHV�FRXOG�DOORZ�3RUWLFR¶V�DUPV�WR�EH�EHQW� RXWZDUGV�� 6XFK� D� GHVLJQ� LV� SDUWLFXODUO\� LPSRUWDQW�ZKHQ� 3RUWLFR� LV� XVHG� RQ� WKH� IORRU�� RU� XVHG� E\� FKLOGUHQ�SOD\LQJ� D� JDPH�� H�J��� RXU� 3HQDOW\� 6KRRWRXW� DSSOLFDWLRQ��GHVFULEHG�EHORZ��� )RU� RXU� SURWRW\SH��ZH� XVHG� D� ����'HOO�/DWLWXGH�;7� FRQYHUWLEOH� WDEOHW� WKDW� VXSSRUWV� ERWK� SHQ� DQG�ILQJHU�PXOWL�WRXFK� LQSXW��:H� DOVR� XVHG� D� SDLU� RI�/RJLWHFK�:HEFDP� 3UR� ����� FDPHUDV� H[WUDFWHG� IURP� WKHLU� RULJLQDO�KRXVLQJV��$V�VKRZQ�LQ�)LJXUH����HDFK�FDPHUD�LV�PRXQWHG�DW�WKH� HQG� RI� D� IROGDEOH� DUP� DWWDFKHG� WR� HDFK� VLGH� RI� WKH�VFUHHQ�� :H� GHVLJQHG� RXU� V\VWHP� VXFK� WKDW� ZKHQ� IROGHG�GRZQ��WKH�DUPV�DQG�FDPHUDV�DUH�IOXVK�DJDLQVW�WKH�WDEOHW�DQG�GR�QRW�LQWHUIHUH�ZLWK�QRUPDO�XVH���:KHQ�WKH�DUPV�DUH�UDLVHG��WKH�FDPHUDV�DUH�EHQW�GRZQ�XVLQJ�D�VLQJOH�URWDWLRQ�KLQJH�WR�DOORZ�WKHP�WR�VHH�WKH�WDEOHW�VFUHHQ�DQG� WKH� WDEOHWRS�� )LJXUH� �D� VKRZV� DQ� LOOXVWUDWLRQ� RI� WKH�XQLILHG� DUHD� YLHZDEOH� E\� WKH� WZR� FDPHUDV�� )LJXUH� �E�LOOXVWUDWHV�WKH�V\VWHP�UHDFWLQJ�WR�REMHFWV�RQ�DQG�DURXQG�WKH�VFUHHQ�� )LQDOO\�� WR� DYRLG� WKH� V\VWHP� FRQIXVLQJ� GLJLWDO�HOHPHQWV� GUDZQ� RQ� WKH� VFUHHQ� ZLWK� SK\VLFDO� REMHFWV�� ZH�DSSOLHG� OLQHDU�SRODUL]LQJ� ILOWHUV� WR� WKH� VFUHHQ�DQG�FDPHUDV���1RWH� WKDW� ZKLOH� /&'V� DUH� OLQHDUO\� SRODUL]HG�� LQ� PDQ\�WDEOHWV� WKH� WRXFK�VHQVLWLYH� HOHPHQW� GLIIXVHV� WKH� OLJKW��UHTXLULQJ�DQRWKHU�SRODUL]LQJ�OD\HU����&RPSXWHU�9LVLRQ�6\VWHP�:H� LPSOHPHQWHG� D� FRPSXWHU� YLVLRQ� V\VWHP� WR� DOORZ�DSSOLFDWLRQV� WR� VXSSRUW� LQWHUDFWLRQV� ZLWK� REMHFWV� RQ� WKH�WDEOHW� DQG� WKH� VXUIDFH� DURXQG� LW�� 7KH� YLVLRQ� V\VWHP� ZDV�ZULWWHQ�SUHGRPLQDQWO\� LQ�3\WKRQ�DQG�XVHV�,QWHO¶V�2SHQ&9�OLEUDU\��:H�QRZ�GHVFULEH� WKH�YLVLRQ�V\VWHP�LQ�VRPH�GHWDLO�WR�HQDEOH�UHDGHUV�WR�UHSOLFDWH�RXU�V\VWHP��$V� VKRZQ� LQ� )LJXUH� �� �QH[W� SDJH��� WKH� YLVLRQ� V\VWHP�ZDV�LPSOHPHQWHG� LQ� D� WKUHDGHG�� KLHUDUFKLFDO� VWUXFWXUH�� $W� WKH�FRUH�RI�WKH�YLVLRQ�V\VWHP�LV�WKH�&DPHUD�0RGXOH��ZKLFK�LV�UHVSRQVLEOH� IRU� UHWULHYLQJ� IUDPHV� IURP� D� VLQJOH� FDPHUD��

SHUIRUPLQJ� DQ� RSWLRQDO� EDFNJURXQG� VXEWUDFWLRQ� VWHS�� DQG�JDWKHULQJ� GHWHFWHG� REMHFWV� IURP� GLIIHUHQW� 9LHZ� 0RGXOHV��(DFK� 9LHZ� 0RGXOH� LV� UHVSRQVLEOH� IRU� PDQLSXODWLQJ� UDZ�FDPHUD� IUDPHV� WR� SURGXFH� D� VSHFLILF� VLPXODWHG� YLHZ�� DQG�FRQWDLQV�D� VHW�RI�REMHFW� UHFRJQLWLRQ�FODVVLILHUV� WKDW�RSHUDWH�RQ�WKH�VLPXODWHG�YLHZ��7KHVH�YLHZV�DUH�XVHIXO�VLQFH��DV�FDQ�EH� VHHQ� LQ� )LJXUH� �D�� LQ� RUGHU� IRU� WKH� FDPHUD� WR� VHH� WKH�WDEOHW� VFUHHQ� DQG� WKH� VXUURXQGLQJ� VXUIDFH� �DQG� VWLOO� EH�IROGHG�GRZQ�ZKHQ�QRW� LQ�XVH��� WKH�FDPHUDV�PXVW�YLHZ�WKH�ZRUOG� IURP� D� YHU\� REOLTXH� DQJOH�� 2XU� V\VWHP� XVHV� WZR�&DPHUD� 0RGXOHV�� RQH� IRU� HDFK� FDPHUD�� %RWK� &DPHUD�0RGXOHV� DQG� DOO�9LHZ�0RGXOHV� DUH� WKUHDGHG� WR� DOORZ� WKH�YLVLRQ�V\VWHP�HOHPHQWV�WR�RSHUDWH�FRQFXUUHQWO\��$�VLQJOH�SDVV�RI�WKH�YLVLRQ�V\VWHP�FRQVLVWV�RI�WKHVH�VWHSV����� *UDEELQJ� FDPHUD� IUDPHV�� (DFK� &DPHUD� 0RGXOH� LV�FRQQHFWHG�WR�D�VLQJOH�FDPHUD�GHYLFH��8SRQ�UHTXHVW�IURP�WKH�3HUFHSWLRQ� 0DQDJHU�� D� &DPHUD� 0RGXOH� UHWULHYHV� D� QHZ�IUDPH� IURP� WKH� FDPHUD� DQG� SDVVHV� LW� WR� HDFK� RI� LWV� 9LHZ�0RGXOHV����� 2SWLRQDO� EDFNJURXQG�VXEWUDFWLRQ�� 3RUWLFR� SURYLGHV� D�EDFNJURXQG� VXEWUDFWLRQ� FDSDELOLW\� DQG� RIIHUV� LW� DV� DQ�RSWLRQDO� VWHS� LQ� WKH� SHUFHSWLRQ� SURFHVV� SULRU� WR� YLHZ�JHQHUDWLRQ� DQG� REMHFW� UHFRJQLWLRQ�� :H� XVH� D� *DXVVLDQ�0L[WXUH�0RGHOV�DSSURDFK�IRU�EDFNJURXQG�VXEWUDFWLRQ�>���@��ZLWK�D�GHGLFDWHG�PRGHO� IRU�HDFK�FDPHUD��:KHQ�DSSOLHG��D�EDFNJURXQG�IRUHJURXQG�PDVN� LV�SURGXFHG�DQG� LV�SDVVHG� WR�HDFK�9LHZ�0RGXOH�DORQJ�ZLWK�WKH�UDZ�FDPHUD�IUDPH����� 3URGXFLQJ� VLPXODWHG� FDPHUD� YLHZV�� 8VLQJ� FDOLEUDWLRQ�KRPRJUDSK\� FRPSXWHG� GXULQJ� V\VWHP� VHWXS�� D� 9LHZ�0RGXOH�FDQ�SURGXFH�RQH�RI�D�VHW�RI�VLPXODWHG�YLHZV� WR�EH�XVHG� IRU� REMHFW� GHWHFWLRQ�� (DFK� &DPHUD� 0RGXOH� DOVR�FRQWDLQV� D� 5DZ� 9LHZ� 0RGXOH� UHVSRQVLEOH� IRU� REMHFW�UHFRJQLWLRQ�GRQH�RQ�WKH�UDZ�FDPHUD�YLHZ��VHH�)LJXUH��D�E���:H� KDYH� LPSOHPHQWHG� VXSSRUW� IRU� D� QXPEHU� RI� VLPXODWHG�YLHZV��2XU�SURRI�RI�FRQFHSW�DSSOLFDWLRQV��GHVFULEHG�EHORZ��PDNH�XVH�RI�WKH�IROORZLQJ�WZR�VLPXODWHG�YLHZV��7KH�6FUHHQ�DQG�%H]HO�9LHZ��)LJXUH��F��SURGXFHV�D�UHFWLILHG�YLHZ�RI�WKH�WDEOHW� VFUHHQ� DQG�EH]HO� DQG� LV� XVHIXO� IRU� SHUIRUPLQJ�PRUH�SUHFLVH�GHWHFWLRQ�RI�REMHFWV�SODFHG�RQ�WKH�WDEOHW��7KH�7DEOH�9LHZ� �)LJXUH� �G�H�� SURGXFHV� D� UHFWLILHG�YLHZ�RI� WKH� WDEOHW�

� �)LJXUH����3RUWLFR�V\VWHP�LOOXVWUDWLRQV��7KH�XQLILHG�DUHD�YLHZDEOH�E\�WKH�WZR�FDPHUDV��OHIW���DQG�WKH�V\VWHP�UHDFWLQJ�WR�REMHFW�RQ�DQG�DURXQG�WKH�WDEOHW��ULJKW���

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

349

Better Form Factors

Vision-based Object Tracking Technologies

GaussSense (Liang et al. UIST ’12)

Portico(Avrahami et al. UIST ’11)

Page 11: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Challenges of Magnetic TrackingOne of the bipolar magnetic field may disappear while rolling

Page 12: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Solution: Magnetic Regular PolyhedronExpanding magnetic fields in equal dihedral angles to make the bipolar magnetic fields visible at any direction

Page 13: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Solution: Magnetic Regular PolyhedronExpanding magnetic fields in equal dihedral angles to make the bipolar magnetic fields visible at any direction

Page 14: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Explorative Study

different sizesdifferent faces

Form factors vs. tracking performances

Page 15: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Form factors vs. tracking performancesExperimental Apparatus

Page 16: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

servo motor

stabilizeranalog Hall-sensor grid

Form factors vs. tracking performancesExperimental Apparatus

Page 17: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

servo motor

stabilizeranalog Hall-sensor grid

Form factors vs. tracking performancesExperimental Apparatus

single magnet 16mm-radius

6-face 13.5,16,18.5,21mm-radius

4, 6, 8, 12-face 16mm-radius

Page 18: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

servo motor

stabilizeranalog Hall-sensor grid

Form factors vs. tracking performancesExperimental Apparatus

8 (units) × 5 (positions) × 4 (hover heights) × 10 (angles) × 100 (samples) = 160,000 bitmaps of magnetic fields

single magnet 16mm-radius

6-face 13.5,16,18.5,21mm-radius

4, 6, 8, 12-face 16mm-radius

Page 19: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Form factors vs. tracking performancesData Processing

Bipolar-blob contours North-blob contours South-blob contours

3 types of contour

8 (units) × 5 (positions) × 4 (hover heights) × 10 (angles) × 100 (samples) = 160,000 bitmaps of magnetic fields

(max Intensity M and blob Area A)

Page 20: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Form factors vs. tracking performancesData Processing

Bipolar-blob contours North-blob contours

1. Centroid of contours

2. Centroid of pixels (in all contours)

3. Centroid of mass (in all contours)

3 types of contour x

8 (units) × 5 (positions) × 4 (hover heights) × 10 (angles) × 100 (samples) = 160,000 bitmaps of magnetic fields

(max Intensity M and blob Area A) 3 types of centroid

South-blob contours

Page 21: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

9 Distributions of centroids

Form factors vs. tracking performancesData Processing

Bipolar-blob contours North-blob contours

1. Centroid of contours

2. Centroid of pixels (in all contours)

3. Centroid of mass (in all contours)

3 types of contour3 types of centroidx d

8 (units) × 5 (positions) × 4 (hover heights) × 10 (angles) × 100 (samples) = 160,000 bitmaps of magnetic fields

(max Intensity M and blob Area A) =

South-blob contours

Page 22: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

9 Distributions of centroids

Form factors vs. tracking performancesData Processing

Bipolar-blob contours North-blob contours

1. Centroid of contours

2. Centroid of pixels (in all contours)

3. Centroid of mass (in all contours)

d

mean(d),std(d): measured dispersion

8 (units) × 5 (positions) × 4 (hover heights) × 10 (angles) × 100 (samples) = 160,000 bitmaps of magnetic fields

3 types of contour3 types of centroidx(max Intensity M and blob Area A) =

South-blob contours

Page 23: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

0

1

2

3

4

5

6

1M P4 6M 8M 12M

IN-OC IN-OP IN-OM IS-OC IS-OP IS-OM IB-OC IB-OP IB-OMOc-IN Op-IN Om-IN Oc-IS Op-IS Om-IS Oc-IB Op-IB Om- IBN

/ A

N /

A

N /

A

0

1

2

3

4

56

(mm)

dist

ance

(d)

1. Bi-polar centroid of mass is the most stable feature for xy-plane tracking.

single magnet 16mm-radius

4-face 16mm-radius

6-face 16mm-radius

8-face 16mm-radius

12-face 16mm-radius

Summary of Findings

Page 24: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Summary of Findings

0

1

2

3

4

5

6

1M P4 6M 8M 12M

IN-OC IN-OP IN-OM IS-OC IS-OP IS-OM IB-OC IB-OP IB-OMOc-IN Op-IN Om-IN Oc-IS Op-IS Om-IS Oc-IB Op-IB Om- IBN

/ A

N /

A

N /

A

0

1

2

3

4

56

(mm)

dist

ance

(d)

1. Bi-polar centroid of mass is the most stable feature for xy-plane tracking.

single magnet 16mm-radius

4-face 16mm-radius

6-face 16mm-radius

8-face 16mm-radius

12-face 16mm-radius

2. Polyhedrons support z-axis tracking by using the product of south-blob area and intensity (AS × MS), and a single magnet does not.

3 mm

6 mm

9 mm

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

(gau

ss)

200

150

100

50

0

150000

100000

50000

0

(gau

ss x

mm

2 )

a b4-face 6-face 8-face 12-face

Page 25: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Summary of Findings

012345678

1 2 3 4

��1 ��2 ��3 ��4

h = 12 mm

h = 9 mm

h = 6 mm

h = 3 mm

012345678

1 2 3 4

��1 ��2 ��3 ��4mm

h = 3 mm h = 12 mmh = 9 mmh = 6 mm

Om- IB24

0

2

4

0

6

8

202020

(mm) (mm)

dist

ance

(d)

dist

ance

(d)

a b

3. More faces yield greater accuracy, but accuracy drops as sensing distance increases.

(cont’d)

4face 6face 8face 12face

Page 26: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

012345678

1 2 3 4

��1 ��2 ��3 ��4

h = 12 mm

h = 9 mm

h = 6 mm

h = 3 mm

012345678

1 2 3 4

��1 ��2 ��3 ��4mm

h = 3 mm h = 12 mmh = 9 mmh = 6 mm

Om- IB24

0

2

4

0

6

8

202020

(mm) (mm)

dist

ance

(d)

dist

ance

(d)

a b

3. More faces yield greater accuracy, but accuracy drops as sensing distance increases.

Summary of Findings

4face 6face 8face 12face 4. Smaller polyhedrons yield slightly greater accuracy.

012345678

1 2 3 4

��1 ��2 ��3 ��4

h = 12 mm

h = 9 mm

h = 6 mm

h = 3 mm

012345678

1 2 3 4

��1 ��2 ��3 ��4mm

h = 3 mm h = 12 mmh = 9 mmh = 6 mm

Om- IB24

0

2

4

0

6

8

202020

(mm) (mm)

dist

ance

(d)

dist

ance

(d)

a b

13.5mm radius

16mm radius

19.5mm radius

21mm radius

(cont’d)

Page 27: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Designing Ball + Constraint Interactions on Portable PlatformsApplications

Page 28: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a DisplayUsing Physical Constraint to Manipulate a Ball

Page 29: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a DisplayEmbodied Gestures

Page 30: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a DisplayBall+Constraint Interactions on Handheld Displays

Page 31: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a Display

conductive rubber

Touch interactions on a magnetic sphere

Page 32: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a DisplayClay-made territory as a continuous constraint

Page 33: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with Constraints on a DisplayAround-Device Interactions

Page 34: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with a Constraint Nearby a DisplayUsing Physical Constraints to Bridge Digital- and Real-world Experiences

Page 35: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with a Constraint Nearby a DisplayUsing Physical Constraints to Bridge Digital- and Real-world Experiences

Page 36: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with a Constraint Distant from a Display

Velcro strap

High-friction Materials as Physical Constraints

Page 37: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

Interacting with a Constraint Distant from a Display

Velcro strap

High-friction Materials as Physical Constraints

Page 38: [CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints Han-Chih Kuo, Rong-Hao Liang, Long-Fei Lin, Bing-Yu Chen National Taiwan University

Thanks! Questions?

The proposed magnetic regular polyhedron design enables • stable 3D tracking by an analog Hall-sensor grid

without priori knowledge • the explorations of ball+constraint interaction

on portable platforms

Conclusion