chiroptical spectroscopy · 113 chiroptical spectroscopy theory and applications in organic...

31
113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99

Upload: others

Post on 05-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

113

Chiroptical SpectroscopyTheory and Applications in Organic Chemistry

Lecture 5: Circular dichroism

Masters Level Class (181 041)

Mondays, 8.15-9.45 am, NC 02/99

Wednesdays, 10.15-11.45 am, NC 02/99

Page 2: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 114

Optical rotation and circular dichroism

µ: electric dipole transition moment (EDTM)m: magnetic dipole transition moment (MDTM)

rotational strength of transition n0

Optical rotation Δ

Cotton effect: OR changes sign near absorbance bands

Page 3: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 115

Circular dichroism

Differential absorption of left- and

right-circularly polarized light:

ΔΔ

Page 4: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 116

Units of CD

Today: Difference of absorption coefficients

Δ

and thus units of M-1 cm-1

Historically, due to association with ORD, one still finds the molar ellipticity []:

Θ 3298.2Δ

given in units of degree (respectively deg cm2 dmol-1)

Page 5: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 117

3298.2 ?

Ellipticity:

tanΘ

with ER / EL being the field vectors of circular polarized light

As is small, it can be approximated that tanΘ Θ

As the light intensity I is proportional to E2:

Θ

1

1

Since A << 1, we can use Taylor series to expand the exponentials, and after conversionfrom radians to degrees, we get:

Θ Δ ln 104

180 100Δ

ln 104

1803298.2Δ

Page 6: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 118

What do we see in a CD spectrum?

Every UV/vis band has a CD feature

Relative intensities do not correlate, i.e. strong UV/vis

band does not necessarily feature strong CD band

Experimental considerations: Comparable to regular

UV/Vis, except that OD ideally below 1.0

Both UV/vis and CD spectrum are collected

simultaneously

Good practice to show both together and not

separated

Analysis:

a) Empirical rules (knowledge about

transitions required!)

b) Quantum chemical calculations

[Cu(dach)2](ClO4)2 in ACN

= dach

Page 7: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 119

Reminder: Basics of UV/vis excitation processes

Absorption of a photon excites transition of an

electron from an occupied (binding) to an

unoccupied orbital.

Not all possible transitions are quantum mechanically allowed(see selection rules), but one frequently observes:

* < 180 nm * > 200 nmn * > 230-270 nmn * ~ 170-220 nm

Page 8: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 120

Reminder: Intensities and absorption coefficients

Molar absorptivity

… is a measure for the transition probability

… proportional to the oscillator strength

respectively the transition dipole moment

≤ 10 forbidden

10 ≤ ≤ 1000 weakly allowed

1000 ≤ ≤ 100000 allowed

100000 ≤ strongly allowed

Page 9: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 121

Transition dipole moment

During transition from orbital i to orbital j:

Rearrangement of electron density due to „movement of charge“

During relaxation from j to i: again rearrangement of charge

… i.e. charge respectively electron density oscillates during electronic transitions

h

S0 S1

intensity of absorption ~ degree of charge oscillationoscillator strength fij

Page 10: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 122

Oscillator strength f

Quantification of charge rearrangement:

If electric dipole moment…

µ = 0: electric dipole forbidden

µ ≠ 0: electric dipole allowed

4 3

4 3

Page 11: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten

O

123

Qualitative determination of edtm

Procedure to determine µij:

1) Identify participating MOs

2) Multiply the MOs and determine signs of „product orbitals“

3) Invert signs to obtained charges from electron density

4) Do the product MOs have dipolar character?

* of a C=O group

Large edtm for * transition, i.e. strong absorbance bandµij

Page 12: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 124

More examples for edtm determination

n * of a C=O group

Quadrupole moment, but not dipole moment, i.e. forbidden transition

n * of a C=O group

Product MO not evenly distributed around oxygen and orthogonal to the C-O bond

Can be split into weak quadrupole and medium dipole moment allowed transition (medium intense)

Page 13: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 125

The magentic dipole transition moment mij

If charge is rotated instead of linearly displaced, according

to the right hand rule, we obtain a

Magnetic dipole transition moment mij

Procedure to determine mij:

1) Identify participating MOs

2) Is charge/electron density rotated?

If yes, is the angle ≠ 180°?

3) Use smaller possible angle for rotation,

curl fingers around rotation direction

4) Thumb points along magnetic dipole transition moment

90°

270°mij

Page 14: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 126

The magentic dipole transition moment mij

90°

270°mij

n * of a C=O group

Strong magnetic moment

(transition electronically forbidden,

but magnetically allowed)

* of a C=O group

No magnetic dipole moment

mij

n * of a C=O group

Both electronically and

magnetically allowed!

Page 15: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 127

Classification of chromophores

Chiral compounds with inherently chiral chromophores

Chromophoric system is chiral, i.e. due to twist

Usually very strong CD intensity

Chiral compounds with achiral chromophores

More common, i.e. chiral carbonyl compounds

Achiral chromophore is influenced by chiral environment

Intensities up to two orders of magnitude smaller

(P)-hexahelicene(M)-biphenyl

Page 16: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 128

Determining the sign of CD bands from MO analysis – enol ether

Enol ether is chromophore of -* transition

Isoelectronic with allyl anion

OHO

HOOH

-

0

+

(C-O-C-C) < 0

Page 17: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 129

Determining the sign of CD bands from MO analysis – enol ether

Enol ether is chromophore of -* transition

Isoelectronic with allyl anion

OHO

HOOH

-

0

+

G. Snatzke, Angew. Chem. Int. Ed. Engl. 18 (1979) 363-377

µ ↓↑ m

Note: EDTM (+) (-)MDTM Movement of orbibtal lobes

Page 18: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 130

Determining the sign of CD bands from MO analysis - disulphides

S S

Preferred conformation of –S-S- bond features torsional angle

of ±90° due to lone pair repulsion.

Inherently chiral chromophore with n* transition

n * product orbital charge distribution

mKwit et al. „Some inherently chiral chromophores…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Page 19: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 131

Determining the sign of CD bands – Dienes

+ -

Diene helicity rule (DHR):

Sign of torsional angle = sign of CD band

C9H17

HOH = -11°

= -18.0 (269 nm)

DHR often valid, but fails for certain types of dienes:

R

= +20°= -5 (250 nm)

Page 20: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 132

Determining the sign of CD bands – Dienes

+CEfor right-handed angle

Cax-Callyl-C=C

-CEfor left-handed angle

Cax-Callyl-C=C

Allylic Axial Chirality Rule (AACR)

R

= +20°= -5 (250 nm)

R

H

H

H

--

-

H

R

HH

HAcO

+

-

++

There are many other refined sets ofrules for special cases, better check literature before applying them.!

Page 21: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 133

The n-* transition in cyclic carbonyl compounds

O

O *

n

O

O

O

O

O

isolatedchromophore

chiral perturbedchromophore

Ideal model for chromophore in chiral environment

G. Snatzke, Angew. Chem. Int. Ed. Engl. 18 (1979) 363-377

Page 22: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 134

The n-* transition in cyclic carbonyl compounds

µ

O+

-

Positive CD band!

Ideal model for chromophore in chiral environment

G. Snatzke, Angew. Chem. Int. Ed. Engl. 18 (1979) 363-377

Note:

The farther away the perturbing chiralbond, the small its influence!

Page 23: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 135

The n-* transition in cyclic carbonyl compounds

Ideal model for chromophore in chiral environment

Different orbital mixing situation: methyl group situated above C=O bond

G. Snatzke, Angew. Chem. Int. Ed. Engl. 18 (1979) 363-377

CD of n-* negative,

experiment: -0.06

Page 24: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 136

Octant rule

Originally developed and tested for ORD of

steroids on basis of large amount of data by

Djerassi, Klyne, and Ourisson, then generalized

and transferred to ECD:

Determination of CD sign of the n* transition in

chiral ketones and aldehyds (~290-300 nm)

Applicable if preferred conformation is known

Or vice versa: If configuration is known, the most

preferred conformation can be determined.

Moffitt, Woodward, Moscowitz, Klyne, Djerassi, J. Am .Chem . Soc. 83 (1961) 4013

Page 25: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 137

Octant rule

Preparation:

Consider molecule as „substituted formaldehyd“

Planes of symmetry of formaldehyd are used to

define eight octants

A sign is assigned to each octant

Analysis:

Place substituents in rear octants

Sign of octant = sign of CD band, while

substituents closer to the carbonyl have larger

contribution

Number of subtituents in (+) and (-) octant

= no CD band

Moffitt, Woodward, Moscowitz, Klyne, Djerassi, J. Am .Chem . Soc. 83 (1961) 4013

back quadrants

front quadrants

Page 26: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 138

Octant rule: Example of cyclohexanone

Cyclohexanone (achiral)

Assume chair conformation

Project position of each substituent

Due to symmetry plane XZ, identical number of

atoms in (+) and in (-) octants

No CD band for n-* transition

Page 27: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 139

Octant rule: Methyl cyclohexanone

3-Methyl cyclohexanone

Assume chair conformation with methyl group in

equatorial position

Methyl substituent in (+)-octant

Positive CD band for n-* transition

Page 28: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 140

Examples for the octant rule: The orientation confusion

Page 29: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten

Structure Conformation Octant Projection Cotton effectPred. / Exp.

- / -

+ / +

methyl group closer to C=O

+ / +

141

Examples for the octant rule

O

H

O

H

Page 30: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten

Structure Octant Projection Cotton effectPred. / Exp.

(+) / + 2.1

(+) / + 5.4

(+) / + 0.6

(+) / + 1.2

142

Examples for the octant rule

OH Geometry of 5-rings

contributes to CD signal!

Page 31: Chiroptical Spectroscopy · 113 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 5: Circular dichroism Masters Level Class (181 041) Mondays, 8.15-9.45

Chiroptical spectroscopy | Dr. C. Merten 143

Outline of the lecture

Dates topics

09.04. Introduction

11.04. Polarization of light

16.04. Theoretical basis of optical activity

18.04. Optical rotation

23.04. Circular dichroism

25.04. Circular dichroism

07.05. Vibrational optical activity

14.05. Vibrational optical activity

18.06. applications

20.06. applicationsyour part

Mondays 8.15-9.45 amWednesdays 10.15-11.45 am