cladding deformation

Upload: sahas79

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Cladding Deformation

    1/15

  • 8/3/2019 Cladding Deformation

    2/15

    2

    Swelling of hydride fuel

    0 4 8 12 16 20 24

    Burnup, MWd/kgU

    Slope = 0.08

  • 8/3/2019 Cladding Deformation

    3/15

    3

    Cladding properties Type (Zry-2, Zry-4, ZIRLO, M5) Fabrication: cold-worked or stress-relieved-annealed Surface roughness Texture factor (fraction of grains of hcp Zr with basal

    planes parallel to the tube axis usually small) Fill-gas type and pressure (usually He at ~ 10 atm) or liquid-metal bond Plastic and thermal creep properties Irradiation hardening and irradiation creep

  • 8/3/2019 Cladding Deformation

    4/15

    4

    Stresses in cladding forces acting on the cladding arise from:

    - fuel swelling (closed gap, or hard PCMI)

    gas pressure p gas

    21

    z

    CCgas

    ;/R)pp( tubes,wall-thin

    :gapOpenC

    RC

    )5#Memo(/R)pp(

    z

    CCi

    - fission-

    gas and system pressure

    p gas

  • 8/3/2019 Cladding Deformation

    5/15

    5

    Open gap - gas pressure (He + fg)

    ii

    igas T/V

    nRp

    i = void region in fuel element

    - plenum- gap

    - cracks

    R = gas constantn i = moles gas in region i

    Vi = volume of region i

    Ti = temperature of gas in region i

    See Memo #3for details

  • 8/3/2019 Cladding Deformation

    6/15

    6

    Plastic behavior

    deformation is incompressible:

    er + e + ez = 0

    2/12r z

    2r

    2z2

    1 )()()(*

    Equivalent uniaxial stress:

    Deviatoric stresses:solid does not deform under hydrostatic stress

    zr 31r dev,r

    zr 31

    zdev,z

    zr 31

    dev,

  • 8/3/2019 Cladding Deformation

    7/15

    7

    Prandtl-Reuss Flow Rule

    dev,r pl,r dev,zpl,zdev,pl, **

    **

    ** ee ee ee

    T)( cr ,pl,r zE1tot, eee

    T)(cr ,zpl,zr zE

    1

    tot,zeee

    Constitutive relations (elastic + plastic + creep + thermal):

    reversible:elastic andthermal

    irreversible:

    plastic andcreep

    e / is obtained from uniaxial tests

    T)( cr ,r pl,r zr E1tot,r eee

  • 8/3/2019 Cladding Deformation

    8/15

  • 8/3/2019 Cladding Deformation

    9/15

    9

    Plastic properties of Zry(MATPRO p 4.9-9)

    Strain-hardening exponent:T

  • 8/3/2019 Cladding Deformation

    10/15

    10

    Compressive creep of Zry(from MATRPO, Vol. IV, p. 4.8-14)

    Btcr , e1 Ae

    Nearly all creep data are from tensile tests, very littlecompressive creep data available

    creep is slow deformation due to applied stress below orabove the yield stress In reactor, the system pressure causes cladding creepdown while gap is open Compressive thermal creep (positive for creepdown):

    27

    23

    )5.14/(10x6.7B

    )5.14/(10x3.5 A

    hoop stress, MPa (positive in compression)

    t = time under stress, s

  • 8/3/2019 Cladding Deformation

    11/15

    11

    Application to open gap(in FRAPCON only creep acts)

    Compressiveloading (p - p gas )

    Azimuthal stress

    creep strain: e ,cr = ( R/R) creepdown

    Time increment

    Cladding radius-to-thickness ratio

  • 8/3/2019 Cladding Deformation

    12/15

    12

    Gap closure & PCMI

    Open gap - hot but intact pellet

    Initial cracking & relocationa fraction x ~ 0.5 of initial hot gap isconverted to void volume inside cracks

    Soft PCMI fuel first contactscladding no interfacial pressure

    Hard PCMI void volume eliminatedfrom fuel high interfacial pressure

  • 8/3/2019 Cladding Deformation

    13/15

    13

    Post-PCMI cladding strain At hard PCMI, the stress in the cladding changes from

    compressive to tensile; it passes through a state of zerostress, which is the reference state

    Creepdown is replace by outward plastic deformationdriven by fission-product swelling of fuel

    ref fpfp

    C

    Cpl,z z

    z

    zze

    no-axial-slip conditionref fpfpCCpl, R

    R

    RRe

    By volume conservation, the cladding becomes thinner:

    pl,pl,zpl,pl,r 2)(

    1slideonplotfromVV

    31

    fpfp

    the strains follow therigid pellet approximation:

  • 8/3/2019 Cladding Deformation

    14/15

    14

    Cladding deformation (cont) only plastic deformation is considered

    From Prandtl-Reuss rules

    0:axial

    )tensile(:azimuthal

    zr 3

    1zdev,z

    21

    zr 31

    dev,

    dev,zpl,zdev,pl, **

    **

    ee

    ee

    Deviatoric stresses:

    from previous slide, e pl = ez pl, so dev = dev and: = z

    (note difference from open-gap case: = z)

    From Memo #5:p i = p + S C/R)

    S p

    S 3K ( fp n ref fp

    (K & n from slide 9)

  • 8/3/2019 Cladding Deformation

    15/15

    15

    Example: T C = 625 K, n = 0.1, K = 600 MPa

    Suppose PCMI starts at 40 MWd/kgU when 1% ref fp

    At 60 MWd/kgU, fp = 2.5% so S 395 MPa

    For p = 7 MPa and C/R = 0.14, p i = 62 MPa & 387 MPa

    What to compare this to? MATPRO suggests the

    burst strength : burst ~ 1.36K = 820 MPa

    Since < burst by a good margin, the cladding is safe