class lecture ce433 p 1

42
1 CE 433 : CE 433 : CE 433 : CE 433 : SOLID & HAZARDOUS WASTE SOLID & HAZARDOUS WASTE MANAGEMENT MANAGEMENT Professor Dr A B M Badruzzaman Professor Dr . A. B. M. Badruzzaman Dr. A. B. M. Dr. A. B. M. Badruzzaman Badruzzaman 1

Upload: adnan-chowdhury

Post on 21-Dec-2015

10 views

Category:

Documents


0 download

DESCRIPTION

ghhg

TRANSCRIPT

Page 1: Class Lecture CE433 P 1

1

CE 433 :CE 433 :CE 433 : CE 433 : SOLID & HAZARDOUS WASTE SOLID & HAZARDOUS WASTE

MANAGEMENT MANAGEMENT

Professor Dr A B M BadruzzamanProfessor Dr. A. B. M. Badruzzaman

Dr. A. B. M. Dr. A. B. M. BadruzzamanBadruzzaman 11

Page 2: Class Lecture CE433 P 1

2

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman 22

Page 3: Class Lecture CE433 P 1

3

Dr. A. B. M. Dr. A. B. M. BadruzzamanBadruzzaman 33

Page 4: Class Lecture CE433 P 1

4

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman 44

Page 5: Class Lecture CE433 P 1

5

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman 55

Page 6: Class Lecture CE433 P 1

6

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 7: Class Lecture CE433 P 1

7

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 8: Class Lecture CE433 P 1

8

Properties of Solid WasteProperties of Solid Wastepp

Phy i al o o itio of olid a te i ludePhy i al o o itio of olid a te i lude Physical composition of solid wastes includesPhysical composition of solid wastes includes::i.i. Identification of individual components that make up Identification of individual components that make up municipal solid wastesmunicipal solid wastesmunicipal solid wastesmunicipal solid wastes

ii.ii. Analysis of particle sizeAnalysis of particle sizeiii.iii.Moisture contentMoisture contentiv.iv.Specific weight of solidsSpecific weight of solidsv.v. Permeability of compacted wastePermeability of compacted waste

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 9: Class Lecture CE433 P 1

9

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 10: Class Lecture CE433 P 1

10

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 11: Class Lecture CE433 P 1

11

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 12: Class Lecture CE433 P 1

12

Solid Waste as collected excluding waste components now recycled and

Solid Waste as collected plus food

waste that is ground

Solid Waste as collected plus waste

components now recycled but

Solid Waste as collected plus waste

components now

Component

now recycled and excluding food

waste that is ground up.

excluding Recycle;

waste that is ground up, but excluding

waste components now recycled

excluding Recycle;

recycled, but excluding food

waste that is ground up

including Recycle;

components now recycled and plus food waste that is

ground upincluding Recycle;Component excluding Recycle;

excluding Foodexcluding Recycle;

including Foodincluding Recycle;

excluding Foodincluding Recycle;

including FoodFood wastes 9.0 9.4 8.0 8.4Paper 34.0 33.8 35.8 35.6Cardboard 6 0 6 0 6 4 6 4Cardboard 6.0 6.0 6.4 6.4Plastics 7.0 7.0 6.9 6.9Textiles 2.0 2.0 1.8 1.8Rubber 0.5 0.5 0.4 0.4L th 0 5 0 5 0 4 0 4Leather 0.5 0.5 0.4 0.4Yard Wastes 18.5 18.4 17.3 17.2Wood 2.0 2.0 1.8 1.8Misc. OrganicsInorganicGlass 8.0 7.9 9.1 9.0Tin cans 6.0 6.0 5.8 5.8Aluminum 0.5 0.5 0.6 0.6

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Other metal 3.0 3.0 3.0 3.0Dirt, ash, etc. 3.0 3.0 2.7 2.7Total 100.0 100.0 100.0 100.0

Page 13: Class Lecture CE433 P 1

13

Food wastes

35 0

40.0

Typical Physical Composition of MSWPaper

Cardboard

Plastics

Textiles

Rubber

25 0

30.0

35.0

ht

Leather

Yard Wastes

Wood

Glass

Tin cans

Al i

15 0

20.0

25.0

cent

by

Wei

gh Aluminum

Other metal

Dirt, ash, etc.

5 0

10.0

15.0

Perc

0.0

5.0

excluding Recycle; excluding Food excluding Recycle; including Food including Recycle; excluding Food including Recycle; including Food

Solid Waste As Collected

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Solid Waste As Collected

Page 14: Class Lecture CE433 P 1

14

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 15: Class Lecture CE433 P 1

15

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 16: Class Lecture CE433 P 1

16

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman 1616

Page 17: Class Lecture CE433 P 1

17

Moisture Content:

M =Moisture Content (%)M = Moisture Content (%)w = initial weight of sample as delivered, (kg)d =  weight of sample after drying at 150 °C

Particle Size:

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 18: Class Lecture CE433 P 1

18

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 19: Class Lecture CE433 P 1

19

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 20: Class Lecture CE433 P 1

20

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 21: Class Lecture CE433 P 1

21

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 22: Class Lecture CE433 P 1

22

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 23: Class Lecture CE433 P 1

23

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman 2323

Page 24: Class Lecture CE433 P 1

24

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 25: Class Lecture CE433 P 1

25

Specific Weight:S W M / V lSp. Wt. = Mass / Volume

Permeability of Compacted Wastes:y p

K = coefficient of permeabilityC = dimensionless constant or shape factord = average pore size = specific weight of water = dynamic viscosity of water = intrinsic permeability

Typical value for the intrinsic permeability of compacted solid waste is 10-11 to 10-12 m2 in the vertical direction and 10-10 m2 in horizontal Direction.

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 26: Class Lecture CE433 P 1

26

Properties of Solid WasteProperties of Solid Waste

Chemical composition of solid wastes includesChemical composition of solid wastes includes::i.i. Proximate analysisProximate analysis ––i.i. Proximate analysis Proximate analysis 

a.a. Moisture (loss at 105Moisture (loss at 105°°C for 1 hr.)C for 1 hr.)b.b. Volatile materials (additional loss on ignition at 950Volatile materials (additional loss on ignition at 950°°C)C)c.c. Ash ( residue after burning)Ash ( residue after burning)d.d. Fixed carbon (remainder)Fixed carbon (remainder)

ii.ii. Fusing point of ashFusing point of ashiii.iii.Ultimate analysis Ultimate analysis ‐‐ percent percent Carbon Hydrogen Oxygen Nitrogen and ashCarbon Hydrogen Oxygen Nitrogen and ashCarbon, Hydrogen, Oxygen, Nitrogen, and ashCarbon, Hydrogen, Oxygen, Nitrogen, and ash

iv.iv.Heating value (energy value)Heating value (energy value)

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 27: Class Lecture CE433 P 1

27

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 28: Class Lecture CE433 P 1

28

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 29: Class Lecture CE433 P 1

29

Ultimate AnalysisUltimate Analysis

Chemical Composition of MSW

Component WetMoisture Dry Dry

C, % by 

weighC, 

Comp

H, % by 

weighH, 

Comp

O, % by 

weighO, 

Comp

N, % by 

weighN, 

Comp

S, % by 

weighS, 

Comp

Ash, % by weigh

Ash, CompComponent, 

Basis 100 lbs total weight

Wet weight, lbs

ureContent, %, 

Dry weight, %

Dry weight, lbs

weight, dry basis

Composition, lbs

weight, dry basis

Composition, lbs

weight, dry basis

Composition, lbs

weight, dry basis

Composition, lbs

weight, dry basis

Composition, lbs

weight, dry basis

Composition, lbs

[1] [2] [3] [4] [5] [6] [7] [8[ [9] [10] [11] [12] [13] [14] [15] [16] [17]

100‐[3][2]x[5]/100

[5]x[6]/100

[5]x[8]/100 [5]x[10]/100 [5]x[12]/100 [5]x[14]/100

[5]x[16]/100100 [3] /100 /100 /100 [5]x[10]/100 [5]x[12]/100 [5]x[14]/100 ]/100

Organic

Food wastes 9.0 70.0 30.0 2.7 48.0 1.30 6.4 0.17 37.60 1.02 2.6 0.07 0.4 0.01 5.0 0.14Paper 34.0 6.0 94.0 32.0 43.5 13.90 6.0 1.92 44.00 14.06 0.3 0.10 0.2 0.06 6.0 1.92

Cardboard 6 0 5 0 95 0 5 7 44 0 2 51 5 9 0 34 44 60 2 54 0 3 0 02 0 2 0 01 5 0 0 29Cardboard 6.0 5.0 95.0 5.7 44.0 2.51 5.9 0.34 44.60 2.54 0.3 0.02 0.2 0.01 5.0 0.29

Plastics 7.0 2.0 98.0 6.9 60.0 4.12 7.2 0.49 22.80 1.56 0.0 0.00 0 0.00 10.0 0.69Textiles 2.0 10.0 90.0 1.8 55.0 0.99 6.6 0.12 31.20 0.56 4.6 0.08 0.15 0.00 2.5 0.05

Rubber 0.5 2.0 98.0 0.5 78.0 0.38 10.0 0.05 0.00 0.00 2.0 0.01 0 0.00 10.0 0.05

Leather 0.5 10.0 90.0 0.5 60.0 0.27 8.0 0.04 11.60 0.05 10.0 0.05 0.4 0.00 10.0 0.05

Yard Wastes 18.5 60.0 40.0 7.4 47.8 3.54 6.0 0.44 38.00 2.81 3.4 0.25 0.3 0.02 4.5 0.33Wood 2.0 20.0 80.0 1.6 49.5 0.79 6.0 0.10 42.70 0.68 0.2 0.00 0.1 0.00 1.5 0.02

T t l 79 5 59 0 27 79 3 66 23 29 0 58 0 11 3 52

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Total 79.5 59.0 27.79 3.66 23.29 0.58 0.11 3.52

Page 30: Class Lecture CE433 P 1

30

With H2O, includes moisture as

Component, weight (lbs) Without H2Omoisture as 

indicated belowCarbon 27.79 27.79Hydrogen 3.66 5.95Oxygen 23 29 41 55Oxygen 23.29 41.55Nitrogen 0.58 0.58Sulfur  0.11 0.11Ash 3.52 3.52Total 59 0 79 5Total 59.0 79.5

Molar Composition With H2O and Without H2O, Neglecting the Ash

Component, weight (lbs)

Atomic Weight, lbs/mole

Without H2O, moles

With H2O, moles

Carbon 12.01 2.314 2.314H d 1 01 3 628 5 888Hydrogen 1.01 3.628 5.888Oxygen 16 1.456 2.597Nitrogen 14.01 0.041 0.041Sulfur  32.07 0.004 0.004

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 31: Class Lecture CE433 P 1

31

Approximate Chemical Formula

Component, mole ratiosNitrogen=1,Without H2O

Nitrogen=1, With H2O

Sulfur=1,Without H2O

Sulfur=1, With H2O

Carbon 56 3 56 3 648 6 648 6Carbon 56.3 56.3 648.6 648.6Hydrogen 88.3 143.3 1016.9 1650.2Oxygen 35.4 63.2 408.0 727.9Nitrogen 1.0 1.0 11.5 11.5S lf 0 1 0 1 1 0 1 0Sulfur  0.1 0.1 1.0 1.0

Chemical formula without sulfur Chemical formula with sulfur

Without H O C H O N C H O N SWithout H2O C56.3H88.3O35.4N C648.6H1016.9O408N11.5S

With H2O C56.3H143.3O63.2N C648.6H1650.2O727.9N11.5S

Note: Formulae must be manually adjusted based on table

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 32: Class Lecture CE433 P 1

32

Biological Properties of MSWBiological Properties of MSW

Excluding plastic, rubber, and leather components, the organic Excluding plastic, rubber, and leather components, the organic fraction of most MSW can be classified as follows:fraction of most MSW can be classified as follows:1.1. WaterWater--soluble constituents, such as sugars, starches, soluble constituents, such as sugars, starches, 1.1. WaterWater soluble constituents, such as sugars, starches, soluble constituents, such as sugars, starches,

amino acids, and various organic acids,amino acids, and various organic acids,2.2. Hemicellulose, a condensation product of the fiveHemicellulose, a condensation product of the five-- and sixand six--

carbon sugars,carbon sugars,ca bo suga s,ca bo suga s,3.3. Cellulose, a condensation product of the sixCellulose, a condensation product of the six--carbon sugar carbon sugar

glucose.glucose.44 Fat oils and waxes which are esters of alcohols and long Fat oils and waxes which are esters of alcohols and long 4.4. Fat, oils, and waxes, which are esters of alcohols and long Fat, oils, and waxes, which are esters of alcohols and long

chain fatty acids,chain fatty acids,5.5. Lignin, a polymeric material containing aromatic rings with Lignin, a polymeric material containing aromatic rings with

methoxylmethoxyl groups (groups (--OCHOCH33) [present in some papers: ) [present in some papers: methoxylmethoxyl groups (groups ( OCHOCH33) [present in some papers: ) [present in some papers: newsprint and fiberboard],newsprint and fiberboard],

6.6. Lignocellulose, a combination of lignin and cellulose, andLignocellulose, a combination of lignin and cellulose, and77 Proteins which are composed of chains of amino acidsProteins which are composed of chains of amino acids7.7. Proteins, which are composed of chains of amino acids.Proteins, which are composed of chains of amino acids.

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 33: Class Lecture CE433 P 1

33

Biodegradability of Organic Waste ComponentsBiodegradability of Organic Waste ComponentsBiodegradability of Organic Waste Components Biodegradability of Organic Waste Components

V l ilV l il S lidS lid (VS)(VS) d i dd i d bb i i ii i iVolatileVolatile SolidsSolids (VS)(VS) content,content, determineddetermined byby ignitionignitionatat 500500C,C, isis oftenoften usedused asas aa measuremeasure ofof thethebiodegradabilitybiodegradability ofof thethe organicorganic fractionfraction ofof MSWMSW.. TheTheg yg y gguseuse ofof VSVS inin describingdescribing thethe biodegradabilitybiodegradability ofof thetheorganicorganic fractionfraction ofof MSWMSW isis misleading,misleading, asas somesome ofofthesethese organicorganic constituentsconstituents areare highlyhighly volatilevolatile butbutthesethese organicorganic constituentsconstituents areare highlyhighly volatilevolatile butbutlowlow inin biodegradabilitybiodegradability (e(e..gg.. newsprint,newsprint, somesome plantplanttrimmings)trimmings)..

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 34: Class Lecture CE433 P 1

34

Biodegradability of MSW (Biodegradability of MSW (contdcontd…)…)Alternatively, the lignin content of MSW can be Alternatively, the lignin content of MSW can be used to estimate the biodegradable fraction, using used to estimate the biodegradable fraction, using th f ll ith f ll ithe following:the following:

BF = 0 83 BF = 0 83 –– 0 028 LC0 028 LCBF = 0.83 BF = 0.83 –– 0.028 LC0.028 LCWhere,Where,

BF = BF = biodegradable fraction expressed on a biodegradable fraction expressed on a g pg pvolatile solids (VS) basisvolatile solids (VS) basis

0.83 & 0.028 = empirical constants0.83 & 0.028 = empirical constantsLC = LC = lignin constant of the VS expressed as a lignin constant of the VS expressed as a

% of dry wt.% of dry wt.

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 35: Class Lecture CE433 P 1

35

Data on the Biodegradable Fraction of l t d i t t b d selected organic waste components based

on Lignin Content

Component Volatile Solids (VS) % of Total

Solids

Lignin Content (LC), % of VS

Biodegradable Fraction, BF

Food Wastes 7 – 15 0.4 0.82

PaperNewsprintOffice PaperCardboard

94.096.494.0

21.90.4

12.9

0.220.820.47Cardboard 94.0 12.9 0.47

Yard Wastes 50 – 90 4.1 0.72

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 36: Class Lecture CE433 P 1

36

Energy Values of MSWEnergy Values of MSWgygyComputation from Approximate Chemical Composition Using Modified Dulong Formula: g g

C = carbon, %H = hydrogen, %N = nitrogen, %S S lf %S = Sulfur, %

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 37: Class Lecture CE433 P 1

37

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 38: Class Lecture CE433 P 1

38

Waste Generation

Waste handling, separation storage and separation, storage and

processing at source

Collection

Separation and Transfer & Transport

Separation and processing and

Transformation of solid waste

Disposal

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 39: Class Lecture CE433 P 1

39

Measures and Methods Used to Assess QuantitiesMeasures and Methods Used to Assess Quantities

MSW should be measured as a weight as opposed to a volume because the weight measurements are consistent and reproducible g pwhile the volume can vary considerably attendant to compaction. Ultimately, however, the capacity of a landfill is a volume consideration.

Units ‐ lb/capita/day for residential and commercial, a repeatable measure of production for industry and agriculture e.g. lb of manure/chickenmanure/chicken.

Estimation of Waste Quantities :Load‐count analysis ‐A landfill without scales may estimate theLoad‐count analysis A landfill without scales may estimate the vehicular capacity and the number of vehicles of that capacity.Weight‐Volume Analysis – A landfill equipped with weighing scale records the weight‐volume data to assess the waste quantities.

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

g q

Page 40: Class Lecture CE433 P 1

40

Example:Given: On a single day you observe the following at a landfill: 10‐16 yd3 compactor trucksy p 18‐3 yd3 pickup trucks hauling loose and dry leaves 56‐1 yd3 private cars 2‐45 yd3 trucks with broken concreteFind: If there are 3.82 lb/cap.day with 2.7 cap/home and all the waste comes from p y pthe town, estimate the number of homes in the town. Whatʹs wrong with the answer?

1. Compute the total weightp gItem Number of

loadsAvg. Vol.yd3

Specific Wt.lb/yd3

Total Wt., lbcol.2x3x4

Compactor truck

10 16 500 80,000truck

Pickup trucks with leaves loose and dry

18 3 100 5,400

Private cars 56 1 220 12,320

Broken Concrete

2 45 2595 233,550

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Total, lb/day 331,270

Page 41: Class Lecture CE433 P 1

41

Steps:

Determine the number of homesnumber of residence = 331,270 (lb/day) x(capita.day/3.82 lb) x (residence/2 7cap)(residence/2.7cap)number of residence = 32,118

What's wrong with the answer?

The demolition load, broken concrete may not be representative; y pcalculate the number of houses with the concrete.

number of residence = (331,270-233,550) (lb/day) x(capita.day/3.82 lb) x (residence/2.7cap)

number of residence = 9,475 vs. 32,118 with the broken concrete

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman

Page 42: Class Lecture CE433 P 1

42

roac

he

Ap

pr

alan

ceer

ial B

aM

ate

Dr. A. B. M. BadruzzamanDr. A. B. M. Badruzzaman