classical control - yazd · classical control text: feedback control of dynamic systems, 4thth...

192
Classical Control Topics covered: Modeling. ODEs. Linearization. Laplace transform. Transfer functions. Block diagrams. Mason’s Rule. Time response specifications. Effects of zeros and poles. Stability via Routh-Hurwitz. Feedback: Disturbance rejection, Sensitivity, Steady-state tracking. Feedback: Disturbance rejection, Sensitivity, Steady state tracking. PID controllers and Ziegler-Nichols tuning procedure. Actuator saturation and integrator wind-up. Root locus. Frequency response--Bode and Nyquist diagrams. Stability Margins Classical Control – Prof. Eugenio Schuster – Lehigh University Classical Control – Prof. Eugenio Schuster – Lehigh University 1 Stability Margins. Design of dynamic compensators.

Upload: others

Post on 10-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Classical Control

    Topics covered:

    Modeling. ODEs. Linearization. gLaplace transform. Transfer functions. Block diagrams. Mason’s Rule. Time response specifications. p pEffects of zeros and poles. Stability via Routh-Hurwitz. Feedback: Disturbance rejection, Sensitivity, Steady-state tracking.Feedback: Disturbance rejection, Sensitivity, Steady state tracking. PID controllers and Ziegler-Nichols tuning procedure. Actuator saturation and integrator wind-up.

    Root locus. Frequency response--Bode and Nyquist diagrams. Stability Margins

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 1

    Stability Margins.Design of dynamic compensators.

  • Classical Control

    Text: Feedback Control of Dynamic Systems,4th Edition G F Franklin J D Powel and A Emami Naeini4th Edition, G.F. Franklin, J.D. Powel and A. Emami-NaeiniPrentice Hall 2002.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 2

  • What is control?For any analysis we need a mathematical MODEL of the system

    Model → Relation between gas pedal and speed:10 mph change in speed per each degree rotation of gas pedal

    For any analysis we need a mathematical MODEL of the system

    Block diagram for the cruise control plant:

    Disturbance → Slope of road:5 mph change in speed per each degree change of slope

    w

    Block diagram for the cruise control plant:

    Slope(degrees)

    0.5 )5.0(10 wuy −=

    u +

    -10 y

    Control(degrees)

    Output speed(mph)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 3

    u + y

  • What is control?O l i t l

    w

    Open-loop cruise control:

    ru =0.5

    wuy )50(10 −=

    PLANT 10u =

    u +

    -10 y

    wrwuyol

    )5.010

    (10

    )5.0(10

    −=

    =

    1/10r u + yolReference

    (mph)wr 5

    10−=

    r

    wyre

    wyre

    ol

    olol

    500[%]

    5

    =−

    =

    =−=%69.7,51,65

    00,65==⇒==

    =⇒==

    olol

    ol

    eewrewr

    mph

    OK h

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 4

    rreol 500[%] == OK when:

    1- Plant is known exactly2- There is no disturbance

  • What is control?Cl d l i t l

    w

    Closed-loop cruise control:

    ( )lyru −= 200.5 wuycl )5.0(10 −=

    PLANT( )clyru 20

    u +

    -10 y

    wr2015

    201200

    −=1/10r

    +u + yclr

    51

    -

    wyr

    wryre clcl

    512015

    2011

    +=−=

    %690551165

    %5.0%20110,65

    +⇒

    ==⇒== clewr

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 5

    rw

    ryre clcl 201

    52011[%] +=−= %69.0652012011,65 =+=⇒== clewr

  • What is control?

    Feedback control can help:

    • reference following (tracking)• reference following (tracking)• disturbance rejection• changing dynamic behavior

    LARGE gain is essential but there is a STABILITY limit

    “The issue of how to get the gain as large as possible to reduce The issue of how to get the gain as large as possible to reduce the errors due to disturbances and uncertainties without making the system become unstable is what much of feedback control design is all about”control design is all about

    First step in this design process: DYNAMIC MODEL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 6

  • Dynamic Models

    MECHANICAL SYSTEMS: maF = Newton’s law

    xvxbuxm

    &

    &&&

    =−=

    velocity

    xva &&& == acceleration

    mVub 1 T f F timbs

    mUV

    muv

    mbv

    o

    oeUueVv sto

    sto +

    =⎯⎯⎯⎯⎯ →⎯=+==

    1,

    & Transfer Function

    sdtd→

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 7

  • Dynamic Models

    MECHANICAL SYSTEMS: αIF = Newton’s law

    2 sin Tlmgml c=

    +−=

    θω

    θθ&

    &&

    angular velocity

    2mlI =

    == θωα &&& angular acceleration

    moment of inertiamlI = moment of inertia

    TgTg &&&&2sin2sin ml

    Tlg

    mlT

    lg cc =+⎯⎯ →⎯=+ ≈ θθθθ θθ Linearization

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 8

  • Dynamic Models

    2mlT

    lg c=+ θθ&&

    θ=1x 21 xx =&Reduce to first order equations:

    θ&=2x 212 mlTx

    lgx c+−=&

    uxgxl

    Tux

    x c ⎥⎦

    ⎤⎢⎣

    ⎡+

    ⎥⎥⎤

    ⎢⎢⎡

    =⇒≡⎥⎦

    ⎤⎢⎣

    ⎡≡

    10

    010

    , 21 & State Variable

    Representationlmlx

    ⎥⎦

    ⎢⎣⎥⎦⎢⎣

    −⎥⎦⎢⎣ 10

    22

    Representation

    General case: GuFxx +=&

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 9

    General case:

    JuHxyGuFxx+=+

  • Dynamic Models

    ELECTRICAL SYSTEMS:

    Kirchoff’s Current Law (KCL):

    Th l b i f i d i The algebraic sum of currents entering a node is zero at every instant

    Kirchoff’s Voltage Law (KVL)

    The algebraic sum of voltages around a loop is zero at every instant

    Resistors:

    iR iC iL+ + +

    )()()()( tGvtitRitv RRRR =⇔=

    t

    Capacitors:

    vR vC vL )0()(1)()()(0

    C

    t

    CCC

    C vdiCtv

    dttdvCti +=⇔= ∫ ττ

    Inductors:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 10

    ∫ +=⇔=t

    LLLL

    L idvLti

    dttdiLtv

    0

    )0()(1)()()( ττ

  • Dynamic Models

    ELECTRICAL SYSTEMS:

    OP AMP:

    +ip+

    ∞→−= AvvAv npO ),(

    +

    RIRO

    A(v v )in

    iO vOvp

    ++ 0==

    = npii

    vv

    +-

    A(vp-vn)-

    invn+ 0== np ii

    To work in the linear mode we need FEEDBACK!!!

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 11

    To work in the linear mode we need FEEDBACK!!!

  • Dynamic Models

    ELECTRICAL SYSTEMS:

    R2 KCL:

    R1 Cv1 vO IO

    O vCR

    vCRdt

    dv

    12

    11−=

    +-

    ( ) ( ) ∫−=⇒∞=t

    IOO dvCRvtvR

    01

    2 )(10)( μμOC

    Kv1 vO∫ RC

    K 1−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 12

    Inverting integrator

  • Dynamic ModelsC O C C S S S CELECTRO-MECHANICAL SYSTEMS: DC Motor

    iKT

    armature currenttorque

    me

    at

    KeiKTθ&=

    =

    shaft velocityemf

    +−= TbJ mmm θθ &&&

    0=+++− edtdiLiRv aaaa

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 13

    Obtain the State Variable Representation

  • Dynamic ModelsHEAT-FLOW:

    ( )TTq 1=

    Temperature DifferenceHeat Flow

    ( )

    qT

    TTR

    q

    1

    21

    =

    −=

    & qC

    T =

    Thermal resistanceThermal capacitance

    ⎞⎛ 111 ( )IoI

    I TTRRCT −⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    21

    111&

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 14

  • Dynamic ModelslFLUID-FLOW:

    wwm −=&

    Mass rate Mass Conservation law

    outin wwm =

    l fll fl Outlet mass flowInlet mass flow

    ( )outin wwAhhAm −=⇒= ρρ1&&&

    A: area of the tankρ: density of fluid

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 15

    ρ: density of fluidh: height of water

  • Linearization

    ( )uxfx ,=&Dynamic System:

    ( )( )oo uxf ,0 = Equilibrium

    Denote uuuxxx −=−= δδDenote oo uuuxxx δδ ,

    ( )uuxxfx oo δδδ ++= ,&Taylor Expansion

    ( ) ufxfuxfx δδδ ∂+∂+≈& ( ) uu

    xx

    uxfxoooo uxux

    oo δδδ,,

    ,∂

    +∂

    +≈

    ∂∂ fGfF GF δδδ&Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 16

    ⇒∂∂

    ≡∂∂

    ≡oooo uxux u

    fGxfF

    ,,, uGxFx δδδ +≈&

  • Linearization

    ffff ⎤⎡ ∂∂⎤⎡ ∂∂

    uGxFx δδδ +≈&

    mn uf

    uf

    ufG

    xf

    xf

    xfF

    1

    1

    11

    1

    1

    , ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ∂∂

    ∂∂

    =∂∂

    ≡⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ∂∂

    ∂∂

    =∂∂

    ≡ MM

    L

    MM

    L

    oo

    oo

    oo

    oo

    uxm

    nnux

    uxn

    nnux

    uf

    ufu

    xf

    xfx

    ,1

    ,

    ,1

    ,

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ ∂∂

    ∂∂∂

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ ∂∂

    ∂∂∂

    LL

    Example: Pendulum with friction 0sin =++ θθθlg

    mk &&&

    lm

    xkgx ⎥⎤

    ⎢⎡

    =10

    &

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 17

    xmkx

    lgx

    ox⎥⎥⎦⎢

    ⎢⎣

    −−= 1cos

  • Laplace Transform

    • Function f(t) of time– Piecewise continuous and exponential order btKetf

  • Laplace transform examples• Step function – unit Heavyside Function ⎧ fStep function unit Heavyside Function

    • After Oliver Heavyside (1850-1925)

    1)(∞+−∞−∞∞ ωσ tjst⎩⎨⎧

    ≥<

    =0for,10for,0

    )(tt

    tu

    0if1)()(0

    )(

    000>=

    +−=−===

    +∞

    −∞

    − ∫∫ σωσ

    ωσ

    sje

    sedtedtetusF

    tjststst

    • Exponential function• After Oliver Exponential (1176 BC- 1066 BC)

    ∞)(∫ ∫∞ ∞ ∞+−

    +−−− >+

    =+

    −===0 0 0

    )()( if1)( ασ

    αα

    ααα

    ssedtedteesF

    tstsstt

    • Delta (impulse) function δ(t)sdtetsF st allfor1)()( == ∫

    ∞−δ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 19

    )()(0∫−

  • Laplace Transform Pair TablesSignal Waveform Transformg

    impulse

    step

    )(tδ 1

    s1)(tu

    ramp

    exponential

    s

    21

    s1

    )(ttu

    )(tue tα−exponential

    damped ramp

    β

    α+s

    2)(

    1

    α+s

    )(tue

    )(tutte α−

    sine

    cosine

    22 β

    β

    +s

    22 β+s

    s

    ( ) )(sin tutβ

    ( ) )(cos tutβ

    damped sine

    damped cosine α+s

    22)( βα

    β

    ++s

    β+s

    ( ) )(sin tutte βα−

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 20

    damped cosine22)( βα

    α

    ++

    +

    s

    s( ) )(cos tutte βα−

  • Laplace Transform Properties

    { } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLLLinearity: (absolutely critical property)

    { } { } { } )()()()()()( 2121 ff 21 ff( )ssFdf

    t=

    ⎭⎬⎫

    ⎩⎨⎧∫0

    )( ττLIntegration property:⎭⎩0

    )0()()( −−=⎭⎬⎫

    ⎩⎨⎧ fssF

    dttdf

    LDifferentiation property:

    )0()0()(22)(2

    −′−−−=⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    fsfsFsdt

    tfdL

    ⎭⎩

    )0()0()0()()( )(21 −−−−′−−−=⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧ −− mmm

    m

    mffsfssF

    dttfd

    LmsL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 21

    ⎭⎩

  • Laplace Transform Properties

    )()}({ αα +=− sFtfe tL

    Translation properties:

    s-domain translation: )()}({ α+sFtfeL

    { } 0)()()( >=−− − asFeatuatf as forL

    s domain translation:

    t-domain translation:

    Initial Value Property: )(lim)(lim0

    ssFtfst ∞→+→

    =

    Final Value Property: )(lim)(lim0

    ssFtfst →∞→

    =0st →∞→

    If all poles of F(s) are in the LHP

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 22

  • Laplace Transform Properties1 s )(1)}({

    asF

    aatf =LTime Scaling:

    Multiplication by time:sdFttf )()}({LMultiplication by time:

    dsttf )}({ −=L

    Convolution: )()(})()({0

    sGsFdtgft

    =−∫ τττL

    Time product: λλωσ

    dsGsFtgtfj

    ∫+

    = )()(1)}()({LTime product: λλπ ωσdsGsF

    jtgtf

    j∫ − −= )()(2)}()({L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 23

  • Laplace Transform

    Exercise: Find the Laplace transform of the following waveform

    [ ] )()2cos(2)2sin(22)( tutttf += ( )24)( +ssF[ ] )()2cos(2)2sin(22)( tutttf −+= ( )( )4)( 2 += sssFExercise: Find the Laplace transform of the following waveform

    ( )

    [ ]ddxxtuetf

    t

    tt

    400

    4 4sin5)()( − += ∫ ( )( )23

    1648036)(++++

    =ssssssF

    [ ] ( )tudttedtuetf

    tt

    4040 5)(5)(

    −− +=

    ( )24020010)(

    ++

    =sssF

    E iExercise: Find the Laplace transform of the following waveform

    )2()(2)()( TtAuTtAutAutf −+−−= ( )eAsFTs 21)(−−

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 24

    )()()()(fs

    )(

  • Laplace transformsLinearsystem

    mai

    n) Complex frequency domain(s domain)Differential

    equationLaplace

    transform LAlgebraicequation

    ain

    (tdo

    m

    Classicaltechniques

    Algebraictechniquesm

    e do

    ma

    q

    Response Inverse Laplace

    q

    Response

    Tim

    psignal

    ptransform L-1

    ptransform

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 25

    • The diagram commutes– Same answer whichever way you go

  • Solving LTI ODE’s via Laplace Transform

    ( ) ( ) ( ) ( ) ubububyayay mmm

    mn

    nn

    01

    101

    1 +++=+++−

    −−

    − LL

    Initial Conditions: ( )( ) ( ) ( )( ) ( )0,,0,0,,0 11 uuyy mn KK −−

    kk tfd ∑−⎫⎧ 1)(

    ⎤⎡⎤⎡

    Recall jj

    jkkk sfsFdttfd ∑

    =

    −−−=⎭⎬⎫

    ⎩⎨⎧

    0

    )1( )0()()( sL

    111 imin −−−

    ⎥⎦

    ⎤⎢⎣

    ⎡−=⎥

    ⎤⎢⎣

    ⎡−+− ∑∑∑∑∑

    =

    −−

    =

    =

    −−−

    =

    =

    −− ji

    j

    jiim

    ii

    ji

    j

    jiin

    ii

    n

    j

    jjnn susUsbsysYsasysYs1

    0

    )1(

    0

    1

    0

    )1(1

    0

    1

    0

    )1( )0()()0()()0()(

    011

    1

    0

    )1(

    00

    )1(

    0

    011

    1

    011

    1

    )0()0()()(

    asasas

    subsyasU

    asasasbsbsbsbsY n

    nn

    j

    j

    ji

    ii

    j

    j

    ji

    ii

    nn

    n

    mm

    mm

    ++++

    −+

    ++++++++

    = −−

    =

    −−

    ==

    −−

    =−

    −−

    ∑∑∑∑LL

    L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 26

    For a given rational U(s) we get Y(s)=Q(s)/P(s)

  • Laplace Transform

    Exercise: Find the Laplace transform V(s)

    )(4)(6)( tttdv 34)(

    3)0(

    )(4)(6)(

    −=−

    =+

    v

    tutvdt ( ) 6

    36

    4)(+

    −+

    =sss

    sV

    Exercise: Find the Laplace transform V(s)

    2

    ( )( )( ) 12

    3215)(

    +−

    +++=

    sssssV

    2)0('2)0(

    5)(3)(4)( 222

    =−−=−

    =++ −

    vv

    etvdt

    tdvdt

    tvd t

    2)0(,2)0( vv

    What about v(t)?

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 27

    ( )

  • Transfer Functions

    ( ) ( ) ( ) ububyayay mmn

    nn

    01

    101

    1 ++=+++−

    −−

    − LL

    Assume all Initial Conditions Zero:

    ( ) ( ) )()( 11 UbbbY mnn

    )(1m sBbsbsb +++− L

    ( ) ( ) )()( 01110111 sUbsbsbsYasasas mmnnn +++=++++ −−−− LLInputOutput

    )()(

    )()()()()(

    011

    1

    011

    1

    011

    m

    nn

    nm

    bsbsbsYH

    sUsAsBsU

    asasasbsbsbsY

    +++

    =++++

    +++=

    −−

    L

    L

    L

    )())(()()()(

    21

    011

    1

    011

    m

    nn

    nm

    zszszsK

    asasasbsbsb

    sUsYsH

    −−−=

    +++++++

    == −−

    L

    L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 28

    )())(( 21 npspspsK

    −−−=

    L

  • Rational Functions

    • We shall mostly be dealing with LTs which are rational functions – ratios of polynomials in s

    1mm bbbb

    )())((

    )(01

    11

    011

    1n

    nn

    n

    mm

    mm

    zszszsasasasabsbsbsbsF

    ++++++++

    = −−

    −−

    L

    L

    L

    • pi are the poles and zi are the zeros of the function)())(()())((

    21

    21

    n

    m

    pspspszszszsK

    −−−−−−

    =L

    L

    pi are the poles and zi are the zeros of the function• K is the scale factor or (sometimes) gain• A proper rational function has n≥m• A proper rational function has n≥m• A strictly proper rational function has n>m• An improper rational function has n

  • Residues at simple polesF i f l i bl i h i l d Functions of a complex variable with isolated, finite order poles have residues at the poles

    )()()()())(()())(()( 2121 nm

    psk

    psk

    psk

    pspspszszszsKsF

    −++

    −+

    −=

    −−−−−−

    = LL

    L

    )()()()())(( 2121 nn pspspspspsps

    ( ) )()()()( 21 inii pskkpskpskF −++++−+−( ))()(

    )()(

    )()()(

    2

    2

    1

    1

    n

    ini

    iii ps

    pkps

    ppspsFps

    −++++

    −+

    −=− LL

    )()(lim sFpsk ipsi i−=

    →Residue at a simple pole:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 30

  • Residues at multiple polesCompute residues at poles of order r:Compute residues at poles of order r:

    rr

    rm

    psk

    psk

    psk

    pszszszsKsF

    )()()()()())(()(

    12

    1

    2

    1

    1

    1

    21

    −++

    −+

    −=

    −−−−

    = LL

    rjsFrpsjrds

    jrdpsjr

    k ii

    j L1,)()(lim)!(1

    =⎥⎦⎤

    ⎢⎣⎡ −

    →−=

    pppp )()()()( 1111

    ( )31522

    +

    +

    s

    ssExample:( ) ( )31

    321

    11

    2

    +−

    ++

    +=

    sss( )

    3)1(

    )52()1(lim 323

    3−=

    +++

    −→ ssss

    s1

    )1()52()1(lim 3

    23

    1=⎥⎥⎦

    ⎢⎢⎣

    ⎡+

    ++−→ s

    sssdsd

    s2

    )1()52()1(lim!2

    1323

    22

    1=⎥⎥⎦

    ⎢⎢⎣

    ⎡+

    ++−→ s

    sssdsd

    s

    ( ) ( )

    )1(3 +→ ss )1(1 ⎥⎦⎢⎣ +→ sdss )1(!2 1 ⎥⎦⎢⎣ +→ sdss

    ( ) )(3231252 212

    1 LssL t⎟⎞

    ⎜⎛

    ⎟⎞

    ⎜⎛ + −−−

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 31

    ( ) ( ) ( )( ) )(32

    11112

    321

    31 tutte

    sssL

    sL t −+=⎟⎟

    ⎠⎜⎜⎝ +

    −+

    ++

    =⎟⎟⎠

    ⎜⎜⎝ +

  • Residues at complex poles

    • Compute residues at the poles )()(lim sFasas

    −→

    • Bundle complex conjugate pole pairs into second-order terms if you want

    • but you will need to be careful( )[ ]222 2))(( βααβαβα ++−=+−−− ssjsjs

    • Inverse Laplace Transform is a sum of complex exponentials• The answer will be real

    ( )[ ]

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 32

  • Inverting Laplace Transforms in Practice

    • We have a table of inverse LTs• Write F(s) as a partial fraction expansion

    F(s) = bmsm + bm−1s

    m−1 +L+ b1s+ b0ans

    n + an−1sn−1 +L+ a1s+ a0

    (s z )(s z ) (s z )= K (s− z1)(s− z2)L(s− zm)

    (s− p1)(s− p2)L(s− pn )

    =α1

    ( )+

    α2( )

    +α31

    ( )+

    α32( )2

    +α33

    ( )3+ ...+

    αq( )

    • Now appeal to linearity to invert via the table

    s− p1( ) s− p2( ) (s− p3) s− p3( )2 s− p3( )3 s− pq( )

    pp y– Surprise!– Nastiness: computing the partial fraction expansion is best

    d b l l i h id

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 33

    done by calculating the residues

  • Example 9-12)3(20 +• Find the inverse LT of

    )52)(1()3(20)( 2 +++

    +=

    sssssF

    *kkk21211

    )( 221js

    kjs

    ksksF

    +++

    −++

    +=

    )3(20

    π5)3(20

    10152

    2)3(20)()1(

    1lim1

    j

    sss

    ssFss

    k =−=++

    +=+

    −→=

    π42555

    21)21)(1()3(20)()21(

    21lim2

    jej

    jsjssssFjs

    jsk =−−=

    +−=++++

    =−++−→

    =

    55 ⎤⎡)(252510)( 4

    5)21(45)21(

    tueeetfjtjjtjt

    ⎥⎥

    ⎢⎢

    ⎡++=

    −−−++−− ππ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 34

    )()4

    52cos(21010 tutee tt ⎥⎦⎤

    ⎢⎣⎡ ++= −−

    π

  • Not Strictly Proper Laplace Transforms8126 23 +++• Find the inverse LT of

    348126)( 2

    23

    ++

    +++=

    ssssssF

    – Convert to polynomial plus strictly proper rational function• Use polynomial division 22)( 2

    +++=

    sssF

    35.0

    15.02

    34)( 2

    ++

    +++=

    ++

    sss

    ss

    • Invert as normal

    31 ++ ss

    )(5.05.0)(2)()( 3 tueetdt

    tdtf tt ⎥⎦⎤

    ⎢⎣⎡ +++= −−δδ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 35

  • Block Diagrams

    Series:1G 2G

    21GGG =

    1G +Parallel:

    2G+

    21 GGG +=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 36

  • Block DiagramsNegative Feedback:Negative Feedback:

    G+)(sR )(sE )(sC BRER

    −= Error signalReference input

    G-

    H)(sB HCBGEC

    BRE

    ==

    −= Error signal

    Output

    Feedback signalH HCB = Feedback signal

    GC)1(

    )1(GHG

    RCGRCGHGHCGRC

    +=⇒=+⇒−=

    1E)1(

    1)1(GHR

    EREGHHGERE+

    =⇒=+⇒−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 37

    Rule: Transfer Function=Forward Gain/(1+Loop Gain)

  • Block DiagramsPositive Feedback:Positive Feedback:

    G+)(sR )(sE )(sC BRER

    += Error signalReference input

    G+

    H)(sB HCBGEC

    BRE

    ==

    += Error signal

    Output

    Feedback signalH HCB = Feedback signal

    GC)1(

    )1(GHG

    RCGRCGHGHCGRC

    −=⇒=−⇒+=

    1E)1(

    1)1(GHR

    EREGHHGERE−

    =⇒=−⇒+=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 38

    Rule: Transfer Function=Forward Gain/(1-Loop Gain)

  • Block Diagrams

    Moving through a branching point:

    G)(sR )(sC

    )(B

    G)(sR )(sC

    )(B≡

    G/1)(sB)(sB

    Moving through a summing point:Moving through a summing point:

    G+)(sR )(sC G +)(sR )(sC≡G

    +

    )(sB

    G+

    G

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 39

    )(sB

  • Block Diagrams

    H

    Example:

    1G+)(sR )(sC

    2G 3G+

    1H

    -

    1G- 2G 3G

    2H2

    212321

    321

    1 GGHGGHGGG++

    )(sC)(sR

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 40

  • Mason’s RuleH

    H

    4H

    1H+)(sU )(sY

    2H 3H+

    6H

    ++ +

    +

    1+ 2 3

    5H

    +

    7H

    4H

    5

    nodes branches

    Signal Flow Graph

    )(sU )(sY1H 2H 3H

    6H

    1 2 3 4

    b a c es

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 41

    )(sU )(

    5H 7H

  • Mason’s RuleP th f t d b h i th di ti f th Path: a sequence of connected branches in the direction of the signal flow without repetitionLoop: a closed path that returns to its starting nodeForward path: connects input and output

    ∑ ΔΔ== iiGUsYsG 1)()()(

    Forward path: connects input and output

    ∑Δ i iisU )()(

    path forward ith the of gain =iG

    touch)notdothatloopstwopossibleallofproductsgain

    gains) loop (alltdeterminan system the

    +

    =

    ∑∑-

    (

    1

    touch not do that loops three possible all of products gain

    touch)notdo thatloopstwopossibleallofproducts gain

    +

    +

    ∑∑

    L

    )(

    (

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 42

    pathforwardiththetouchnot doesthatgraphtheofpartthe for of value Δ=Δi

  • Mason’s Rule

    4H

    6H

    )(sU )(sY1H 2H 3H

    H 7H

    1 2 3 4

    5H 7H

    73515674736251

    6244321

    1)()(

    HHHHHHHHHHHHHHHHHHHHH

    sUsY

    +−−−−−+

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 43

  • Impulse Response

    )()()(0

    tudtu =−∫∞

    ττδτDirac’s delta:

    Integration is a limit of a sum ⇓

    u(t) is represented as a sum of impulsesu(t) is represented as a sum of impulses

    By superposition principle, we only need unit impulse response

    h )(t)(tSystem Response:

    ( )τ−th Response at t to an impulse applied at τ

    h )(ty)(tu

    τττ dthuty )()()( ∫∞

    System Response:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 44

    τττ dthuty )()()(0∫ −=

  • Impulse Response

    h )(ty)(tut-domain:Impulse response

    τττ dthuty )()()(0∫∞

    −=

    The system response is obtained by convolving the input with

    )()()()( thtyttu =⇒=δ

    Convolution: )()(})()({ sUsHdthu =−∫∞

    τττL

    The system response is obtained by convolving the input with the impulse response of the system.

    Convolution: )()(})()({0

    sUsHdthu∫ τττL

    H )(sY)(sUs-domain:

    )()()( sUsHsY = )()(1)()()( sHsYsUttu =⇒=⇒=δImpulse response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 45

    The system response is obtained by multiplying the transfer function and the Laplace transform of the input.

  • Time Response vs. Polest1Real pole: teth

    ssH σ

    σ−=⇒

    += )(1)( Impulse

    Response

    00

    <>σ Stable

    Unstable0

  • Time Response vs. Poles

    Real pole:

    teths

    sH σσσ

    σ −=⇒+

    = )()(

    1

    Impulse Response

    στ 1= Time Constant

    tetyss

    sY σσ

    σ −−=⇒+

    = 1)(1)( Step Response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 47

  • Time Response vs. Poles2ω I l Complex poles:

    2

    22 2)(

    ω

    ωζωω

    ++=

    nn

    n

    sssH Impulse

    Response

    ( ) ( )222 1 ζωζωω

    −++=

    nn

    n

    s

    ::

    ζωn Undamped natural frequency

    Damping ratio2

    ( )( )2

    )(dd

    n

    jsjssH

    ωσωσω

    −+++=

    ( ) 222

    d

    n

    s ωσω

    ++=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 48

    21, ζωωζωσ −== ndn

  • Time Response vs. PolesComplex poles:Complex poles:

    ( ) ( ) ( )tethssH dtn

    nn

    n ωζ

    ωζωζω

    ω σ sin1

    )(1

    )(2222

    2−

    −=→

    −++=( ) ( )s nn ζζωζω 11++

    Impulse Response

    00

    <>

    σσ Stable

    Unstable0

  • Time Response vs. PolesComplex poles:Complex poles:

    ( ) ( ) ( )tethssH dtn

    nn

    n ωζ

    ωζωζω

    ω σ sin1

    )(1

    )(2222

    2−

    −=→

    −++=( ) ( )nn ζζζ

    Impulse Response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 50

  • Time Response vs. PolesComplex poles:Complex poles:

    ( ) ( ) ( ) ( )⎥⎦⎤

    ⎢⎣

    ⎡+−=→

    −++= − ttety

    sssY d

    dd

    t

    nn

    n ωωσω

    ζωζωω σ sincos1)(1

    1)( 222

    2

    ( )

    Step ResponseResponse

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 51

  • Time Response vs. Poles2

    Complex poles:

    2

    22

    2

    2)(

    ωζωω

    ++=

    nn

    n

    sssH

    ( ) ( )2222

    1 ζωζωω

    −++=

    nn

    n

    sCASES:

    ns ωζ :022 +=

    CASES:

    Undamped

    ( ) ( )( )

    nn

    n

    s

    s

    ωζ

    ζωζωζ

    ζ

    :1

    1:12

    222

    +

    −++<

    p

    Underdamped

    Critically damped( )( )[ ] ( )[ ]nn

    n

    ss

    s

    ωζζωζζζ

    ωζ

    11:1

    :122 −−+−++>

    += Critically damped

    Overdamped

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 52

  • Time Response vs. Poles

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 53

  • Time Domain Specifications

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 54

  • Time Domain Specifications

    1- The rise time tr is the time it takes the system to reach the vicinity of its new set point2- The settling time t is the time it takes the system 2 The settling time ts is the time it takes the system transients to decay3- The overshoot Mp is the maximum amount the

    t h t it fi l l di id d b it fi l system overshoot its final value divided by its final value4- The peak time tp is the time it takes the system to preach the maximum overshoot point

    tt π 8.1≅n

    rn

    p tt ωζω

    ζ

    ζπ 64

    121

    2≅

    −=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 55n

    sp teM ζωζ 6.421 == −

  • Time Domain Specifications

    Design specification are given in terms of

    tMtt sppr tMtt ,,,

    These specifications give the position of the polesp g p p

    dn ωσζω ,, ⇒

    Example: Find the pole positions that guarantee

    sec3%,10sec,6.0 ≤

  • Effect of Zeros and Additional poles

    Additional poles:1- can be neglected if they are sufficiently to the left of the dominant onesof the dominant ones.2- can increase the rise time if the extra pole is within a factor of 4 of the real part of the complex poles.

    Zeros:1- a zero near a pole reduces the effect of that pole in th ti the time response.2- a zero in the LHP will increase the overshoot if the zero is within a factor of 4 of the real part of the complex poles (due to differentiation).3- a zero in the RHP (nonminimum phase zero) will depress the overshoot and may cause the step

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 57

    depress the overshoot and may cause the step response to start out in the wrong direction.

  • Stability1)( bbbb mm

    011

    1

    011

    1

    )()(

    asasasbsbsbsb

    sRsY

    nn

    n

    mm

    mm

    ++++++++

    = −−

    −−

    L

    L

    )())(()(Y)())(()())((

    )()(

    21

    21

    n

    m

    pspspszszszsK

    sRsY

    −−−−−−

    =L

    L

    )( kkksY)()()()(

    )(2

    2

    1

    1

    n

    n

    psk

    psk

    psk

    sRsY

    −++

    −+

    −= L

    Impulse response:

    )()()()(1)( 21 nkkksYsR +++=⇒= L

    )()()( 21 npspsps −−−

    tpn

    tptp nekekekty +++= L21 21)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 58

  • Stabilityttt

    We want:

    tpn

    tptp nekekekty +++= L21 21)(

    nie tpi 10 ∀→We want: nie tpi K10 =∀⎯⎯→⎯ ∞→

    Definition: A system is asymptotically stable (a.s.) if Definition: A system is asymptotically stable (a.s.) if

    ipi ∀< 0}Re{pi}{

    1

    0)(

    )( 011

    1 ++++=−

    − asasassan

    nn LCharacteristic polynomial:

    Characteristic equation:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 59

    0)( =saCharacteristic equation:

  • Stability

    Necessary condition for asymptotical stability (a.s.):

    iai ∀> 0

    Use this as the first test!

    If any a

  • Routh’s Criterion

    Necessary and sufficient conditionDo not have to find the roots pi!pi

    Routh’s Array:

    n

    n

    aaasaas

    5311

    421L

    L− n

    a Depends on whether n is even or odd

    n

    n

    cccsbbbs

    3213

    3212

    531

    L,,1

    7613

    1

    5412

    1

    3211 a

    aaaba

    aaaba

    aaab −=−=−=n dds

    0

    214

    M

    L

    L

    ,,

    ,,

    31312

    21211

    1

    31512

    1

    21311

    111

    cbbcdcbbcd

    bbaabc

    bbaabc

    aaa

    −=

    −=

    −=

    −=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 61

    nas0

    MM

    ,,1

    21

    1 cd

    cd

  • Routh’s Criterion

    How to remember this?

    Routh’s Array:

    Lmmmsn 221 = am jjL

    2232221

    1131211

    mmmsmmmsmmms

    n

    n

    − ,

    ,

    12,2

    22,1

    = −

    am

    am

    jj

    jj

    MMMM

    L

    L

    4342413

    333231

    mmmsmmms

    n−

    3,1,11,11,21,2

    ≥∀−= +−−+−−

    immmm

    m jiijii

    jiMMMM 3,1,1

    , ≥∀−

    im

    mi

    ji

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 62

  • Routh’s Criterion

    The criterion:

    • The system is asymptotically stable if and only if all the elements in the first column of the Routh’s array are positivecolumn of the Routh’s array are positive

    • The number of roots with positive real parts is equal to the number of sign changes in the first column of the Routh arrayarray

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 63

  • Routh’s Criterion - Examples

    Example 1: 0212 =++ asas

    0322

    13 =+++ asasasExample 2:

    Example 3: 044234 23456 =++++++ ssssss

    0)6(5 23 =+−++ kskssExample 4:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 64

  • Routh’s Criterion - Examples

    Example: Determine the range of K over which the system is stable

    K+)(sR )(sY( )( )1+sK

    - ( )( )61 +− sss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 65

  • Routh’s Criterion

    Special Case I: Zero in the first columnWe replace the zero with a small positive constant ε>0 and proceed as before. We then apply the stability criterion by taking the limit as ε→0

    Example: 010842 234 =++++ ssss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 66

  • Routh’s Criterion

    Special Case II: Entire row is zeroThis indicates that there are complex conjugate pairs. If the ith row is zero, we form an auxiliary equation from the previous nonzero row:

    L+++= −−+ 331

    21

    11 )(iii ssssa βββ

    Where βi are the coefficients of the (i+1)th row in the βi ( )array. We then replace the ith row by the coefficients of the derivative of the auxiliary polynomial.

    Example: 02010842 2345 =+++++ sssss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 67

  • Properties of feedback

    Disturbance Rejection:

    Open loop

    Kr +A+ y

    wOpen loop

    oK A y

    wArKy o +=

    K+r ++ y

    wClosed loop

    cK-+r +A y

    wAK

    rAK

    AKycc

    c

    ++

    +=

    11

    1

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 68

    cc

  • Properties of feedback

    Disturbance Rejection:

    Ch t l t f 0Choose control s.t. for w=0,y≈r

    wryK +=⇒= 1Open loop:

    rwryA

    Kc =+≈⇒>> 01

    wryA

    Ko +⇒Open loop:

    Closed loop:

    Feedback allows attenuation of disturbance without h ( h )having access to it (without measuring it)!!!

    IMPORTANT: High gain is dangerous for dynamic response!!!

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 69

    IMPORTANT: High gain is dangerous for dynamic response!!!

  • Properties of feedback

    Sensitivity to Gain Plant Changes

    Open loop

    Kr +A+ y

    wOpen loop

    oK A y

    oo

    o AKryT =⎟⎠⎞

    ⎜⎝⎛=

    K+r ++ y

    wClosed loopo⎠⎝

    cK-+r +A y

    c

    c

    cc AK

    AKryT

    +=⎟

    ⎠⎞

    ⎜⎝⎛=

    1

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 70

    cc⎠⎝

  • Properties of feedback

    Sensitivity to Gain Plant Changes

    Let the plant gain be AA δ+Let the plant gain be

    AA

    TTo

    o δδ =

    AA δ+

    Open loop:o

    o

    o

    cc

    c

    TT

    AA

    AKAA

    TT δδδδ

    =

  • PID ControllerPID: Proportional – Integral – DerivativePID: Proportional Integral Derivative

    P Controller:+)(sR )(sY)(sE )(sU)()()( sGsCsY

    pKsC =)(-

    +)(sR )(sY)(sG)(sE )(sU

    .)()(1

    1)()(

    ,)()(1

    )()()()(

    sGsCsRsE

    sGsCsGsC

    sRsY

    +=

    +=

    )()(1)( sGsCsR +

    )()(),()( sEKsUteKtu pp ==

    1111Step Reference:

    )0(111

    )(11lim)(lim1)(

    00 GKssGKsssEe

    ssR

    ppssss +

    =+

    ==⇒=→→

    )0(0 GK •Proportional gain is high∞→⇔= )0(0 GKe pss•Proportional gain is high•Plant has a pole at the origin

    True when:

    High gain proportional feedback (needed for good tracking)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 72

    High gain proportional feedback (needed for good tracking) results in underdamped (or even unstable) transients.

  • PID ControllerP Controller: Example (lecture06_a.m)

    K+)(sR )(sYA)(sE )(sUpK- 1

    2 ++ ss

    )1()(1)(

    )()(

    2 AKssAK

    sGKsGK

    sRsY

    p

    p

    p

    p

    +++=

    +=

    )()()( pp

    12 += pn AK

    ζ

    ω011 ⎯⎯ →⎯==⇒ ∞→Kζ

    Underdamped transient for large proportional gain

    12 =nζω 122 + ∞→pKpn AKωζ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 73

    Steady state error for small proportional gain

  • PID ControllerPI Controller:PI Controller:

    sKKsC Ip +=)(

    -

    +)(sR )(sY)(sG)(sE )(sU,)()(1

    )()()()(

    sGsCsGsC

    sRsY

    +=

    )()()()()( sEKKsUdeKteKtu It

    ⎟⎞

    ⎜⎛ ++ ∫ ττ

    .)()(1

    1)()(

    sGsCsRsE

    +=

    )()(,)()()(0

    sEs

    KsUdeKteKtu IpIp ⎟⎠

    ⎜⎝

    +=+= ∫ ττ

    01li11li)(li1)( ER

    Step Reference:

    0)(1

    lim)(1

    lim)(lim)(000

    =⎟⎠⎞

    ⎜⎝⎛ ++

    =⎟⎠⎞

    ⎜⎝⎛ ++

    ==⇒=→→→

    sGs

    KKssGs

    KKsssEe

    ssR

    Ip

    sIp

    ssss

    • It does not matter the value of the proportional gain• Plant does not need to have a pole at the origin. The controller has it!

    Integral control achieves perfect steady state reference tracking!!!

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 74

    Integral control achieves perfect steady state reference tracking!!!Note that this is valid even for Kp=0 as long as Ki≠0

  • PID ControllerPI Controller: Example (lecture06_b.m)

    KK I++)(sR )(sYA)(sE )(sU

    sK p +

    - 12 ++ ss

    ( )AKsKsGsKK

    sY IpI

    p +⎟⎠⎞

    ⎜⎝⎛ + )(

    )( ( )AKsAKsssG

    sKK

    ssR Ip

    Ip

    Ip

    ++++=

    ⎟⎠⎞

    ⎜⎝⎛ ++

    ⎠⎝=)1()(1)(

    )(23

    DANGER: for large Ki the characteristic equation has roots in the RHP

    0)1(23 =++++ AKsAKss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 75

    0)1( =++++ AKsAKss IpAnalysis by Routh’s Criterion

  • PID ControllerPI Controller: Example (lecture06_b.m)

    0)1(23 =++++ AKsAKss IpNecessary Conditions:

    )( Ip

    0,01 >>+ AKAK IpThis is satisfied because 0,0,0 >>> Ip KKA

    Routh’s Conditions:

    AKAKs p

    2

    3

    111 +

    >−+ 01 AKAK Ip

    AKAKsAKs

    Ip

    I

    0

    1

    2

    11−+

    AKK PI

    1+<

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 76

    AKs I0 A

  • PID ControllerPD Controller:PD Controller:

    sKKsC Dp +=)(-

    +)(sR )(sY)(sG)(sE )(sU,)()(1

    )()()()(

    sGsCsGsC

    sRsY

    +=

    ( ) )()()()()( EKKUtdeKtKt ++

    .)()(1

    1)()(

    sGsCsRsE

    +=

    ( ) )()(,)()()( sEsKKsUdt

    KteKtu DpDp +=+=

    1111

    Step Reference:

    ( ) )0(111

    )(11lim)(lim1)(

    00 GKssGsKKsssEe

    ssR

    pDpssss +

    =++

    ==⇒=→→

    P ti l i i hi h

    PD controller fixes problems with stability and damping by adding

    ∞→⇔= )0(0 GKe pss•Proportional gain is high•Plant has a pole at the origin

    True when:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 77

    PD controller fixes problems with stability and damping by adding “anticipative” action

  • PID ControllerPD Controller: Example (lecture06_c.m)

    +)(sR )(sYA)(sE )(sUsKKsC Dp +=)(- 1

    2 ++ sssKKsC Dp +)(

    ( )( )

    ( )( ) )1(1)(1

    )()()(

    2 AKsAKssKKA

    sGsKKsGsKK

    sRsY

    pD

    Dp

    Dp

    Dp

    +++++

    =++

    += ( ) ( ) )()()( pDDp

    AK pn +=12

    ζ

    ω AKAK DD +=+=⇒ 11ζ

    The damping can be increased now independently of Kp

    AKDn +=12ζω AK pn +122ωζ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 78

    pThe steady state error can be minimized by a large Kp

  • PID ControllerPD Controller:PD Controller:

    sKKsC Dp +=)(-

    +)(sR )(sY)(sG)(sE )(sU,)()(1

    )()()()(

    sGsCsGsC

    sRsY

    +=

    ( ) )()()()()( EKKUtdeKtKt ++

    .)()(1

    1)()(

    sGsCsRsE

    +=

    ( ) )()(,)()()( sEsKKsUdt

    KteKtu DpDp +=+=

    NOTE: cannot apply pure differentiation.pp y pIn practice,

    sKDsKDis implemented as

    sKD

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 79

    1+sDτ

  • PID Controller

    PID: Proportional – Integral – Derivative

    ⎞⎛ 1)(sR )(sY)(E )(U⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛++ sT

    sTK D

    Ip

    11-

    +)(sR )(sY)(sG)(sE )(sU

    ⎥⎤

    ⎢⎡

    ++= ∫ dtdeTde

    TteKtu D

    d

    p)()(1)()( ττ DpD

    pI TKKT

    KK == ,

    ⎟⎟⎞

    ⎜⎜⎛

    ++=

    ⎥⎦

    ⎢⎣

    sTKsU

    dtT DIp

    11)(

    )()()(0

    DpDI

    I T,

    ⎟⎟⎠

    ⎜⎜⎝

    ++= sTsT

    KsE DI

    p 1)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 80

    PID Controller: Example (lecture06_d.m)

  • PID Controller: Ziegler-Nichols Tuning

    • Empirical method (no proof that it works well but it works well for simple systems)• Only for stable plants• Only for stable plants• You do not need a model to apply the method

    )( −KY std

    Class of plants:

    1)()(

    +=

    sKe

    sUsY std

    τ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 81

  • PID Controller: Ziegler-Nichols Tuning

    METHOD 1: Based on step response, tuning to decay ratio of 0.25.

    KP τTuning Table:

    dIp

    dp

    tTt

    KPD

    tKP

    30,9.0:

    :

    ==

    =

    τ

    dDdId

    p

    Id

    p

    tTtTt

    KPID

    t

    5.0,2,2.1:

    3.0

    ===τ

    d

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 82

  • PID Controller: Ziegler-Nichols Tuning

    METHOD 2: Based on limit of stability, ultimate sensitivity method.

    uK-

    +)(sR )(sY)(sG)(sE )(sU-

    • Increase the constant gain Ku until the response becomes purely oscillatory (no decay – marginally p y y ( y g ystable – pure imaginary poles)• Measure the period of oscillation Pu

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 83

  • PID Controller: Ziegler-Nichols Tuning

    METHOD 2: Based on limit of stability, ultimate sensitivity method.

    Tuning Table:

    21,45.0:

    5.0:u

    Iup

    up

    PTKKPD

    KKP

    ==

    =

    8,

    2,6.0:

    2.1u

    Du

    IupPTPTKKPID ===

    τThe Tuning Tables are the same if you make:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 84

    dud

    u tPtK 4,2 == τ

  • PID Controller: Integrator Windup

    Actuator Saturates: - valve (fully open)- aircraft rudder (fully deflected)aircraft rudder (fully deflected)

    u(Input of the plant)

    cu(Output of the controller)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 85

  • PID Controller: Integrator Windup

    sKK Ip +

    -

    +)(sR )(sY)(sG)(sE )(sUc )(sU

    Wh t h ? What happens? - large step input in r- large elarge e- large uc → u saturates- eventually e becomes small- uc still large because the integrator is “charged”- u still at maximum

    h t f l ti

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 86

    - y overshoots for a long time

  • PID Controller: Anti-WindupPlant without Anti-Windup:a ou dup

    Plant with Anti-Windup:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 87

  • PID Controller: Anti-WindupI t ti th l t b h In saturation, the plant behaves as:

    For large K this is a system with very low gain and

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 88

    For large Ka, this is a system with very low gain and very fast decay rate, i.e., the integration is turned off.

  • Steady State Tracking

    The Unity Feedback Case

    )(sC-

    +)(sR )(sY)(sG)(sE )(sU

    1)(sE=

    )()(1)( sGsCsR +

    kt

    1)(

    )(1!

    )(

    =

    =

    sR

    tkttrTest Inputs: k=0: step (position)

    k=1: ramp (velocity)

    k 2 b l ( l ti )

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 89

    1)( += kssR k=2: parabola (acceleration)

  • Steady State Tracking

    The Unity Feedback Case

    )(sR )(sY)(E )(U sG )(

    Type nSystem

    )(sC-

    +)(sR )(sY)(sG)(sE )(sUn

    o

    ssG )(

    11)(),()(

    1)(,)()()( +=== kno

    ssRsRsGsEs

    sGsGsC )(1+ no ss

    sGsSteady State Error:

    Fin l V l e

    )0(lim1

    )(lim1)(

    1lim)(lim)(lim 1 nkn

    kn

    n

    kss Gs

    Gs

    GsssEtee =====−

    +

    Final Value Theorem

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 90

    )0()()(1)()(

    00100o

    nsko

    nsk

    nosst

    ss GsssGsss

    sG +++ →→+→→∞→

  • Steady State TrackingThe Unity Feedback Case Type nThe Unity Feedback Case

    k+)(sR )(sY)(sE o sG )(

    ypSystem

    )0(lim

    0o

    n

    kn

    sss Gsse+

    =−

    -ns

    Steady State Error:Input (k)

    Type (n)

    Type 0

    Step (k=0) Ramp (k=1) Parabola (k=2)

    po KsGsCG +=

    +=

    + 11

    )()(lim11

    )0(11

    ∞ ∞

    Type 1

    Type 2

    psosGsCG

    →)()()0(

    0

    vsoKsGssCG1

    )()(lim1

    )0(1

    0

    ==→

    111

    0 ∞

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 91

    Type 2aso

    KsGsCsG )()(lim)0( 20

    ==→

    0 0

  • Steady State Tracking

    1)()(lim0)()(lim

    0

    0==

    ==

    →nsGssCKnsGsCK

    sv

    spPosition Constant

    Velocity Constant

    2)()(lim 20

    0

    ==→

    nsGsCsKsa

    sAcceleration Constant

    n: Degree of the poles of CG(s) at the origin (the number of n: Degree of the poles of CG(s) at the origin (the number of integrators in the loop with unity gain feedback)

    • Applying integral control to a plant with no zeros at the • Applying integral control to a plant with no zeros at the origin makes the system type ≥ I• All this is true ONLY for unity feedback systems• Since in Type I systems e =0 for any CG(s) we say that • Since in Type I systems ess=0 for any CG(s), we say that the system type is a robust property.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 92

  • Steady State Tracking)(1)( =

    k

    tttwThe Unity Feedback Case

    )(sW 11)(

    )(1!

    )(

    +=

    =

    kssW

    tk

    tw

    )(sC-

    +)(sR )(sY)(sG)(sE )(sU ++

    Set r=0.

    )()( sGsY

    Set r 0. Want Y(s)/W(s)=0.

    )()()()(1

    )()()( sTssT

    sGsCsG

    sWsY

    on==

    +=

    nssTssTssYtyye )(lim1)(lim)(lim)(lim =====

    Steady State Error: e=r-y=-y Final Value Theorem

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 93

    kosksstssss ssT

    sssTssYtyye )(lim)(lim)(lim)(lim

    0100 →+→→∞→=====−

  • Steady State TrackingThe Unity Feedback CaseThe Unity Feedback Case

    )(sC+)(sR )(sY)(sG)(sE )(sU

    )(sW

    +

    )(sC-

    )(sG+

    Steady State Output:Disturbance (k)

    Type (n)

    Type 0

    Step (k=0) Ramp (k=1) Parabola (k=2)

    * ∞ ∞

    Type 1

    Type 2

    *0 ∞

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 94

    Type 2 *0 0

  • Steady State TrackingExample:

    )(sW

    sKK Ip +

    -

    +)(sR )(sY( )1+ss

    )(sE )(sU+

    +

    wKKwK

    IP

    I

    to 0 type to 1 type

    ⇒=≠⇒≠

    0,00

    IP

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 95

  • Root LocusController

    +)(sR )(sY)(sE )(sU

    Plant

    )(sC-

    +)(sR )(sY)(sG)(sE )(sU

    )(H )(sH

    Sensor

    )(1)()(

    )()()(1)()(

    )()(

    sKLsGsC

    sHsGsCsGsC

    sRsY

    +=

    +=⇒= )()( sKDsC

    Writing the loop gain as KL(s) we are interested in tracking the closed-loop poles as “gain” K varies

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 96

  • Root LocusCharacteristic Equation:

    0)(1 =+ sKL

    The roots (zeros) of the characteristic equation are the closed-loop poles of the feedback system!!!

    The closed-loop poles are a function of the “gain” K

    Writing the loop gain as

    nnnn

    mmmm

    asasasbsbsbs

    sasbsL

    ++++++++

    ==−

    −−

    11

    1

    11

    1

    )()()(

    L

    L

    The closed loop poles are given indistinctly by the solution of:

    sLsKbsasbKsKL 1)(0)()(0)(10)(1 −==+=+=+

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 97

    KsLsKbsa

    saKsKL )(,0)()(,0

    )(1,0)(1 ==+=+=+

  • Root Locus

    { } { })()()(1 LKLsKL numdenrootszerosRL +=+=when K varies from 0 to ∞ (positive Root Locus) or

    from 0 to -∞ (negative Root Locus)from 0 to ∞ (negative Root Locus)

    ⎧ 1

    ⎪⎩

    ⎪⎨⎧

    =∠

    =⇔−=>o180)(

    1)(1)(:0sL

    KsL

    KsLK

    Phase condition

    Magnitude condition

    ⎪⎧1)(1 sL Magnitude condition

    ⎪⎩

    ⎪⎨

    =∠

    −=⇔−=<o0)(

    )(1)(:0sL

    KsL

    KsLK

    Phase condition

    Magnitude condition

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 98

  • Root Locus by Characteristic Equation Solution

    Example: K-

    +)(sR )(sY( )( )110

    1++ ss

    )(sE )(sU

    )( KsY)10(11)(

    )(2 KsssR +++

    =

    Closed-loop poles: 0)10(110)(1 2 =+++⇔=+ KsssLClosed loop poles: 0)10(110)(1 =+++⇔=+ KsssL

    10,1 −−=s 0=K

    24815.5 Ks −±−=

    5.52

    4815.5

    −=

    −±−=

    s

    Ks

    04810481=−>−

    KK

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 9928145.5 −±−= Kis 0481

    0481

  • Root Locus by Characteristic Equation Solution

    We need a systematic approach to plot the closed loop poles

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 100

    We need a systematic approach to plot the closed-loop poles as function of the gain K → ROOT LOCUS

  • Root Locus by Phase Condition

    Example: K-

    +)(sR )(sY( )( )845

    12 ++++

    sssss)(sE )(sU

    ( )ssL 1)( += ( )( )

    ( )( )( )isissss

    sssssL

    222251

    845)( 2

    −+++++

    =

    +++=

    ( )( )( )isisss 22225 ++++

    iso 31+−=

    belongs to the locus?

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 101

  • Root Locus by Phase Condition

    o43.108o87.36

    o45o90

    o70.78

    [ ] oooooo 18070.784587.3643.10890 −≈+++− iso 31+−=⇒ belongs to the locus!

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 102

    [ ] o belongs to the locus!Note: Check code lecture09_a.m

  • Root Locus by Phase Condition

    iso 31+−=

    We need a systematic approach to plot the closed loop poles

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 103

    We need a systematic approach to plot the closed-loop poles as function of the gain K → ROOT LOCUS

  • Root Locus{ } { })()()(1 LKLsKL numdenrootszerosRL ++{ } { })()()(1 LKLsKL numdenrootszerosRL +=+=

    when K varies from 0 to ∞ (positive Root Locus) or from 0 to -∞ (negative Root Locus)

    0)()(1)(0)(1 =+⇔−=⇔=+ sKbsaK

    sLsKL

    Basic Properties:

    • Number of branches = number of open-loop poles • RL begins at open-loop poles

    RL ends at open loop e os o as mptotes

    0)(0 =⇒= saK

    • RL ends at open-loop zeros or asymptotes

    ⎩⎨⎧

    >−∞→=

    ⇔=⇒∞=)0(

    0)(0)(

    mnssb

    sLK

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 104

    • RL symmetrical about Re-axis⎩ )(

  • Root Locus

    Rule 1: The n branches of the locus start at the poles of L(s)and m of these branches end on the zeros of L(s).n: order of the denominator of L(s)n: order of the denominator of L(s)m: order of the numerator of L(s)

    Rule 2: The locus is on the real axis to the left of and odd number of poles and zeros.In other words, an interval on the real axis belongs to the In other words, an interval on the real axis belongs to the root locus if the total number of poles and zeros to the right is odd.This rule comes from the phase condition!!!

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 105

  • Root Locus

    Rule 3: As K→∞, m of the closed-loop poles approach the open-loop zeros, and n-m of them approach n-m asymptotes with angleswith angles

    1,,1,0,)12( −−=−

    += mnlmn

    ll K πφ−mn

    and centered at

    1,,1,0,11 −−=−−

    =−−

    = ∑∑ mnlmnmn

    abK

    zerospolesα

    mnmn

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 106

  • Root Locus

    Rule 4: The locus crosses the jω axis (looses stability) where the Routh criterion shows a transition from roots in the left half-plane to roots in the right-half plane.

    Example:

    5+)54(

    5)( 2 +++

    =sss

    ssG

    5,20 jsK ±==

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 107

  • Root Locus1

    Example:4673

    1)( 234 +++++

    =ssss

    ssG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 108

  • Root Locus

    Design dangers revealed by the Root Locus:

    • High relative degree: For n m≥3 we have closed loop • High relative degree: For n-m≥3 we have closed loop instability due to asymptotes.

    1+s4673

    1)( 234 +++++

    =ssss

    ssG

    • Nonminimum phase zeros: They attract closed loop poles into the RHP

    11)( 2 ++

    −=

    ssssG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 109

    Note: Check code lecture09_b.m

  • Root Locus

    Viete’s formula:

    When the relative degree n m≥2 the sum of the closed loop When the relative degree n-m≥2, the sum of the closed loop poles is constant

    ∑−= polesloopclosed1a

    nnnn

    mmmm

    asasasbsbsbs

    sasbsL

    ++++++++

    ==−

    −−

    11

    1

    11

    1

    )()()(

    L

    L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 110

  • Phase and Magnitude of a Transfer Function1 bbbb mm

    011

    1

    011

    1)(asasas

    bsbsbsbsG nn

    n

    mm

    mm

    ++++++++

    = −−

    −−

    L

    L

    )())((

    Th f t K ( ) d ( ) l b

    )())(()())(()(

    21

    21

    n

    m

    pspspszszszsKsG

    −−−−−−

    =L

    L

    The factors K, (s-zj) and (s-pk) are complex numbers: zjiz

    jj mjerzsφ ==− K1,)(

    K

    pk

    i

    ipkk

    jj

    KK

    pkerpsφ

    φ ==− L1,)( ieKK φ=

    zm

    zzK

    izm

    izizi ererereKsG

    φφφφ L21 21)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 111

    pn

    pp ipn

    ipipm

    ererereKsG

    φφφφ

    L21 21

    21)( =

  • Phase and Magnitude of a Transfer Functionzzz iziziz φφφ

    ( )

    pn

    pp

    mK

    ipn

    ipip

    izm

    izizi

    erererererereKsG

    φφφ

    φφφφ=

    L

    L

    21

    21

    21

    21)(

    ( )( )pnpp

    zm

    zzK

    ipn

    pp

    izm

    zzi

    errrerrreK

    φφφ

    φφφφ

    +++

    +++

    =L

    L

    L

    L

    21

    21

    21

    21

    ( ) ( )[ ]pnppzmzzKippp

    zm

    zzn

    errrrrrK φφφφφφφ +++−++++= LL

    L

    L2121

    21

    21

    21

    Now it is easy to give the phase and magnitude of the transfer function:

    nrrr 21

    o e a s e u o

    pn

    pp

    zm

    zz

    rrrrrrKsG =

    L

    L

    21

    21 ,)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 112

    ( ) ( )pnppzmzzKsG φφφφφφφ +++−++++=∠ LL 2121)(

  • Phase and Magnitude of a Transfer Function)7356( +s

    Example: ( )( ) )20(51)735.6()(+++

    +=

    sssssG

    ppp

    zrsG 1)( =iss o 57 +−==

    p1φ

    p2φ

    p3φ

    z1φ

    pr3zr1 pr2

    pr1 ( )pppzppp

    sG

    rrr

    3211

    321

    )(

    )(

    φφφφ ++−=∠1φ2φ3φ 1φ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 113

  • Root Locus- Magnitude and Phase Conditions

    { } { })()()(1 LKLsKL numdenrootszerosRL +=+=when K varies from 0 to ∞ (positive Root Locus) or

    from 0 to -∞ (negative Root Locus)from 0 to ∞ (negative Root Locus)

    ( ) ( )[ ]pnppzmzzpKippp

    zm

    zz

    pm

    p errrrrrK

    pspspszszszsKsL φφφφφφφ +++−++++=

    −−−−−−

    = LLL

    L

    L

    L2121

    21

    21

    21

    21

    )())(()())(()(

    > LK 1)(0

    nn rrrpspsps 2121 )())((

    L 1)( 21 == pppz

    mzz

    p KrrrrrrKsL

    ⇔−=>K

    sLK )(:0

    ( ) ( ) oLLL

    180)( 2121

    21

    =+++−++++=∠ pnppz

    mzzK

    pn

    pp

    psL

    Krrr

    φφφφφφφ

    ⇔−=<K

    sLK 1)(:0( ) ( )

    L

    L 1)(21

    21 −==

    K

    pn

    pp

    zm

    zz

    p KrrrrrrKsL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 114

    K ( ) ( ) oLL 0)( 2121 =+++−++++=∠ pnppzmzzK psL φφφφφφφ

  • Root Locus

    Selecting K for desired closed loop poles on Root Locus:

    If s belongs to the root locus it must satisfies the If so belongs to the root locus, it must satisfies the characteristic equation for some value of K

    1

    Then we can obtain K as

    KsL o

    1)( −=

    1K −=

    )(1

    )( o

    sLK

    sL

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 115

    )( osL

  • Root Locus

    Example: ( )( )511)()(

    ++==

    sssGsL

    54314351)(

    143 ++−++−=++==⇒+−= iissL

    Kis ooo

    ( ) ( ) 204242

    )(2222 =++−=

    sL oooo

    Using MATLAB:

    sys=tf(1,poly([-1 -5]))so=-3+4i

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 116

    [K,POLES]=rlocfind(sys,so)

  • Root LocusExample:

    1)()( == sGsL 43 is +=Example: ( )( )51)()( ++== sssGsL

    57

    +−=o is

    43 iso +−=

    06.42)(

    1==

    LK

    )( osL

    57 iso +−=o

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 117

    When we use the absolute value formula we are assuming that the point belongs to the Root Locus!

  • Root Locus - Compensators

    Example: ( )( )511)()(

    ++==

    sssGsL

    Can we place the closed loop pole at so=-7+i5 only varying K?NO. We need a COMPENSATOR.

    ( ) 110)()()( +== ssGsDsL( )( )1)()( == sGsL ( )( )( )5110)()()( +++ ssssGsDsL( )( )51

    )()(++ ss

    sGsL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 118

    The zero attracts the locus!!!

  • Root Locus – Phase lead compensator

    Pure derivative control is not normally practical because of the amplification of the noise due to the differentiation and must be approximated:be approximated:

    zppszssD >

    ++

    = ,)( Phase lead COMPENSATORps +

    When we study frequency response we will understand why we call “Phase Lead” to this compensator.

    ( )( ) zpsspszssGsDsL >

    ++++

    == ,51

    1)()()(

    How do we choose z and p to place the closed loop pole at so=-7+i5?

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 119

  • Root Locus – Phase lead compensatorExample: zpzssGsDsL

  • Root Locus – Phase lead compensator17356+s

    Example:

    Phase lead

    ( )( )511

    20735.6)()()(

    ++++

    ==sss

    ssGsDsL

    Phase lead COMPENSATOR

    57 i117

    57=

    +−=K

    iso

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 121

  • Root Locus – Phase lead compensator

    Selecting z and p is a trial an error procedure. In general:

    • The zero is placed in the neighborhood of the closed-p gloop natural frequency, as determined by rise-time or settling time requirements.• The poles is placed at a distance 5 to 20 times the value of the zero location. The pole is fast enough to avoid modifying the dominant pole behavior.

    The exact position of the pole p is a compromise between:The exact position of the pole p is a compromise between:

    • Noise suppression (we want a small value for p)• Compensation effectiveness (we want large value for p)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 122

  • Root Locus – Phase lag compensator17356+s

    Example: ( )( )511

    20735.6)()()(

    ++++

    ==sss

    ssGsDsL

    ( )( )2

    00010735.6

    511

    20735.6lim)()(lim)(lim −

    →→→×=

    ++++

    ===sss

    ssGsDsLKsssp

    What can we do to increase Kp? Suppose we want Kp=10.

    Ph l ( )( ) zpsss

    spszssGsDsL <

    ++++

    ++

    == ,51

    120735.6)()()(

    Phase lag COMPENSATOR

    We choose: 48148101 3×z

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 123

    We choose: 48.14810735.6

    =×=p

  • Root Locus – Phase lag compensator17356148480 ++ ss

    Example: ( )( )511

    20735.6

    001.014848.0)()()(

    ++++

    ++

    ==sss

    ss

    ssGsDsL

    035946 i31.18

    03.594.6=

    +−=K

    iso

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 124

  • Root Locus – Phase lag compensator

    Selecting z and p is a trial an error procedure. In general:

    • The ratio zero/pole is chosen based on the error /pconstant specification.• We pick z and p small to avoid affecting the dominant dynamic of the system (to avoid modifying the part of the locus representing the dominant dynamics)• Slow transient due to the small p is almost cancelled by an small z. The ratio zero/pole cannot be very big.

    The exact position of z and p is a compromise between:

    • Steady state error (we want a large value for z/p)• Steady state error (we want a large value for z/p)• The transient response (we want the pole p placed far from the origin)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 125

  • Root Locus - Compensators

    Phase lead compensator: pzpszssD <

    ++

    = ,)(ps +

    pzpszssD >

    ++

    = ,)(Phase lag compensator:ps +

    We will see why we call “phase lead” and “phase lag” to these compensators when we study frequency responsethese compensators when we study frequency response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 126

  • Frequency Response

    • We now know how to analyze and design systems via s-domain methods which yield dynamical information

    The responses are described b the e ponential modes• The responses are described by the exponential modes– The modes are determined by the poles of the response Laplace

    Transform

    • We next will look at describing cct performance via frequency response methodsresponse methods– This guides us in specifying the system pole and zero

    positions

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 127

  • Sinusoidal Steady-State ResponseC id t bl t f f ti ith

    )()cos()( ωω =⇔= AsUtAtu

    Consider a stable transfer function with a sinusoidal input:

    22)()cos()( ωω

    +=⇔=

    ssUtAtu

    The Laplace Transform of the response has poles

    • Where the natural modes lie

    –These are in the open left half plane Re(s)

  • Sinusoidal Steady-State Response

    • Input φωφωφω cossinsincos)cos()( tAtAtAtu −=+=

    ωs• Transform

    R T f

    2222 sincos)( ωωφ

    ωφ

    ++

    +−=

    sA

    ssAsU

    • Response Transform

    N

    N

    psk

    psk

    psk

    jsk

    jsksUsGsY

    −++

    −+

    −+

    ++

    −== L

    2

    2

    1

    1*

    )()()(ωω

    • Response SignalNpppjj 21

    L21* 21)( tpN

    tptptjtj Nekekekekkety +++++= − ωωforced response natural response

    • Sinusoidal Steady State Response

    44444 344444 2144 344 21responsenatural

    21responseforced

    )( N ekekekekkety +++++

    ∞→t

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 129

    tjtjSS ekkety

    ωω −+= *)( 0

  • Sinusoidal Steady-State Response

    • Calculating the SSS response to• Residue calculation

    [ ] [ ])()()(li)()(li UGjYjk

    )cos()( φω += tAtu

    [ ] [ ]

    2sincos)(

    ))((sincos))((lim

    )()()(lim)()(lim

    ω

    ωω

    ωφωφωω

    ωωφωφω

    ωω

    js

    jsjs

    jjAjG

    jsjssAjssG

    sUsGjssYjsk

    →→

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=⎥

    ⎤⎢⎣

    ⎡+−

    −−=

    −=−=

    • Signal calculation

    ))(()(21

    21)(

    ))((

    ωφφ ωω jGjj ejGAejAG

    jjj

    ∠+==

    ⎦⎣⎦⎣

    g

    jsk

    jskLtyss

    ⎭⎬⎫

    ⎩⎨⎧

    ++

    −= −

    ωω)(

    *1

    ( )Ktkeekeek tjKjtjKj

    ∠+=

    += −∠−∠

    ω

    ωω

    cos2

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 130

    ( ))(cos)()( ωφωω jGtjGAtyss ∠++=

  • Sinusoidal Steady-State Response

    • Response to• is ))(cos()(

    )cos()(ωφωω

    φωjGtAjGy

    tAtu

    ss ∠++=

    +=

    – Output frequency = input frequency– Output amplitude = input amplitude × |G(jω)|p p p p | (j )|– Output phase = input phase + G(jω)

    Th F R f h f f i G( ) i i

    • The Frequency Response of the transfer function G(s) is given by its evaluation as a function of a complex variable at s=jω

    • We speak of the amplitude response and of the phase response– They cannot independently be varied

    » Bode’s relations of analytic function theory

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 131

  • Frequency Response

    • Find the steady state output for v1(t)=Acos(ωt+φ)

    +sL +

    C t th d i t f f ti T( )

    +_V1(s) R V2(s)

    -

    • Compute the s-domain transfer function T(s)– Voltage divider

    • Compute the frequency responseRsL

    RsT+

    =)(

    Compute the frequency response⎟⎠⎞

    ⎜⎝⎛−=∠

    += −

    RLjT

    LR

    RjT ωωω

    ω 122

    tan)(,)(

    )(

    • Compute the steady state output( )[ ]RLt

    LR

    ARtv SS /tancos)(

    )( 1222

    ωφω −−+=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 132

    LR )( 22 ω+

  • Bode Diagrams

    Bode Diagram

    5

    0

    • Log-log plot of mag(T), log-linear plot of arg(T) versus ω

    )M

    agni

    tude

    (dB)

    -15

    -10

    -5ni

    tude

    (dB

    )M

    -25

    -20

    0

    Mag

    nse

    (deg

    )

    -45

    e (d

    eg)

    Phas

    4 5 6-90

    Phas

    e

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 133

    Frequency (rad/sec)

    104

    105

    106

  • Frequency Response

    )cos()( φω += tAtu )(sG ))(cos()( ωφωω jGtAjGyss ∠++=

    Stable Transfer Function

    • After a transient, the output settles to a sinusoid with an amplitude magnified by and phase shifted by .)( ωjG )( ωjG∠

    • Since all signals can be represented by sinusoids (Fourier series and transform), the quantities and are extremely important

    )( ωjG )( ωjG∠extremely important.

    • Bode developed methods for quickly finding and for a given and for using them in control design

    )( ωjG )( ωjG∠)(sG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 134

    for a given and for using them in control design.)(sG

  • Frequency Response

    • Find the steady state output for v1(t)=Acos(ωt+φ)

    +sL +

    C t th d i t f f ti T( )

    +_V1(s) R V2(s)

    -

    • Compute the s-domain transfer function T(s)– Voltage divider

    • Compute the frequency responseRsL

    RsT+

    =)(

    Compute the frequency response⎟⎠⎞

    ⎜⎝⎛−=∠

    += −

    RLjT

    LR

    RjT ωωω

    ω 122

    tan)(,)(

    )(

    • Compute the steady state output( )[ ]RLt

    LR

    ARtv SS /tancos)(

    )( 1222

    ωφω −−+=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 135

    LR )( 22 ω+

  • Frequency Response - Bode Diagrams

    Bode Diagram

    5

    0

    • Log-log plot of mag(T), log-linear plot of arg(T) versus ω)

    Mag

    nitu

    de (d

    B)

    -15

    -10

    -5

    nitu

    de (d

    B)

    M

    -25

    -20

    0

    Mag

    nse

    (deg

    )

    -45

    e (d

    eg)

    Phas

    4 5 6-90

    Phas

    e

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 136

    Frequency (rad/sec)

    104

    105

    106

    [ ] [ ] Hzffrad === ,2sec,/ πωω

  • Bode Diagrams)())(()())(()())(()(

    21

    21

    n

    m

    pspspszszszsKsG

    −−−−−−

    =L

    L

    ( ) ( )[ ]pnppzmzzKiz

    mzz

    errrKsG φφφφφφφ +++−++++= LLL 212121)(

    The magnitude and phase of G(s) when s=jω is given by:

    pn

    pp errrKsG

    L21)(

    zm

    zz rrrKjG ω = L21)(

    Nonlinear in the magnitudes

    ( ) ( )pnppzmzzKp

    npp

    jG

    rrrKjG

    φφφφφφφω

    ω

    +++−++++=∠ LL

    L

    2121

    21

    )(

    ,)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 137

    ( ) ( )Linear in the phases

  • Bode DiagramsWhy do we express in decibels?)( jG

    )(log20)( ωω jGjG dB =

    Why do we express in decibels?)( ωjG

    ?)()(21

    21 =⇒= dBpn

    pp

    zm

    zz

    jGrrrrrrKjG ωω

    L

    L

    ( ) ( )pnppzmzmz rrrrrrKsG log20log20log20log20log20log20log20)(log20 211 +++−++++= LLBy properties of the logarithm we can write:

    21 n

    Linear in the magnitudes (dB)

    The magnitude and phase of G(s) when s=jω is given by:

    ( ) ( )( ) ( )pppzzzK

    dBp

    ndBp

    dBp

    dBz

    mdBz

    dBz

    dBdB

    sG

    rrrrrrKsG

    φφφφφφφ +++++++∠

    +++−++++= LL 2121

    )(

    )(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 138

    ( ) ( )pnppmsG φφφφφφφ +++−++++=∠ LL 2121)(Linear in the phases

  • Bode DiagramsWhy do we use a logarithmic scale? Let’s have a look at our example:Why do we use a logarithmic scale? Let s have a look at our example:

    222

    1)(

    )()(⎞⎛

    ==⇒+

    =LR

    RjTRL

    RsT ω222

    1)(

    ⎟⎠⎞

    ⎜⎝⎛+

    ++

    RLLRRsL ωω

    Expressing the magnitude in dB:

    ⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛+−=⎟

    ⎠⎞

    ⎜⎝⎛+−=

    22

    1log101log201log20)(RL

    RLjT dB

    ωωω⎦⎣

    Asymptotic behavior:

    0)(:0 →→ jT ωω

    ( ) ωωωωω log20log20/log20/

    log20)(: −=−=⎟⎠⎞

    ⎜⎝⎛−→∞→

    dBdB L

    RLRLR

    jT

    0)(:0 →→ dBjT ωω

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 139

    LINEAR FUNCTION in logω!!! We plot as a function of logω.dBjG )( ω

  • Bode Diagrams

    A cutoff frequency occurs when the gain is reduced from its i b d l b f t /

    Decade: Any frequency range whose end points have a 10:1 ratio

    maximum passband value by a factor :2/1

    dB3log202log20log201log20 −≈−=⎟⎞⎜⎛ TTT dB3log202log20log202log20 ≈=⎟

    ⎠⎜⎝ MAXMAXMAX

    TTT

    Bandwith: frequency range spanned by the gain passband

    Let’s have a look at our example:

    ⎨⎧ ==

    ⇒=1)(01)(

    ωωω

    jTjT

    ⎩⎨ ==

    ⎟⎠⎞

    ⎜⎝⎛+

    =2/1)(/

    1)(

    2 ωωωω

    jTLR

    RL

    jT

    Thi i l fil !!! P b d i C ff f

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 140

    This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/LThe Bandwith is R/L!

  • General Transfer Function (Bode Form)q⎤⎡ ⎞⎛

    2

    ( ) ( ) ( )nn

    nmo

    jjjjKjG⎥⎥⎦

    ⎢⎢⎣

    ⎡++⎟⎟

    ⎞⎜⎜⎝

    ⎛+= 121

    ωωζ

    ωωωτωω

    The magnitude (dB) (phase) is the sum of the magnitudes (dB)(phases) of each one of the terms. We learn how to plot each term, we learn how to plot the whole magnitude and phase Bode Plot.

    Classes of terms:

    1- ( ) KjG =ω1-2-

    3

    ( ) oKjG =ω( ) ( )mjjG ωω =

    3-

    4-

    ( ) ( )njjG 1+= ωτω

    ( )q

    jjG ⎥⎤

    ⎢⎡

    ⎟⎞

    ⎜⎛

    2ωζω

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 141

    ( )nn

    jjjG⎥⎥⎦⎢

    ⎢⎣

    ++⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛= 12

    ωωζ

    ωωω

  • General Transfer Function: DC gain

    ( ) oKjG =ω

    ( ) = log20d KjωGMagnitude and Phase: ( )

    ( )⎩⎨⎧

    =∠000

    log20

    o

    odB

    KK

    jG

    KjωG

    if if

    πω

    g

    ( )35

    40

    160

    180

    200

  • General Transfer Function: Poles/zeros at origin

    ( ) ( )mjjG ωω =

    ( ) log20 ωmjωG ⋅=Magnitude and Phase: ( )

    ( )2

    log20

    πω

    ω

    mjG

    mjωG dB

    =∠

    ⋅=Magnitude and Phase:

    ( )sGm 1,1 =−=

    10

    20

    -20

    0

    2( ) ssGm ,1

    ( ) 01 =dBG

    -10

    0

    nitu

    de (d

    B)

    -60

    -40

    ase

    (deg

    )

    ( )dB

    -30

    -20Mag

    n

    -100

    -80

    Pha

    decdBm 20⋅

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 143

    10-1 100 101 102-40

    Frequency (rad/sec)10-1 100 101 102

    -120

    Frequency (rad/sec)

  • General Transfer Function: Real poles/zeros

    ( ) ( )njjG 1+= ωτωMagnitude and Phase:

    ( ) ( )τω 22 1log10 +⋅= njωG dB

    Magnitude and Phase:

    ( ) ( )ωτω 1tan−=�