clk08-sivan

95
Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University, USA B. Ilan, UC Merced, USA Stability and instability of solitons in inhomogeneous media

Upload: agus-dwi-priyanto

Post on 28-Nov-2014

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CLK08-Sivan

Yonatan Sivan, Tel Aviv University, Israelnow at Purdue University, USA

• G. Fibich, Tel Aviv University, Israel

• M. Weinstein, Columbia University, USA

• B. Ilan, UC Merced, USA

Stability and instability of solitons in inhomogeneous

media

Page 2: CLK08-Sivan

Motivation

• Light propagation in a nonlinear medium– z is the direction of propagation– transverse coordinate

• Look for solitons – waves that maintain their shape along the propagation in z

z

Nonlinear medium

x

1( , , ), 1,2,3dx x x d= =…

laser

Page 3: CLK08-Sivan

Solitons

• Appear in– Nonlinear optics– Cold atoms – Bose-Einstein Condensation (BEC) – Solid state– Water waves– Plasma physics

• Applications – communications, quantum computing, …

Page 4: CLK08-Sivan

Soliton stability• Ideally – get same soliton at the other end

• In practice, soliton must be stable (robust) under perturbations

z

Nonlinear medium

xlaser

E field

E field

Page 5: CLK08-Sivan

Stability analysis

• In this talk, a different approach– Qualitative approach: characterize instability dynamics– Quantitative approach: quantify strength of

stability/instability

• KEY question – is the soliton stable?– hundreds of papers…

• Typical answer – yes (stable)/no (unstable)– What is the instability dynamics?

Page 6: CLK08-Sivan

Outline of the talk

• Solitons in Nonlinear Schrödinger (NLS) Eq.

• Stability theory

• Qualitative approach

• Quantitative approach

Page 7: CLK08-Sivan

Paraxial propagation – NLS model

• A – amplitude of electric field • Initial condition:

– z is a “time”-like coordinate • Competition of diffraction ( ) and

focusing nonlinearity (F)

2 2( , ) (| | ) 0zdiffraction focusing

nonlinearity

iA z x A F A A+ ∇ + =

0( 0, ) ( )A z x A x= =

zNonlinear medium

xlaser

1

2 2 2dx x∇ = ∂ + + ∂

Page 8: CLK08-Sivan

Typical (self-) focusing nonlinearities

• Cubic (Kerr) nonlinearity

• Cubic-quintic nonlinearity

• Saturable nonlinearity

2 2( )F A A=

2 2 4( )F A A Aγ= −

22

2( )1

AF AAγ

=+

2 2( , ) (| | ) 0ziA z x A F A A+∇ + =2

0 ( )n n F A= +

Page 9: CLK08-Sivan

Physical configurations – slab/planar waveguide

•• no dynamics in y direction• 1+1 dimensions (x,z)

2( , ) (| | ) 0z xx

diffraction nonlinearity

iA z x A F A A+ + =

y

, 1x x d= =

Page 10: CLK08-Sivan

Physical configurations – bulk medium

•• 2+1 dimensions (x+y,z)

z

z=0

Nonlinear medium

2 2( , , ) (| | ) 0zdiffraction nonlinearity

iA z x y A F A A+ ∇ + =

xlaser

( , ), 2x x y d= =

Page 11: CLK08-Sivan

Physical configurations – pulses in bulk medium

•• β2 < 0, anomalous group velocity dispersion (GVD)• 3+1 dimensions (x+y+t,z)• Spatio-temporal soliton = “Light bullets”

2 22( , , , ) (| | ) 0z tt

diffraction dispersion nonlinearity

iA z x y t A A F A Aβ+ ∇ − + =

( , , ), 3tx x y d= =

Page 12: CLK08-Sivan

• Solitons are of the form

• Do not change their shape during propagation (in z)• Exhibit perfect balance between diffraction and

nonlinearity

( ) ( )2 2( , ) ; , ( ) 0;i zA x x xe u u F u u uz ν ν νν= ∇ + − =

Eq. for solitons2 2( , ) (| | ) 0ziA z x A F A A+∇ + =

Page 13: CLK08-Sivan

• Explicit solution• (propagation const.) proportional to

– amplitude– inverse width

Example – 1D solitons in a Kerr medium

( ); 2 sech( )u x xν ν ν=

2

( )

( , ) 0z xxKerr cubicnonlinearity

iA z x A AA+ + =

( ) ( )2 3( , ) ; , 0;i zA e u ux x x u uz ν ν νν= ∇ + − =

ν

~1/√ν~√ ~ν

x

Page 14: CLK08-Sivan

Outline of the talk

• Solitons in Nonlinear Schrödinger Eq.

• Stability theory

• Qualitative approach

• Quantitative approach

Page 15: CLK08-Sivan

Stability theory

• Vakhitov-Kolokolov (1973): necessary condition for stability of

is the slope condition

2( ) 0, ( ) ( ; )soliton power

P P u x dxν ν νν

∂> =

∂ ∫

( , )i zA e u xν ν=

Page 16: CLK08-Sivan

Example: homogeneous Kerr medium

1, 0

2, 0

3, 0

Pd

Pd

Pd

ν

ν

ν

∂= >

∂∂

= =∂∂

= <∂

⎫⇒⎬

⎭ins

stabili

tabi

ty

lity

22 2( ) ( ; ) ( )

d

P u x dx C dν ν ν−

= =∫

Page 17: CLK08-Sivan

Stability in a d=1 Kerr medium

• Incident beam is a perturbed d=1 soliton

• Solution stays close to the soliton• 1D Solitons are stable!

( )

( 0, ) (1 0.05) 2 sech( )u x

A z x xν ν= = +

| |A

0 200

2

z

| ( , 0) |A z x =

Page 18: CLK08-Sivan

Instability in a d=2 Kerr medium

• collapse at a finite distance!• 2D Solitons are unstable

( 0) (1 0.02) ( , )A z u x y= = +

• Incident beam is a perturbed d=2 soliton

0 1.20

0.2

0 1.20

50

z z

| ( ) |A z 1| ( ) |A z −

amplitude width

Page 19: CLK08-Sivan

• Vakhitov-Kolokolov (1973): Slope condition is necessary for stability

• Is it also sufficient?

Page 20: CLK08-Sivan

• Weinstein (1985-6), Grillakis, Shatah, Strauss (1987-9):

1. Slope (VK) condition

2. Spectral condition: the operator

must have only one negative eigenvalue• Two conditions are necessary and sufficient for

stability

Rigorous stability theory (u>0)

2 2( )L G uν+ = −∇ + −

Page 21: CLK08-Sivan

• Only one negative eigenvalue λmin

• Spectral condition is satisfied

continuous spectrummin 0λ < 0λ

0 ν

Spectrum of L+

2 2( )L G uν+ = −∇ + −

Page 22: CLK08-Sivan

Summary - stability in homogeneous medium

• Spectral condition is always satisfied • Stability determined by slope (VK) condition

2( ) 0, ( ) ( ; )soliton power

P P u x dxν ν νν

∂> =

∂ ∫

Page 23: CLK08-Sivan

Inhomogeneous media

Page 24: CLK08-Sivan

Light propagation in inhomogeneous medium

• Since late 1980’s: interest in inhomogeneous media– E. Yablonovitch, S. John (1986) – photonic crystals– Christodoulides & Joseph (1988) – discrete solitons– ...

• Goals:– Stabilize beams in high dimensions (“Light bullets”)– Applications – communications (switching, routing, …)

Page 25: CLK08-Sivan

• Varying linear refractive index– Waveguide arrays / photonic lattices

Inhomogeneous media

02

2( ) | |n xn n A= +02

2( ) | |n zn n A= +

Page 26: CLK08-Sivan

• Varying nonlinear refractive index– Novel materials

Inhomogeneous media

20 2 ( ) | |n n n x A= +2

0 2 ( ) | |n n n z A= +

Page 27: CLK08-Sivan

• This study – modulation in only• Refractive index = – Potential

NLS in inhomogeneous media

x

Page 28: CLK08-Sivan

• This study – modulation in only• Refractive index = – Potential

– arbitrary potentials (Vnl, Vl)• periodic/disordered potentials, periodic potentials with defects,

single/multi-waveguide potentials etc.

– any nonlinearity F– any dimension d

( )

NLS in inhomogeneous media

( )2 2( ), 1 (| ( )| ) 0lz nlV xiA z x A A V x AF A+∇ + − − =

x

Page 29: CLK08-Sivan

Inhomogeneities in BEC

• Same equation (Gross-Pitaevskii) in BEC

• Dynamics in time (not z)•• Inhomogeneities created by

– Magnetic traps– Feshbach resonance– Optical lattices

( ) ( )2 2( ), 1 (| ( )| ) 0lt nlV xiA t x A A V x AF A+∇ + − − =

( , , ), ( , ),x x y z x x y x x= = =

Page 30: CLK08-Sivan

How do inhomogeneitiesaffect stability?

Page 31: CLK08-Sivan

“Applied” approach

• Slope (VK) condition• Numerics• Ignore spectral condition

Rigorous approach

• Slope (VK) condition• Spectral condition

) 2( ( ) (| | ) ( )nl lVL L V x G A V x+ + += +

Typical result – soliton stable (yes)/unstable (no)

Page 32: CLK08-Sivan

Qualitative approach

• Characterize the instability dynamics• Key observation: instability dynamics depends

on which condition is violated– Look at each condition separately

• Results for ground state solitons only (u>0)

Page 33: CLK08-Sivan

Outline of the talk

• Solitons in Nonlinear Schrödinger Eq.

• Stability theory

• Qualitative approach– Slope condition– Spectral condition

• Quantitative approach

Page 34: CLK08-Sivan

Instability due to violation of slope condition

Page 35: CLK08-Sivan

Violation of slope condition

• d=2 homogeneous Kerr medium –– Slope = 0, i.e., instability

–• Collapse

–• Total diffraction

( )P Constν =

0 1.20

50

z

| |A

0 100

1

z

| |A( 0) (1 0.02) ( , )A z u x y= = +

−5 100ν

( 0) (1 0.02) ( , )A z u x y= = −

power

Page 36: CLK08-Sivan

• d=2 Kerr medium with potential– Stable and unstable branches

–– 1% perturbation width decrease by factor of 15

Violation of slope condition – cont.

| ( ) |A z

−5 100ν

unstable stable

homogeneous medium

( 0) (1 0.01) ( , )

power

A z u x y= = +

0 52

30

z0 5

0

1

z

amplitude

1| ( ) |A z −

width

Page 37: CLK08-Sivan

Violation of slope condition – cont.

Conclusion:violation of slope condition focusing instability

0 52

30

z

Page 38: CLK08-Sivan

Instability due to violation of spectral condition

Page 39: CLK08-Sivan

Spectral condition

• The operator

must have only one negative eigenvalue

• No potential : spectral condition satisfied

( ) 2 2((1 ) () () )Vnl lV x u xL VG uν+ = −∇ + − − +

( )( , ) , 0i zA z x e u x uν= >

continuous spectrummin 0λ < 0λ

0 ν( )( )VL L+ +=

Page 40: CLK08-Sivan

• With potential:– remains negative– continuous spectrum remains positive– only can become negative

• Spectral condition determined by • Spectral condition not automatically satisfied

( )0Vλ

0

continuous spectrum

( )m in 0Vλ < ( )

0Vλ

?

( )minVλ

Spectral condition – cont.

( )0Vλ

Page 41: CLK08-Sivan

lattice

Generic families of solitons

soliton

Soliton at lattice min. Soliton at lattice max.

Page 42: CLK08-Sivan

Sign of λ0(V)

( )0Vλ

• Numerical/asymptotic/analytic observation

λ0(V) > 0 for solitons at a lattice

min. (potential well)spectral condition satisfied

ν

0

Page 43: CLK08-Sivan

Sign of λ0(V)

( )0Vλ

• Numerical/asymptotic/analytic observation

λ0(V) < 0 for solitons at a lattice

max. (potential barrier)spectral condition violated

λ0(V) > 0 for solitons at a lattice

min. (potential well)spectral condition satisfied

ν

0 0

( )0Vλ

ν

Page 44: CLK08-Sivan

• Stability only at potential min. – solitons are more “comfortable” at a potential min. (well) than at a potential max. (barrier)– stay near potential min.– tend to move from potential max. to potential min.

• Different type of instability– Lateral location rather width

x

Physical intuition

Page 45: CLK08-Sivan

• Soliton centered at a lattice min. – stays at lattice min.– lateral stability

0 25

<x>

z

max.

min.

0 25

<x>

z

min.

max.

• Soliton centered at a lattice max. – moves from lattice max.

to lattice min.– drift instability

x

Numerical demonstration

Center of

mass

( 0 , ) ( )sh ift

A z x u x δ= = −Input beam:

x

2x x A= ∫“Center of mass”:

Page 46: CLK08-Sivan

Conclusion:violation of spectral condition drift instability

0 25

<x>

z

min.

max.

Page 47: CLK08-Sivan

Mathematical intuition

• Eigenfunction associated with λ0(V) is odd

+ =

eigenfunction

x

Page 48: CLK08-Sivan

Mathematical intuition

• Eigenfunction associated with λ0(V) is odd

+ =

eigenfunctionsoliton

xx x

Page 49: CLK08-Sivan

Mathematical intuition

• Eigenfunction associated with λ0(V) is odd

• Its growth causes lateral shift of beam center

+ =

eigenfunctionsoliton

xx x

Page 50: CLK08-Sivan

Mathematical intuition

• Eigenfunction associated with λ0(V) is odd

• Its growth causes lateral shift of beam center

+ =

eigenfunctionsoliton

xx x

Page 51: CLK08-Sivan

Qualitative approach – summary

• Characterization of instabilities– Violation of slope condition focusing instability– Violation of spectral condition drift instability

• Distinction between instabilities is useful for more complex lattices

Page 52: CLK08-Sivan

• Created experimentally by optical induction

V

Example

Page 53: CLK08-Sivan

• Created experimentally by optical induction• Consider solitons centered at a shallow local

maximum

V

Example

Page 54: CLK08-Sivan

Example

x

y

Page 55: CLK08-Sivan

• Narrow solitoncentered at a lattice max.

x

y

Example

Page 56: CLK08-Sivan

• Narrow solitoncentered at a lattice max.

x

y

Example

x

y

• Wide solitons:solitoncentered at a lattice max.

Page 57: CLK08-Sivan

x

y

Example

Drift instability

0 1.3z

<x> <y>

global max.

global max.

shallow max.

x

y

• Wide solitons:solitoncentered at a lattice max.

• Narrow solitoncentered at a lattice max.

Page 58: CLK08-Sivan

x

y

Example

Drift instability Stability

0 1.3z

<x> <y>

global max.

global max.

shallow max.

0 20z

<x> <y>

global max.

global max.

shallow max.

x

y

• Narrow solitoncentered at a lattice max.

• Wide solitons:solitoncentered at a lattice max.

Page 59: CLK08-Sivan

x

y

Example

Drift instability Stability

0 1.3z

<x> <y>

global max.

global max.

shallow max.

0 20z

<x> <y>

global max.

global max.

shallow max.

x

y

• Narrow solitoncentered at a lattice max.

• Wide solitons:solitoncentered at a lattice max.

Page 60: CLK08-Sivan

• Narrow solitons: centered at a lattice max.

• Wide solitons:effectivelycentered at a lattice max. min.x

y

Example

Drift instability Stability

0 1.3z

<x> <y>

global max.

global max.

shallow max.

0 20z

<x> <y>

global max.

global max.

shallow max.

x

y

Page 61: CLK08-Sivan

• Narrow solitons: centered at a lattice max.

• Wide solitons:effectivelycentered at a lattice max. min.x

y

Example

x

y

At which width is the transition between drift instability and stability?

Page 62: CLK08-Sivan

x

y

Example

0.06 1.5Width

λ0(V)

0( )0Vλ

• Wide solitons:effectivelycentered at a lattice min.

• Narrow solitons: centered at a lattice max.

x

y

Page 63: CLK08-Sivan

x

y

Example

0.06 1.5Width

λ0(V)

0( )0Vλ

• Wide solitons:effectivelycentered at a lattice min.

• Narrow solitons: centered at a lattice max.

x

y

transition

Page 64: CLK08-Sivan

Conclusion

• Dynamics “deciphered” using the qualitative approach– “effective centering” determines violation/satisfaction

of spectral condition – In turn, determines dynamics of “center of mass”– Dynamics is determined by slope condition

Page 65: CLK08-Sivan

Outline of the talk

• NLS and solitons - review

• Stability theory

• Qualitative approach– Slope condition – width instability– Spectral condition – drift instability

• Quantitative approach

Page 66: CLK08-Sivan

Motivation: 2d nonlinear lattices

• Can the nonlinear potential stabilize the solitons?– spectral condition satisfied only at potential min. – slope condition satisfied only for

• narrow solitons• specially designed potential

( ) ( )2 2, , 1 | |( , ) 0nz lViA z A xx yy A A+∇ + − =

Page 67: CLK08-Sivan

Narrow solitons in 2d nonlinear lattices• u(x,y) is a stable narrow soliton• Test stability of u(x,y) numerically:

– add extremely small perturbation

collapse instability!

( 0, , ) 1.0001 ( , )A z x y u x y= =

0 20

ampl

itude

z

Page 68: CLK08-Sivan

Narrow solitons in 2d nonlinear lattices• u(x,y) is a stable narrow soliton• Test stability of u(x,y) numerically:

– add extremely small perturbation

collapse instability!

( 0, , ) 1.0001 ( , )A z x y u x y= =

0 20

ampl

itude

z

What is going on?

Page 69: CLK08-Sivan

Strength of stability• Slope = 0 instability• Slope > 0 stability

– What happens for a very small positive slope?• Strength of stability determined by magnitude of

slope– small slope leads to weak stabilization– stronger stability for larger slope

Page 70: CLK08-Sivan

Strength of stability: nonlinear lattices

0 80

ampl

itude

z

• Fixed input beam

• Change lattice – slope = 0.01 (stable)

( 0) 1.0001 ( , )A z u x y= =

Page 71: CLK08-Sivan

0 80

ampl

itude

z

Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice – slope = 0.01 (stable)

– slope = 0.006 (less stable)

( 0) 1.0001 ( , )A z u x y= =

Page 72: CLK08-Sivan

0 80

ampl

itude

z

Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice – slope = 0.01 (stable)

– slope = 0.006 (less stable)

– slope = 0.002 (unstable)

( 0) 1.0001 ( , )A z u x y= =

Page 73: CLK08-Sivan

0 80

ampl

itude

z

• Fixed input beam

• Change lattice – slope = 0.01 (stable)

– slope = 0.006 (less stable)

– slope = 0.002 (unstable)

– slope = 0.0002 (even more unstable)

( 0) 1.0001 ( , )

Strength of stability: nonlinear lattices

A z u x y= =

Page 74: CLK08-Sivan

0 80

ampl

itude

z

Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice – slope = 0.01 (stable)

– slope = 0.006 (less stable)

– slope = 0.002 (unstable)

– slope = 0.0002 (even more unstable)

• Strength of stability is determined by magnitude of slope

( 0) 1.0001 ( , )A z u x y= =

Page 75: CLK08-Sivan

Narrow solitons in 2d nonlinear lattices• Original soliton was weakly stable

– Slope = 0.01( 0) 1.0001 ( , )A z u x y= =

0 80

ampl

itude

z

Page 76: CLK08-Sivan

Narrow solitons in 2d nonlinear lattices• Original soliton was weakly stable

– Slope = 0.01

– Stability for a smaller perturbation • Soliton is “theoretically” stable, but “practically”

unstable

( 0) 1.0001 ( , )A z u x y= =0 80

ampl

itude

z( 0) 1.00004 ( , )A z u x y= =

Page 77: CLK08-Sivan

• “Old” approach – check only sign of slope• “New” quantitative approach – check also the

magnitude of the slope.

Page 78: CLK08-Sivan

Slope condition: “old” approach

instability stability

Discontinuous transition between stability and instability

0 Slope

width

Page 79: CLK08-Sivan

instability stability

Continuous transition between stability and instability

0 Slope

Slope condition: quantitative approach

width

Page 80: CLK08-Sivan

Spectral condition: “old” approach

instability stability

Discontinuous transition between stability and instability

0 λ0(V)

drift

Page 81: CLK08-Sivan

instability stability

Continuous transition between stability and instability

λ0(V)

0

Spectral condition: quantitative approach

drift

Page 82: CLK08-Sivan

instability stability

Continuous transition between stability and instability

λ0(V)

0Can we get an analytical prediction for the drift rate as a function of ?

Spectral condition: quantitative approach

drift

λ0(V)

Page 83: CLK08-Sivan

• soliton width/potential period <<1

• Can use perturbation analysis!

• Expand potential as

• Solve for

( )21( ) (0) ''(0)2

V x V V xε= + +

Narrow solitons

soliton

ε =

2x x A= ∫

Page 84: CLK08-Sivan

Narrow solitons – cont.

• Center of mass obeys an oscillator equation!

2

22 22

2

Ehrenfest law

2 2 ''(0) ,x

d x d A V dV A xdz

εΩ

= − ∇ −∫ ∫

2 21( ) (0) ''(0)2

V x V V xε= + +

• Compute effective force

22 2 2

2 , 2 ''(0)d x x dVdz

ε= Ω Ω = −

Page 85: CLK08-Sivan

Narrow solitons - cont.

• Use perturbation analysis to compute eigenvalue

• Combine with Ω2 = - 2dV''(0)ε2 and get:

( )2 2 ( ) 2

04,(0) (0)

V dC CV V

λν

Ω = − =+

( )2

( )0

''(0)(0) (0)

V VV V

ελν

≈+

Page 86: CLK08-Sivan

Narrow solitons – cont.• Conclusion:

22 2 2 ( )

02 , Vd x x Cdz

λ= Ω Ω = −

( ) 20

( ) 20

stability0 0 oscil

ins

latory solutions

0 0 expone tabntial solution is il ty

V

V

λ

λ

⎧ > ⇒ Ω < ⇒ ⇒⎪⎨⎪ < ⇒ Ω > ⇒ ⇒⎩

(Lattice min.)

(Lattice max.)

Analytical quantitative relation between spectral condition ( ) and dynamics (Ω)λ0

(V)

Page 87: CLK08-Sivan

• But so far only for narrow beams • Can we compute the drift rate also for wider

solitons?

Page 88: CLK08-Sivan

Calculation of drift rate in a general setting

• Valid for– any soliton width – any potential (periodic/non-periodic, single/multi waveguide, …)– any nonlinearity (Kerr, cubic-quintic, saturable, …)– any dimension

( )

( ) ( )2 ( ) ( ) ( ) ( )

01( ) ( ) ( )

,0,

,

V VV V V V

V V V

f fC L f f

f L fλ+−

= > =

22 2 2 ( )

02 , Vd x x Cdz

λ= Ω Ω = −

Page 89: CLK08-Sivan

• Soliton slightly shifted from lattice max.

0 200

1

z

<x>

Examples of lateral dynamics (1)(0, ) ( )

shift

A x u x δ= −

max

min

max numerics

z/Ldiff400

Page 90: CLK08-Sivan

• Soliton slightly shifted from lattice max.• Solution of oscillator equation

– Ω is the drift (=instability) rate

– agreement up to the lattice min.– up to many diffraction lengths

Examples of lateral dynamics (1)

cosh( )x zδ= Ω

0 20

0

1

z

<x>

max

min

maxtheorynumerics

z/Ldiff400

(0, ) ( )shift

A x u x δ= −

Page 91: CLK08-Sivan

Drift rates

• Excellent agreement between analysis and numerics

d=1, weak lattice

d=2, strong lattice

10 100 3000

3

ν

Ω

0 50 1000

17

ν

Ω

theorynumerics

Page 92: CLK08-Sivan

• So far, studied instability dynamics• Oscillator equation good also for stability

dynamics

Examples of lateral dynamics (2)

max

max

min

z

– soliton moving at an angle from a lattice min.

sin( )tgx zθ= Ω

Ω• Solution of oscillator equation is

– Ω determines the maximal deviation (=strength of stability)

θ

Page 93: CLK08-Sivan

Examples of lateral dynamics (2)

• d=2, periodic lattice

Kerr (cubic) medium Cubic-Quintic medium

0 200

max

max

min

z / Ldiff

0 10

<x>

z / Ldiff

max

max

min

theory

numerics

sin( )tgx zθ= ΩΩ

Page 94: CLK08-Sivan

Implications of quantitative study

• Experimental example (Morandotti et al. 2000): – experiment in a slab waveguide array – soliton centered at a lattice max. does not drift to a

lattice min. over 18 diffraction lengths• Explanation: absence of observable drift due to

small drift rate• Theoretical instability but practical stability

Page 95: CLK08-Sivan

Summary• Qualitative approach

– Slope condition focusing instability– Spectral condition drift instability

• Quantitative approach– continuous transition between stability and instability– analytical formula for lateral dynamics– still open: find analytical formula for width dynamics

• “Theoretical” vs. “practical” stability/instability• Results valid for any physical configuration of

lattice, dimension, nonlinearity