cmb

33
CMB Early times Early times

Upload: denim

Post on 05-Jan-2016

17 views

Category:

Documents


0 download

DESCRIPTION

Early times. CMB. Today. Galaxies and clusters of galaxies. NGC 1512. Structure formation : gravity at play. 43 Mpc. N-body simulations (Kravtsov & Klypin). Basic ingredients Matter conservation (continuity) Momentum conservation (Euler) Gravity (Poisson equation) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CMB

CMB

Early timesEarly times

Page 2: CMB

Galaxies and clusters of galaxies

TodayToday

NGC 1512

Page 3: CMB

Structure formation : gravity at playStructure formation : gravity at playStructure formation : gravity at playStructure formation : gravity at play

N-body simulations (Kravtsov & Klypin)

43 M

pc

Page 4: CMB

Structure formation : a rapid primerStructure formation : a rapid primerStructure formation : a rapid primerStructure formation : a rapid primer

• Basic ingredients– Matter conservation (continuity)

– Momentum conservation (Euler)

– Gravity (Poisson equation)

– Expansion of the universe (H)

• Density Contrast

• Fourier Transform

( ) FT[ ( , )]k t r t

( , ) ( )( , ) 1

( )

r t tr t

t

Page 5: CMB

Structure formation : gravity vs. pressureStructure formation : gravity vs. pressureStructure formation : gravity vs. pressureStructure formation : gravity vs. pressure

• “Cosmic” Oscillators

22 0k k k kH

Damping due to expansion

(comoving)

Page 6: CMB

Structure formation : gravity vs. pressureStructure formation : gravity vs. pressureStructure formation : gravity vs. pressureStructure formation : gravity vs. pressure

• “Cosmic” Oscillators

• Competition between gravity and pressure

22 0k k k kH

2 22

24s

k N

c kG

a

Damping due to expansion

cs = sound speed

Pressure > gravity ωk2 > 0 : oscillations

Pressure < gravity ωk2 < 0 : density grows

Depends on scale!

(comoving)

Depends on expansion!

Page 7: CMB

Back to the CMB… : Temperature FluctuationsBack to the CMB… : Temperature FluctuationsBack to the CMB… : Temperature FluctuationsBack to the CMB… : Temperature Fluctuations

cmb cmb

( )( ) ~ ( , )

T n Tn r t

T

2.725 KT

Page 8: CMB

Quick fluctuation analysisQuick fluctuation analysisQuick fluctuation analysisQuick fluctuation analysis

• Fourier Transform on the Celestial Sphere

• Angular Power Spectrum Cl

0

( , ) ( , )l

mlm l

l m l

Ta Y

T

* ( , ) ( , )mlm l

Ta d Y

T

2

l lmC a

180~l

Sphericalharmonics

Cl : power in fluctuations of angular size θ

= FT ( ) ( ')l

T TC n n

T T

Weight ofeach mode

multipole where , 'n n

Page 9: CMB

180~l

Multipoles

All modes

l = 2

l = 4

l = 6

l = 8

l = 3

l = 5

l = 7

(Hin

shaw

et a

l.,

2007

)

Page 10: CMB

Harmonic multipole decomposition

(Clem Pryke, Chicago)

Page 11: CMB

CMB Power SpectrumCMB Power SpectrumCMB Power SpectrumCMB Power Spectrum

how much the temperature varies from point to point on the sky vs. the angular frequency l

Page 12: CMB

Basic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropies

Many contributions

Intrinsic “primordial”

Super-imposed “secondary”

Foregrounds “contaminants”

Cosmological

Local

Sunyaev-Zel’dovich effect

Last Scattering

Line-of-sight

Page 13: CMB

Basic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropies

Many contributions

Intrinsic “primordial”

Super-imposed “secondary”

Foregrounds “contaminants”

Cosmological

LocalLine-of-sight

Last Scattering

Page 14: CMB

Basic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropiesBasic physics of CMB anisotropies

Many contributions

Primordial anisotropies

Intrinsic “primordial”

Super-imposed “secondary”

Foregrounds “contaminants”

Cosmological

LocalLine-of-sight

Last Scattering

LS

1( ) ( ) ( ) . ( )

3 r r

Tn n n n v n

T

Densityfluctuations

Dopplereffect

Gravitationalredshift

Page 15: CMB

Acoustic peaksAcoustic peaksAcoustic peaksAcoustic peaks

• “Equation of motion” for Θ = ΔT/T (comoving coord.)

• Conformal time

• Effective “mass”

• Pulsation

22

eff eff3

cm k m g

where dt

a

= comoving particle horizon

eff

31 where

4bm R R

sound

eff3

kckc

m

Page 16: CMB

Step by step…Step by step…Step by step…Step by step…

• Consider g = 0, and R << 12 2

s eq0 ( ) cosk c ks

~3

ss c dwhere = distance reached by a

sound wave at time η

Rem : CMB s = scmb

• On large scales, kscmb<< 1

eq ( ) ~ plateau

Page 17: CMB

Step by step…Step by step…Step by step…Step by step…

• Consider g = 0, and R << 12 2

s eq0 ( ) cosk c ks

~3

ss c dwhere distance reached by a

sound wave at time η

• On smaller scales, kscmb>>1

cmb oscillationsnk s n

Rem : CMB s = scmb

Page 18: CMB

CMB CMB

(Wayne Hu, Chicago)

Page 19: CMB

Searching for scales on the skySearching for scales on the skySearching for scales on the skySearching for scales on the sky

• Luminosity distance

• Angular diameter distance

2 S

4L

Ld

F

(cf. Euclidean 1/d2 law)

LS : intrinsic luminosity of a source at z

F : meas. flux = observed lumin./surface

0 S S1L kd a f z FLRW space-time

phys

2 SS A A k

dSd d a f

d

Reminder : fk geometry

Page 20: CMB

Angular scales & Universe geometryAngular scales & Universe geometryAngular scales & Universe geometryAngular scales & Universe geometry

Spherical

Flat

Hyperbolic

θ

180~l

Sound horizon scale must appear in Cl

spectrum and probe geometry

Position of the Position of the first peak!first peak!

Page 21: CMB
Page 22: CMB

The CMB & the geometry of the UniverseThe CMB & the geometry of the Universe

Actual data(Boom., 1998)

Simulatedmaps

Spherical Flat Hyperbolic

Typical angularscale : 1o

Page 23: CMB

Step by step…Step by step…Step by step…Step by step…

• Consider g = 0, and R << 1 (radiation dominates)2 2

s eq0 ( ) cosk c ks

~3

ss c dwhere = distance reached by a

sound wave at time η

• On small scales : damping

Silk dampingRem : CMB s = scmb

• Neutrino free streaming

• Silk damping : photon mean free path viscosity, photon drag

Page 24: CMB

More effects…More effects…More effects…More effects…

• Effect of gravity, g 0 Shifts oscillation zero point :

photons have to climb out of potential wells

• Baryon loading, R ~ 1 at CMB sound speed decreased, oscillation amplitude increased,

adds inertia to oscillations

• Doppler term : Velocity : π/2 out of phase modulation

11 3 cos

3

TR ks R

T

Compression & rarefaction asymmetry

Odd peaks higher, even peaks lower

Page 25: CMB
Page 26: CMB
Page 27: CMB

Degeneracy in the CMBDegeneracy in the CMB

Page 28: CMB

Cosmological parameters & degeneraciesCosmological parameters & degeneraciesCosmological parameters & degeneraciesCosmological parameters & degeneracies(W

MA

P team

)

Page 29: CMB

Curing the degeneracies?

Combining independant

data !

Page 30: CMB
Page 31: CMB

CMB – The ultimate satellite : PlanckCMB – The ultimate satellite : Planck

Unequalledresolution

(0.08 degrees)

Will measureclearly the

polarisationpolarisation

Launched14 May 2009 !

HFI : J.-L. PugetHFI : J.-L. Puget

LFI : N. Mandolesi

Page 32: CMB

Kourou, French Guiana

26 February 2009

Page 33: CMB