cmos basics - lrz v d i gs v v const . ! 0 ds g s d d i gs v v const . 0 ds g d s off conducting...

21
SOCSA Slides: CMOS Basics © Institute for Integrated Systems Technische Universität München www.lis.ei.tum.de CMOS Basics System-on-Chip Solutions & Architectures A. Herkersdorf © Institute for Integrated Systems A. Herkersdorf SoC - CMOS Basics - 2 Module outline Introduction to CMOS Where is CMOS? What is CMOS? Why is CMOS so attractive? How does CMOS work? Basics CMOS Device Basics Static CMOS Logic Sequential Logic CMOS and FSM design Power Consumption Of Static CMOS Logic

Upload: truongdat

Post on 12-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

SOCSA Slides: CMOS Basics

© Institute for Integrated Systems Technische Universität München www.lis.ei.tum.de

CMOS Basics

System-on-Chip

Solutions & Architectures A. Herkersdorf

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 2

Module outline

Introduction to CMOS

Where is CMOS?

What is CMOS?

Why is CMOS so attractive?

How does CMOS work?

Basics

CMOS Device Basics

Static CMOS Logic

Sequential Logic CMOS and FSM design

Power Consumption Of Static CMOS Logic

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 3

Where is CMOS ?

DRAM

µP ASIC

FPGA

DS

P

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 4

Where is CMOS ? Where is CMOS ?

There !

DRAM

µP ASIC

FPGA

DS

P

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 5

Where is CMOS ? Where is CMOS ?

Gartner:

World-wide semiconductor revenue 2002: 155 B USD

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 6

Where isn‘t CMOS?

Bipolar Analog wireless

power amplifiers

recievers

very high speed digital communications

interface electronics

mm-wave defense

SiGe / GaAs ultra high speed

BiCMOS mixed-signal

high speed

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 7

Metal (Poly-Si) Oxide (SiO2) Semiconductor

CMOS - What is it?

nMOS pMOS

p+

n

n+

p

The C in CMOS signals the combination of p- and n-MOSFETS Complementary

gnd Vdd

The Channel type gives the prefix of the transistor

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 8

Why CMOS ?

Electrical Reasons Low power dissipation

Noise immunity

Clean logic levels

One supply voltage

Cascadable

Economical Reasons Easy to design

Fabrication well understood

Highly integrateable

Si-Wafer

SiO2-Layer

Light

Light patterns

Photoresist

Etching

Doping Atoms (P or As)

Photolithographic Mask Photoresist

Poly-Si-Layer

Lithography

Process

Deposition

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 9

Vdd Vdd 0 V

How does it work?

gnd Vdd 0 V -Vdd

gnd

inversion

inversion

n+

n+

p+

p+

p

p

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 10

How does it work?

Source(gnd)

Vgs

Vgs

0

Vds

ID

Vds=const.

0

Vt

Vt

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 11

How does it work?

Source(gnd)

Vgs

Vds

0

Vds

ID

Vds= Vgs(1)-Vt

0

Vt

Vgs(1)=const.

Vds= Vgs(2)-Vt

Vgs(2)=const.

Vgs-Vt

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 12

How does it work?

Vgs

Vds

0

Vds

ID

Vds= Vgs(1)-Vt

0

Vt

Vgs(1)=const.

Vds= Vgs(2)-Vt

Vgs(2)=const.

Vds> Vgs(2)-Vt

Source(gnd)

Vgs(1)

Vgs(2)

Vgs-Vt

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 13

Linear Region

Source(gnd)

Vgs

V(x)

x x+dx dQ

Linear Region Drain current:

1) ID= ρx v = dQ v / dx

Induced Charge/Area: 2) dQ = dC (Vgs -Vtn -V(x))

Differential Capacitance: 3) dC / dx = CG / L

Carrier speed: 4) v = - µ dV/dx

Boundary conditions: V(0)=0 and V(L)=Vds

L

Vds

DSDS

tGSG

Dn VV

VVL

CI

22

Only valid before pinch-off!

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 14

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 15

MOSFET Basics

nMOS pMOS

Schematic Symbols

Connections

DS

Gate

Drain Source

Bulk/Substrate

Gate

Drain Source

Bulk/Substrate

Substrate level usually goes to (omitted from now on)

Substrates are isolated.

+ (VDD ) - (gnd)

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 16

MOSFET Voltages And Drain Current

nMOS pMOS Vector Conventions*

DIGSV

DSV

G

DSD

I

G

D S

Source is always On lower potential On higher potential

Gate-Source Voltage

Drain-Source Voltage

Drain Current

00

*Please avoid VSG, VSD, VGD, VDG

DSV

GSV

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 17

MOSFET Input Characteristics

GSV

DI

tnV

GSV

DI

tpV

DI

GSV

0. constVDS

G

DSD

I GSV

0. constVDS

G

D S

off conducting off conducting

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 18

MOSFET Output Characteristics

DSV

DI

tnGSVV

DSV

tpGSVV

DI

DI

tnGSVconstV .

DSV

G

DSD

I

tpGSVconstV .

DSV

G

D S

linear saturation linear saturation

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 19

MOSFET Model Equations (Sah)

)(

)(0

)(0

2

2

0

2

saturationVVVVV

linearVVVVV

offVVV

VV

VV

VVI

tGSDStGS

tGSDStGS

DStGS

tGS

DSDS

tGSDn

DSV

DI

tnGSVV

GSV

DI

tnV

Sah

real

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 20

MOSFET Model Equations (Sah)

DSV

tpGSVV D

I

)(

)(0

)(0

2

2

0

2

saturationVVVVV

linearVVVVV

offVVV

VV

VV

VVI

tGSDStGS

tGSDStGS

DStGS

tGS

DSDS

tGSDp

GSVD

ItpV

Sah

real

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 21

Dimensioning

Oxt

minL

w

L

WK Transconductance: where

Ox

Ox

tK 0

Designer’s Parameter: W

Conflicting Design Goals: Area => W=Lmin

Speed => high W, l=Lmin

=> always use Lmin for digital circuits

Technology Parameters Mobility µn = 1.5 .. 3.5 x µp

Designer uses W to compensate for lower current drive of pMOSFETS

Minimum Feature Size: Lmin

Oxide dielectric/thickness: εox,tox

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 22

Module outline

Overview

CMOS Device Basics

Static CMOS Logic

Inverter

Logic Gates

Arithmetic in CMOS

Sequential Logic CMOS and FSM design

Power Consumption Of Static CMOS Logic

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 23

Static CMOS Inverter

gnd

A Z

gnd

VDD

VA VZ

D

S

S

P

N

Ip

VDSp

VGSp

VGSn

VDSn A Z

0 1

1 0

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 24

Static Voltage Transfer Curve (VTC)

gnd

VZ

VA Vtn VDD-|Vtp|

VDD

A Z

0 1

1 0

VDD

VA VZ

D

S

S

P

N

Ip

VDSp

VGSp

VGSn

VDSn

Ip

Vth

off

on

off on N P

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 25

VTC: Logic Levels “0” / “1”

gnd

VZ

VA Vtn VDD-|Vtp|

VDD

A Z

0 1

1 0

VDD

VA VZ

D

S

S

P

N

Ip

VDSp

VGSp

VGSn

VDSn

Vth

off

on

off on N P

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 26

Dynamic Behaviour VA

t

VZ

t

tpHL tpLH

Propagation delay from input to output No infinitely steep slopes

at input

Capacitive Load at the output needs to be (dis)charged

50% Signal level marks serve as measure hooks

Typical Inverter (65 nm) delay as of today: 24 ps

50%

50%

t

Ip

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 27

Effect of Input Slope on Inv. Delay

VA

t tHL

Transition time of a signal: Time elapsed between 10%

and 90% of swing

Effect on delay: For a falling (rising) input

signal, no output rise (fall) can occur before P (N) switches to on

10%

90% Vdd-

|Vtp|

P still off (Z still low)

P on (Z rising)

|Vtp|

tHL => tpLH Vtn

tLH => tpHL

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 28

Effect of Capacitance on Inv. Delay

VA

wire

Driving gate

Driven gate(s)

Other wire

A Z

Lumped capacitance

Lumped Capcitance: Input (gate) capacities of next

logic gates

+ Drain capacities

+ Wire capacities 0.13µ: 3-6 fF

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 29

Effect of Capacitance on Inv. Delay

VA

Lumped capacitance

VZ

Vdd

Vdsp

Vgsp

IC

Idp

C

t

VZ

t 50%

tpLH=f(C)=?

Vgsp=-Vdd

Vgsp-Vtp

Vdsp

For a first order analysis we assume the input slope to be infinitely steep …

VA

… and that we operate the FET in its linear region

Vgsp

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 30

Effect of Capacitance on Inv. Delay

t

t

VZ=VC

50%

Inverter model: on: Resistance

off: open switch

operating in linear region of Sah

Ron,n

C

gnd

Vdd Ron,p

VA

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 31

Effect of Capacitance on Inv. Delay

t

t

VA

VZ

50%

Ron,n

C

gnd

Vdd Ron,p

tpLH=f(C)=?

Inverter model: on: Resistance

off: open switch

operating in linear region of Sah

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 32

Effect of Capacitance on Inv. Delay

Derivation : 1) Kirchhoff for currents:

2) Capacitor formula:

3) W´s law:

4) Kirchhoff for voltages:

5) Resolve by ∂t:

6) Some math:

0

tV

CI Cdp

0Cdp

II

0,

tV

CR

VC

pon

dsp

0,

t

VC

RVV

C

pon

ddC

C

ddC

ponV

VV

CRt

,

2

1ln,

5.0

0

,

0

CRtVVV

CRt ponp

V

C

ddC

pon

tddp

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 33

Effect of Capacitance on Inv. Delay

21

, lnCRt ponpLH DS

V

DI

Sah

real pon

R,

simple

||||||tpGSpDSp

VVV for

DSp

DSp

tpGSpdp VV

VVI

2

||||1

,tpGSpdp

DSppon VVI

VR

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 34

Discussion

|| tpddOxpp

pOxloadpLH VVW

LtCt

Increase of Capacitive Load

Oxide thickness

Channel length

abs. threshold voltage

=> Propagation delay increase

... Mobility

Channel width

relative oxide (=k)

Supply Voltage

=>Propagation delay decrease

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 35

Dimensioning II

The threshold voltage is an important parameter.

It’s value must be carefully selected, by technology factors: Channel Doping

Oxide thickness

at design time: choosing a technology that supports

multiple (two) threshold voltages

by introducing a substrate voltage

at run time: by adopting the substrate voltage

to design conditions

gnd

Channel doping

Vbulk S

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 36

Simple Static CMOS Logic Gates

VDD

gnd

A

B

Z

D

A

B

Z

NAND

NOR Z

Z A

B

A

B

NAND NOR Z A B Z

1 0 0 1

1 0 1 0

1 1 0 0

0 1 1 0

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 37

Generic Model of Static CMOS

VDD

gnd

A1

...

An

Z

C

NAND NOR

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 38

Why not like this?

VDD

gnd

A

B

Z

OR ?

Drain

Source

Drain

Source VGSp

VGSn

MOSFET Input Characteristic Condition for MOSFET to build up

conducting channel: Vgs > Vt

In figure on the left:

nMOS pulls up Z to VDD – Vtn („bad pull up“)

pMOS pulls down Z to ¦Vtp¦ (bad „pull down“)

Problematic signal levels for next logic stage

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 39

Systematic Static CMOS Logic Design

Example Function: Z=AB+C CMOS always inverts => add

extra inverter: Z=AB+C

VDD

gnd

Z

parallel for OR (C) C

Start at the output and find a way through n-MOSFETS to ground:

serial for AND (AB)

A

B If everything is done right, there will never be a conducting path between Vdd and gnd.

A B

C

Draw the way to Vdd by using the dual n-network and p-MOSFETS

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 40

References

[1] R. J. Baker et al., CMOS circuit design, layout, and simulation, IEEE Press, 1998. ISBN 0-7803-3416-7

[2] N. H. E. Weste et al., Principles of CMOS VLSI Design, Addison Wesley, 1993. ISBN 0-201-53376-6

[3] SIA, International Technology Roadmap for Semiconductors, http://public.itrs.net/

Picture credits:

www.ibm.com ,www.alternate.de, www.spacedaily.com, www.gifte.de, www.brl.ntt.co.jp, www-imt.unine.ch, allserv.rug.ac.be

SOCSA Slides: CMOS Basics

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 41

© Institute for

Integrated Systems

A. Herkersdorf SoC - CMOS Basics - 42