co sorption by hydrotalcite-like compounds in dry and wet ......email:[email protected] 13th...

27
CO 2 sorption by hydrotalcite-like compounds in dry and wet conditions Alessandro Poliandri a , Francesca Micheli a , Katia Gallucci a , Leucio Rossi b , Pier Ugo Foscolo a a Department of Industrial Engineering, University of L’Aquila Email: [email protected] , [email protected], [email protected], [email protected] b Department of Physical and Chemical Science, University of L’Aquila Email:[email protected] 13 TH INTERNATIONAL CONFERENCE MULTIPHASE FLOW IN INDUSTRIAL PLANTS SESTRI LEVANTE (GENOVA), ITALY - 17-19 SEPTEMBER 2014

Upload: others

Post on 04-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • CO2 sorption by hydrotalcite-like compounds in dry and wet conditions

    Alessandro Poliandria, Francesca Michelia, Katia Galluccia, Leucio Rossib, Pier Ugo Foscoloa

    aDepartment of Industrial Engineering, University of L’Aquila Email: [email protected] , [email protected], [email protected], [email protected] b Department of Physical and Chemical Science, University of L’Aquila Email:[email protected]

    13TH INTERNATIONAL CONFERENCE MULTIPHASE FLOW IN INDUSTRIAL PLANTS

    SESTRI LEVANTE (GENOVA), ITALY - 17-19 SEPTEMBER 2014

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • Overview

    • Aims of the work

    • Introduction:

    • SEWGS application in gasification and IGCC processes

    • Materials: hydrotalcite-like compounds

    • Results:

    • Kinetic study: TG-DTA signals

    • Characterisation before tests: XRD and FT-IR analysis

    • Experimental apparatus: PSA plant

    • Capture tests: model approach

    • Characterisation after tests: XRD and FT-IR analysis

    • Conclusions

    2

    MFIP 2014

  • Aims of the work

    • The objective is to assess the feasibility of the Sorption-Enhanced Water−Gas Shift and Reforming Process (SEWGS and SERP)

    ▫ for an IGCC (Integrated Gasification Combined Cycle)

    ▫ and for Coal Gasification processes through a suitable material for CO2 capture,

    ▫ and in case for H2S capture, at typical WGS (Water Gas Shift) and Tar reforming conditions.

    • Synthesized materials are experimentally tested in a Pressure Swing Adsorption (PSA) laboratory scale plant

    3

    MFIP 2014

  • • CO from the gasification syngas has to be converted into H2 and CO2 via WGS reaction.

    • In SEWGS, the equilibrium of the reaction is shifted to the product side by using a CO2 sorbent.

    4

    MFIP 2014

    IGCC Power production with CO2 capture by SEWGS. Power is generated by gas turbines

    (GT) and steam turbines (ST), heat is recovered for steam generation (HRSG).

    (from ECN website)

    Coal

    Air/O2

    Steam Syngas

    generation SEWGS

    Power

    generation

    GT

    HRSG

    ST

    CO2

    Power

    Decarbonized

    H2 fuel

  • Introduction

    • Global emissions of anthropogenic CO2 and other greenhouse gases (GHG) increase significantly global warming effect.

    ▫ global CO2 emissions must be reduced of 50-80% within 2050 [IPCC]

    • Technologies for carbon-emission-free energy production (CCT) are currently under development, as CO2 capture and storage (CCS).

    ▫ R&D aim is reducing the fuel costs which are mainly due to

    low efficiency of CO2 capture

    capital costs of capture process equipments.

    5

    MFIP 2014

  • • CO2 capture process can use three different decarbonization techniques:

    ▫ pre-combustion,

    ▫ post-combustion,

    ▫ oxyfuel combustion

    • Pre-combustion advantages:

    ▫ Higher CO2 partial pressure

    ▫ Lower treated gas volume

    ▫ Smaller facilities

    ▫ Integration of pre-combustion CO2 capture within WGS reactor (Sorption Enhanced WGS).

    • In case of adsorption of CO2 coupled with WGS, the operating window is 250-400°C.

    6

    MFIP 2014

    Introduction

  • Project Name Location Feedstock Size MW

    Status

    Puertollano Spain Coal 14 Operational Sept. 2010

    Buggenum Netherlands Coal 20 Operational May 2011

    Polk FL, USA Coal 0.3 Mt/yr Operational Apr. 2014

    SOTACARBO Carbonia (Italy) Coal-Waste 0.4 Planning

    ENEA Rome (Italy) Coal 0.3 Planning

    7

    Project Name Location Feedstock Size MW Status

    Schwarze Pumpe

    Germany Coal 30 Operational Sept. 2008

    Compostilla Spain Coal 30 Operated 2009-2012

    Lacq France Oil 35 Operational 2010

    Callide-A Oxy Fuel

    Australia Coal 30 Operational Dec.2012

    http://sequestration.mit.edu/tools/projects/index_pilots.html

    Pilot pre-combustion CCS Projects

    Pilot oxy-combustion CCS Projects

    MFIP 2014

    http://sequestration.mit.edu/tools/projects/puertollanto.htmlhttp://sequestration.mit.edu/tools/projects/buggenum.htmlhttp://sequestration.mit.edu/tools/projects/polk.htmlhttp://sequestration.mit.edu/tools/projects/polk.htmlhttp://sequestration.mit.edu/tools/projects/polk.htmlhttp://sequestration.mit.edu/tools/projects/polk.htmlhttp://sequestration.mit.edu/tools/projects/polk.htmlhttp://sequestration.mit.edu/tools/projects/vattenfall_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/vattenfall_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/compostilla.htmlhttp://sequestration.mit.edu/tools/projects/total_lacq.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/callide_a_oxyfuel.htmlhttp://sequestration.mit.edu/tools/projects/index_pilots.html

  • Pilot post-combustion CCS Projects

    Project Name Location Feedstock Size MW Status

    ECO2 Burger OH, USA Coal 1 Operated 2008- 2010

    Pleasant Prairie WI, USA Coal 5 Operated 2008-2009

    AEP Mountaineer WV, USA Coal 30 Operated 2009-2011

    Karlshamn Sweden Oil 5 Operated 2009-2010

    Jilin China Nat. Gas 0.2 Mt/yr Operational 2009

    Shidongkou China Coal 0.1 Mt/yr Operational 2011

    Brindisi Italy Coal 48 Operational Mar. 2011

    Ferrybridge UK Coal 5 Operational Nov.2012

    Mongstad Norway Gas 0.1 Mt/yr Operational May 2012

    Plant Barry AL, USA Coal 25 Operational Aug 2012

    Aberthaw Wales, UK Coal 3 Operational Jan. 2013

    Boryeong Station South Korea Coal 10 Operational May 2013

    Big Bend Station FL, USA Coal 1 Planning

    8

    MFIP 2014

    http://sequestration.mit.edu/tools/projects/berger.htmlhttp://sequestration.mit.edu/tools/projects/pleasant_prairie.htmlhttp://sequestration.mit.edu/tools/projects/pleasant_prairie.htmlhttp://sequestration.mit.edu/tools/projects/pleasant_prairie.htmlhttp://sequestration.mit.edu/tools/projects/aep_alstom_mountaineer.htmlhttp://sequestration.mit.edu/tools/projects/eon_karlshamn.htmlhttp://sequestration.mit.edu/tools/projects/jilin.htmlhttp://sequestration.mit.edu/tools/projects/shidongkou.htmlhttp://sequestration.mit.edu/tools/projects/enel_1.htmlhttp://sequestration.mit.edu/tools/projects/sse_ferrybridge.htmlhttp://sequestration.mit.edu/tools/projects/statoil_mongstad.htmlhttp://sequestration.mit.edu/tools/projects/plant_barry.htmlhttp://sequestration.mit.edu/tools/projects/aberthaw.htmlhttp://sequestration.mit.edu/tools/projects/kepco.htmlhttp://sequestration.mit.edu/tools/projects/kepco.htmlhttp://sequestration.mit.edu/tools/projects/kepco.htmlhttp://sequestration.mit.edu/tools/projects/big_bend.htmlhttp://sequestration.mit.edu/tools/projects/big_bend.htmlhttp://sequestration.mit.edu/tools/projects/big_bend.htmlhttp://sequestration.mit.edu/tools/projects/big_bend.html

  • Introduction • State-of-the-art of EU programs:

    ▫ CACHET II (Carbon dioxide capture and hydrogen production with membranes)

    ▫ CAESAR (CArbon-free Electricity by SEWGS: Advanced materials, Reactor-, and process design) pilot plant installation (35 ton CO2/day) with K-HTC

    sorbent, called ALKASORB1. ▫ ASCENT2 (Advanced Solid Cycles with Efficient Novel

    Technologies) efficiency of carbon removal of pre-combustion capture

    (electricity efficiency up to 52%) cost of CO2 avoided of about 35€/t.

    9

    MFIP 2014

    1Jansen, D., Selow, E.R. van, Cobden, P.D., Manzolini, G., Macchi, E., Gazzani, M., Blom, R., Pakdel Henriksen, P., Beavis, R., Wright, A., ( 2013 ). Energy Procedia, 37, 2265– 2273 2 http://ascentproject.eu/

    http://ascentproject.eu/

  • Introduction

    MFIP 2014

    10

    • A wide range of properties are required for sorbent materials to achieve an industrially feasible process: ▫ high sorbent capacity; ▫ high selectivity; ▫ good mechanical strength; ▫ stable adsorption capacity after cycles; ▫ adequate adsorption/desorption kinetics under

    operating conditions; ▫ regenerability of sorbent without extreme temperature

    and pressure conditions; ▫ tolerance to the presence of water and impurities (H2S,

    NH3, HCl);

  • Materials: hydrotalcite-like compounds

    11

    • Synthesis method1,2: low supersaturation @ pH= 8÷10

    • Thermal treatments: drying at 120°C for 24 h, calcination at 700°C or 450°C for 8 h.

    • Incipient wet impregnation with K2CO3 (20%w)

    MFIP 2014

    1Narayanan, S. and Krishna, K., (1998). Applied Catalysis A: General, 174(1-2), 221-229. 2 Gallucci, K., Micheli, F., Parabello, L., Rossi, L. and Foscolo, P.U., (2014). GPE – 4th International Congress on Green Process Engineering, 7-10 April 2014, Sevilla (Spain)

  • Sample identification Composition Calcination temperature

    HT1-700 Mg : Al = 2 : 1

    700°C

    HT2-700 Ca : Al = 2 : 1

    HT3-700 Mg : Ca : Al = 1 : 1 : 1

    HT1K-700 HT1 + K2CO3 (20%w)

    HT2K-700 HT2 + K2CO3 (20%w)

    HT3K-700 HT3 + K2CO3 (20%w)

    HT1-450 Mg : Al = 2 : 1

    450°C HT3-450 Mg : Ca : Al = 1 : 1 : 1

    HT1K-450 HT1 + K2CO3 (20%w)

    HT3K-450 HT3 + K2CO3 (20%w)

    12

    Materials: tested sorbents MFIP 2014

  • 13

    MFIP 2014

    Kinetic study: TG-DTA signals

    n = 1.26 · S½

    Reaction order

    Activation energy

    TG-DTA Linseis L81 analyser with L40/2053 gas flow control system

  • Results

    14

    MFIP 2014

    Decomposed compound

    Temperature range (°C)

    Reaction order Activation energy (kcal/mol)

    HT1 HT2 HT3 HT1 HT2 HT3

    Water 70-190 n.a. 1.06 - n.a. 8.36 -

    R1 190-280 0.79 0.69 - 19.4 24.6 -

    R2 280-405 0.43 - 58.2 -

    Carbonates 850-1000 - 1.65 1.51 - 205 216

    R1: Dehydroxilation of Al-OH R2: Decomposition of Mg(OH)2 superimposed to CO2 release

  • XDR characterisation before tests

    15

    XRD patterns of: (a) dry HT1

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y (

    a.u

    .)

    (a)

    *

    **

    **

    **

    *

    *

    *

    *: Hydrotalcite

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y (

    a.u

    .)

    (b)

    (c)

    (d)

    Δ

    Δ

    ΔΔ

    Δ

    Δ

    Δ

    Δ

    Δ

    ΔΔ

    Δ: Periclase

    x: Aluminum Oxide

    ■: Dawsonite, potassic

    x

    x

    x

    Δ

    XRD patterns of: (b) HT1-700, (c) HT1-450, (d) HT1K-450

    MFIP 2014

    PANanalyticalX'Pert PRO XRD diffractometer

  • 16

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y [

    a.u

    .]

    (a)

    (b)

    (c)

    : Calcium carbonate

    +: Aragonite●: Aluminum Hydroxide

    : Lime

    #: Calcium Hydroxide

    - : Mayenite^: Calcium Aluminum Oxide Hydrate

    ' : Calcium Oxide

    : Potassium Calcium Carbonate

    ○○

    ○ ○

    ○○

    ○○○

    ○ ○+

    ++++

    ++++++

    ++ +++

    ○ ○ ○

    #

    ###

    ##

    #

    #

    #

    ----

    -

    -

    ----

    -

    --- - --^ ^^^^^^^

    ^''

    '- -

    XRD patterns of: (a) dry HT2, (b), HT2-700, (c) HT2K-700

    XRD patterns of: (a) dry HT3, (b), HT3-700, (c) HT3-450,

    (d) HT3K-700, (e) HT3K-450

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y (

    a.u

    .)

    (a)

    (b)

    (c)

    (d)

    ***

    *●*

    #'

    ######

    '''

    '

    ΔΔ

    ◊ ◊◊◊ ◊ ◊~~

    *: Hydrotalcite

    : Calcium Carbonate

    ●: Aluminum Hydroxide

    Δ: Periclase

    #: Calcium Hydroxide

    ~: Aluminum Oxide Hydroxide

    ' : Calcium Oxide

    : Potassium Calcium Carbonate

    '

    MFIP 2014

  • FT-IR analysis before tests

    17

    MFIP 2014

    IR Vibration [cm-1] samples after drying

    1400-1600 Carbonate area

    2700-4000 Physically adsorbed water Vibration of OH- groups

    HT1 HT2 HT3 “Free anion” 1415: asymmetric stretching 880: out of plane deformation 680: in plane deformation (Busca e Lorenzelli, 1982) 2510: C-O stretching mode of calcite (Andersen and Brecevic, 1991)

    1348 2507 2507

    867 1014 1380

    657 711 1014

    871 854

    640

    IR Vibration [cm-1] samples after calcination

    HT1 HT2 HT3 1535-1430: asymmetric stretching of carbonates (Walspurger et al. 2008) OH- stretching of Ca(OH)2 (Fernández-Carrasco L et al. 2012)

    1400 1475

    1405 1452

    1405 1452

    3641 3641

    ThermoNicolet FT-IR Nexus 870 spectrophotometer

  • Experimental apparatus: PSA plant

    18

    Flowsheet of the laboratory scale plant: 1: evaporator; 2: microreactor; 3: electric furnace; 4: chiller; 5: analyser.

    MFIP 2014

  • Capture tests: operating conditions

    19

    Dry tests Wet tests

    Adsorption Regeneration Adsorption Regeneration

    Temperature 350°C

    Pressure 5 bar

    (100% CO2) 1 bar

    5 bar (85%v CO2)

    1 bar

    N2 dilution flowrate 1 Nl/min

    CO2 flowrate 50 Nml/min

    H2O(l) flowrate - - 6 l/min (15%v as steam)

    MFIP 2014

  • Capture tests: Adsorption model

    MFIP 2014

    20

    [CO

    2(t

    )]/[

    CO

    2] f

    inal

  • Capture tests: results

    21

    MFIP 2014

    0

    0.5

    1

    1.5

    2

    2.5

    So

    rp

    tio

    n c

    ap

    ac

    ity

    [m

    mo

    lCO

    2/g

    so

    rb

    en

    t]

    Dry conditions

    Wet conditions

  • Characterisation after tests

    22

    MFIP 2014

    0 10 20 30 40 50 60 70 80

    Inte

    nsi

    ty (

    a.u

    .)

    (a)

    (b)

    (c)

    (d)

    Δ

    Δ

    Δ

    Δ

    Δ

    x

    Δ

    Δ

    Δ

    Δ

    Δ

    x

    x

    Δ

    ΔΔ

    Δ Δ

    Δ Δ

    ↓↓

    ⱡⱡⱡⱡΔ

    Δ

    Δ

    Δ

    ⱡ ↓↓ⱡ

    Δ: Periclase

    ⱡ: Potassium Carbonate↓: Silicon Oxide

    x: Aluminum Oxide

    XRD patterns after dry tests of: (a) HT1-700, (b) HT1-450, (c) HT1K-700, (d) HT1K-450

  • MFIP 2014

    23

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y [

    a.u

    .]

    (a)

    (b)

    ○ ○○○

    ○○

    ◊◊◊

    ○ ○ ○○

    #

    -

    ##

    #

    ↓ ↓↓

    ◊◊

    -

    -

    --

    -

    -

    -

    -

    -

    -

    -

    ---

    --

    - ----

    -

    -- ----

    : Calcium carbonate

    #: Calcium Hydroxide

    - : Mayenite : Potassium Calcium Carbonate

    ↓: Silcon Oxide

    XRD patterns of tested samples: (a) HT2-700, (b), HT2K-700

    0 10 20 30 40 50 60 70 80

    In

    ten

    sit

    y [

    a.u

    .]

    (a)

    (b)

    (c)

    (d)

    : Calcium Carbonate

    Δ: Periclase

    #: Calcium Hydroxide

    ~: Aluminum Oxide Hydroxide

    : Potassium Calcium Carbonate

    : Magnesium Calcite

    #

    #

    #

    #

    ↓ Δ

    Δ

    # #

    #

    #

    #

    ◊ ◊#

    ◊ # # #

    ◊~

    ◊◊ ◊

    ◊ #

    ~

    ◊ # ~

    XRD patterns of tested samples: (a)HT3-700, (b) HT3-450,

    (c) HT3K-700, (d) HT3K-450

  • FT-IR analysis • Similar results for HT1-450

    and HT1-700: Slight increase of the asymmetrical

    vibration mode of the carbonate ν3 at 1494 cm-1 and a decrease at 1403 cm-1

    • HT1K-450 and HT1K-700 • Increase of ν3 asymmetrical

    carbonate peaks • Increase of a peak at 1043 cm-1 • Possible chemical interaction

    among potassium, hydrotalcite and CO2

    • HT2-700 • Two sharp peaks arise at 1423 and

    837 cm-1 derived from the chemisorption of CO2 on CaO (Busca e Lorenzelli, 1982)

    MFIP 2014

    24

  • Conclusions

    • Sorption capacities increased of 30% at 5bar with respect atmospheric test1

    • HT1_700 is the best sorbent in dry conditions (1.6 mmolco2/gsorbent)

    • HT1_450 is the best sorbent in wet conditions (1.25 mmolco2/gsorbent)

    • Potassium impregnation stabilises trend under cyclic conditions

    • Future development: Further studies on potassium impregnation

    Long-term cyclic experiments

    Higher pressure tests (up to 30 bar, and 400°C) with a new designed reactor.

    25

    MFIP 2014

    1 Gallucci, K., Micheli, F., Parabello, L., Rossi, L. and Foscolo, P.U. GPE – 4th International Congress on Green Process Engineering, 7-10 April 2014, Sevilla (Spain)

  • ACKNOWLEDGEMENTS

    • Authors are grateful to:

    ▫ Prof. Giuliana Taglieri and MEng Ilaria Aloisi for XRD analysis

    ▫ Mrs. Fabiola Ferrante for FT-IR and TG-DTA analysis.

    ▫ ENEA (Italian National Agency for Energy and Environment) for financial support.

    26

    MFIP 2014

  • Thank you for your attention!

    27

    MFIP 2014