coating microchannels to improve field-flow fractionation · polymer brush free energy cost...

40
μ-FFF ss-FFF Simulations Conclusion Coating microchannels to improve Field-Flow Fractionation Tyler Shendruk Gary Slater September 12, 2011 Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Upload: others

Post on 05-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Coating microchannelsto improve Field-Flow Fractionation

Tyler ShendrukGary Slater

September 12, 2011

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 2: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Normal-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

` ` `` ``` `` -〈V〉

?

Field Force f

6Diffusion-

-

-

-

-

- Flow Profile 〈v〉

Figure: Schematic of normal-mode FFF.

Fractionation

λ ≡ kBT

fw

c (y) = c0e−y/λ

〈V〉 =〈cv〉〈c〉

R ≡ 〈V〉〈v〉

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 3: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Normal-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

` ` `` ``` `` -〈V〉

?

Field Force f

6Diffusion-

-

-

-

-

- Flow Profile 〈v〉

Figure: Schematic of normal-mode FFF.

Fractionation

λ ≡ kBT

fw

c (y) = c0e−y/λ

〈V〉 =〈cv〉〈c〉

R ≡ 〈V〉〈v〉

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 4: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Normal-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

` ` `` ``` `` -〈V〉

?

Field Force f

6Diffusion-

-

-

-

-

- Flow Profile 〈v〉

Figure: Schematic of normal-mode FFF.

Fractionation

λ ≡ kBT

fw

c (y) = c0e−y/λ

〈V〉 =〈cv〉〈c〉

R ≡ 〈V〉〈v〉

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 5: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Normal-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

` ` `` ``` `` -〈V〉

?

Field Force f

6Diffusion-

-

-

-

-

- Flow Profile 〈v〉

Figure: Schematic of normal-mode FFF.

Fractionation

λ ≡ kBT

fw

c (y) = c0e−y/λ

〈V〉 =〈cv〉〈c〉

R ≡ 〈V〉〈v〉

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 6: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Normal-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

` ` `` ``` `` -〈V〉

?

Field Force f

6Diffusion-

-

-

-

-

- Flow Profile 〈v〉

Figure: Schematic of normal-mode FFF.

Fractionation

λ ≡ kBT

fw

c (y) = c0e−y/λ

〈V〉 =〈cv〉〈c〉

R ≡ 〈V〉〈v〉

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 7: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Steric-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

6

?

6

?

``` ```` ``` ` ``` m- ����

--

-

-

-

-

-

Figure: Schematic of steric-mode FFF.

Excluded Region

c (y) =

{c0e

−(y−r)/λ for r < y < 1− r

0 otherwise.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 8: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Steric-mode Field Flow Fractionation

�� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@

6

?

6

?

``` ```` ``` ` ``` m- ����

--

-

-

-

-

-

Figure: Schematic of steric-mode FFF.

Excluded Region

c (y) =

{c0e

−(y−r)/λ for r < y < 1− r

0 otherwise.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 9: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Selective-mode Field Flow Fractionation

�� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H6?

ξ

Figure: Schematic of selective-mode FFF.

Polymer Brush

Free energy cost

Hydrodynamicthickness

Brush Model

Alexander Brushstep-function model

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 10: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Selective-mode Field Flow Fractionation

�� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H6?

ξ sss s|

Figure: Schematic of selective-mode FFF.

Polymer Brush

Free energy cost

Hydrodynamicthickness

Brush Model

Alexander Brushstep-function model

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 11: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Selective-mode Field Flow Fractionation

�� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H6?

ξ 〈V〉 ≈ 0sss s|〈V〉--

--

---

Figure: Schematic of selective-mode FFF.

Polymer Brush

Free energy cost

Hydrodynamicthickness

Brush Model

Alexander Brushstep-function model

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 12: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Normal-mode FFFSteric-mode FFFSelective-mode FFF

Selective-mode Field Flow Fractionation

�� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H6?

ξ 〈V〉 ≈ 0sss s|〈V〉--

--

---

Figure: Schematic of selective-mode FFF.

Polymer Brush

Free energy cost

Hydrodynamicthickness

Brush Model

Alexander Brushstep-function model

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 13: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Flow Profile

Brush Model

Alexander Brush

porous: blobsize setspermeability

Brinkman Equation

η∇2v +η

ξ2v = ∇p

0.0 0.2 0.4 0.6 0.8 1.0

y0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

v

H=0

H=0.1 ξ=0.05

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 14: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Flow Profile

Brush Model

Alexander Brush

porous: blobsize setspermeability

Brinkman Equation

η∇2v +η

ξ2v = ∇p

0.0 0.2 0.4 0.6 0.8 1.0

y0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

v

H=0

H=0.1 ξ=0.05

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 15: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Modes of Approach

�� �� �� �� �� �� ��

&%'$

~���

LLLeeeeeeee eeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeee

Figure: Two modes of approach.

Compression Mode

Fcmp = Fint + Fel

≈ F0

(H

h

) 13ν−1

+

(h

H

) 4ν−13ν−1

where F0 = H/ξ.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 16: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Modes of Approach

�� �� �� �� �� �� ��

&%'$

~���

LLLeeeeeeee eeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeee

Figure: Two modes of approach.

Insertion ModeGenerally,

Fins = Π(φ)V + γ(φ)A

When r > ξ

Fins

kBT∼(

r

ξ

)3 [1 +

ξ

r

]

When r < ξ

Fins

kBT∼(

r

ξ

)3−1/ν

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 17: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Modes of Approach

�� �� �� �� �� �� ��

&%'$

~���

LLLeeeeeeee eeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeee

Figure: Two modes of approach.

Insertion ModeGenerally,

Fins = Π(φ)V + γ(φ)A

When r > ξ

Fins

kBT∼(

r

ξ

)3 [1 +

ξ

r

]

When r < ξ

Fins

kBT∼(

r

ξ

)3−1/ν

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 18: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Modes of Approach

�� �� �� �� �� �� ��

&%'$

~���

LLLeeeeeeee eeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeee

Figure: Two modes of approach.

Insertion ModeGenerally,

Fins = Π(φ)V + γ(φ)A

When r > ξ

Fins

kBT∼(

r

ξ

)3 [1 +

ξ

r

]

When r < ξ

Fins

kBT∼(

r

ξ

)3−1/ν

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 19: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Modes of Approach

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

r/ξ

Fin

s/k

BT

r=ξT r=ξ

ν=3/5

ν=1/2

Insertion ModeGenerally,

Fins = Π(φ)V + γ(φ)A

When r > ξ

Fins

kBT∼(

r

ξ

)3 [1 +

ξ

r

]

When r < ξ

Fins

kBT∼(

r

ξ

)3−1/ν

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 20: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Concentration Profile

Figure: The piece-wise free energy cost creates abrupt changes in c (y , r)such that the concentration plumets when r < ξ. Forλ = kBT/fw = 0.05, H = 0.1 and ξ = 0.05.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 21: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.0 0.1 0.2 0.3 0.4 0.5

r0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 22: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.00 0.05 0.10 0.15 0.20

r0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 23: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.00 0.05 0.10 0.15 0.20

r0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 24: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 25: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 26: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileFree Energy CostRetention

Retention Ratio, R = 〈V〉 / 〈v〉

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0

FFF is nonmonotonic

Brush makes R : r → 1 : 1 overlarger range

Dense brush increases resolution

At this size, retention isindependent of field

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.05

0.00 0.05 0.10 0.15 0.20

r

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R

H=0.1 ξ=0.005

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 27: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

MPC-MD Hybrid

Multi-Particle Collision Dynamics

MPC-MD Hybrid

Ideal for Pe≈ 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1/R

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

D

0 5 10 15 20y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

φ

N=20,σ=0.20

N=20,σ=0.40

x

5

10

15

y

10

20

30

40

~ v

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 5 10 15 20

y0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

v

H=0

σ=0.20 N=20

σ=0.40 N=20

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 28: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

MPC-MD Hybrid

Multi-Particle Collision Dynamics

MPC-MD Hybrid

Ideal for Pe≈ 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1/R

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

D

0 5 10 15 20y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

φ

N=20,σ=0.20

N=20,σ=0.40

x

5

10

15

y

10

20

30

40

~ v

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 5 10 15 20

y0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

v

H=0

σ=0.20 N=20

σ=0.40 N=20

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 29: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

MPC-MD Hybrid

Multi-Particle Collision Dynamics

MPC-MD Hybrid

Ideal for Pe≈ 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1/R

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

D

0 5 10 15 20y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

φ

N=20,σ=0.20

N=20,σ=0.40

x

5

10

15

y

10

20

30

40

~ v

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 5 10 15 20

y0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

v

H=0

σ=0.20 N=20

σ=0.40 N=20

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 30: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Conclusions

Selective Steric-mode Field Flow Fractionation

Polymer brush alters FFF by

screening flow within the brushenacting free energy cost to enter

Polymer brush leads to

increased monotonic rangeincreased resolutionsignificantly increased resolution of solutes smaller than blobs

Simple model to be corroborated by MPC-MD simulations

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 31: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Thank you,

Thank you to the U. of O. Polymer Physics Group members

Mykyta Chubynsky

Yugou Tau

Henk DeHaan

David Sean

Owen Hickey

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 32: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Steric-mode FFF

0.0 0.1 0.2 0.3 0.4 0.5

r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

λ

100

20

10

2

1

0.5

0.2

0.1

0.02

0.01

0.002

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

⟨ y⟩

Figure: Retentionratios for fixedretention parameters,λ.

0.0 0.1 0.2 0.3 0.4 0.5

r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

Λ

0.2

0.1

0.05

0.02

0.01

0.005

0.002

0.001

0.0005

0.0002

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

⟨ y⟩

Figure: Retentionratios when forcevaries with particlesize λ = Λr−α.

λ =kBT

fw

=kBT

µrαw

= Λr−α

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 33: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Snug-mode FFF

�� �� �� �� �� �� �� �� ��

@@ @@ @@ @@ @@ @@ @@ @@ @@

&%'$

����

-

-

-

-

-

-

Flow Profile

Figure: Schematic of snug-mode FFF.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 34: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Snug-mode FFF

0.0 0.1 0.2 0.3 0.4 0.5

r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

λ

100

20

10

2

1

0.5

0.2

0.1

0.02

0.01

0.002

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

⟨ y⟩

Figure: Retentionratios for fixedretention parameters,λ.

0.0 0.1 0.2 0.3 0.4 0.5

r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

Λ

0.2

0.1

0.05

0.02

0.01

0.005

0.002

0.001

0.0005

0.0002

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

⟨ y⟩

Figure: Retentionratios when forcevaries with particlesize λ = Λr−α.

0.0 0.1 0.2 0.3 0.4 0.5

r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R

Λ

0.0020.0040.0060.0080.010.0120.0140.0160.018

Figure: Retentionratios when velocityprofile average oversurface area.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 35: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Snug-mode FFF

0 1 2 3 4 5 6 7 8r [µm]

0

5

10

15

20

w[µm

]

GoldSilicaPolystyrene

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 36: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Flow ProfileBrinkman equation:

η∇2v +η

ξ2v = ∇p

where ξ is the hydrodynamic penetration depth which acts as the typical pore size and corresponds to thecorrelation length of the chains.

Alexander Brush - step function density

ξ =b

φν/(3ν−1)

L. Miao, H. Guo, M.J. Zuckermann. Conformation of polymer brushes under shear. Macromolecules,29(6):22892297, 1996.Parabolic Brush - density falls linearly at extremity

ξ =b

φ

S. T. Milner. Hydrodynamic penetration into parabolic brushes. Macromolecules, 24(12):37043705, 1991.

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 37: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Free Energy Coefficients

∆F

kBT∼

F0

[(Hh

)1/(3ν−1)+(hH

)(1−4ν)/(1−3ν) − 1]

r � H(rξ

)3H � r � ξ(

)3 [1 + ξ

r

]r ≥ ξ(

)3−1/νξ > r > ξT

rξid

ξT > r > b

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 38: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Free Energy Coefficients

∆F

kBT∼

F0

[(Hh

)1/(3ν−1)+(hH

)(1−4ν)/(1−3ν) − 1]

r ≥ H(rξ

)3 [1 + ξ

r

]ξ ≤ r ≤ H(

)3−1/νr ≤ ξ

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 39: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Free Energy Coefficients

∆F

kBT=

a1F0

[(Hh

)1/(3ν−1)+(hH

)(1−4ν)/(1−3ν) − 1]

r ≥ H

a2

(rξ

)3 [1 + ξ

r

]ξ ≤ r ≤ H

a3

(rξ

)3−1/νr ≤ ξ

Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation

Page 40: Coating microchannels to improve Field-Flow Fractionation · Polymer Brush Free energy cost Hydrodynamic thickness Brush Model Alexander Brush step-function model Tyler Shendruk Gary

µ-FFFss-FFF

SimulationsConclusion

Free Energy Coefficients

∆F

kBT=

a1F0

[(Hh

)1/(3ν−1)+(hH

)(1−4ν)/(1−3ν) − 1]

r ≥ H

a2

(rξ

)3 [1 + ξ

r

]ξ ≤ r ≤ H

a3

(rξ

)3−1/νr ≤ ξ

Recalling F0 = H/ξ. At r = H, F1 = F2 such that

a1 = a2

(H

ξ

)2 [1 +

ξ

H

]At r = ξ, F2 = F3 and we see

a3 = 2a2

We choose a2 = 1.Tyler Shendruk Gary Slater Coating microchannels to improve Field-Flow Fractionation