coefficientinequalitiesforjanowski-sakaguchi...

12
Hacettepe Journal of Mathematics and Statistics Volume 47 (2) (2018), 261 – 271 Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions Muhammad Arif * , Zhi-Gang Wang †‡ , Rafiullah Khan § and See Keong Lee Abstract The purpose of the present paper is to introduce and study some new subclasses of Sakaguchi-type functions defined by using the concept of Janowski functions in conic regions. Various interesting properties such as sufficiency criteria, coefficient estimates and distortion result are investigated for these function classes. Keywords: Sakaguchi-type function; Janowski function; conic domain. 2000 AMS Classification: Primary 30C45; Secondary 30C50. Received : 01.12.2016 Accepted : 31.01.2017 Doi : 10.15672/HJMS.2017.448 1. Introduction Let A be the class of functions f of the form (1.1) f (z)= z + X n=2 anz n , which are analytic in the open unit disk D = {z C : |z| < 1}. As usual, S represents the class of all functions in A which are univalent in D. If f and g are analytic functions in D, then we say that f is subordinate to g, denoted by f g or f (z) g (z) , if there exists an analytic function w in D with |w(z)| < |z| * Department of Mathematics, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan. Email : marifmaths@awkum.edu.pk School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, China. Email : wangmath@163.com Corresponding Author. § Department of Mathematics, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan. Email : rafilec@gmail.com School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. Email : sklee@cs.usm.my

Upload: others

Post on 18-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

Hacettepe Journal of Mathematics and StatisticsVolume 47 (2) (2018), 261 – 271

Coefficient inequalities for Janowski-Sakaguchitype functions associated with conic regions

Muhammad Arif∗, Zhi-Gang Wang†‡, Rafiullah Khan§ and See Keong Lee¶

AbstractThe purpose of the present paper is to introduce and study some newsubclasses of Sakaguchi-type functions defined by using the conceptof Janowski functions in conic regions. Various interesting propertiessuch as sufficiency criteria, coefficient estimates and distortion resultare investigated for these function classes.

Keywords: Sakaguchi-type function; Janowski function; conic domain.

2000 AMS Classification: Primary 30C45; Secondary 30C50.

Received : 01.12.2016 Accepted : 31.01.2017 Doi : 10.15672/HJMS.2017.448

1. IntroductionLet A be the class of functions f of the form

(1.1) f (z) = z +

∞∑n=2

anzn,

which are analytic in the open unit disk D = z ∈ C : |z| < 1. As usual, S representsthe class of all functions in A which are univalent in D.

If f and g are analytic functions in D, then we say that f is subordinate to g, denotedby f ≺ g or f (z) ≺ g (z) , if there exists an analytic function w in D with |w(z)| < |z|

∗Department of Mathematics, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.Email : [email protected]†School of Mathematics and Computing Science, Hunan First Normal University, Changsha

410205, Hunan, China.Email : [email protected]‡Corresponding Author.§Department of Mathematics, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.

Email : [email protected]¶School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

Email : [email protected]

Page 2: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

262

such that f(z) = g (w(z)). Furthermore, if the function g is univalent in D, then we havethe following equivalence:

f (z) ≺ g (z)⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

For arbitrary fixed numbers A,B and σ satisfying −1 ≤ B < A ≤ 1, 0 ≤ σ < 1, letP (A,B, σ) denote the family of functions

q(z) = 1 +

∞∑n=1

qnzn (z ∈ D).

The function q belongs to the class P (A,B, σ) if and only if

q(z) ≺ (1− σ)

(1 +Az

1 +Bz

)+ σ.

Thus, q ∈ P (A,B, σ) if and only if for some w with |w(z)| < |z| , we have

q(z) =(1− σ) (1 +Aw(z)) + σ (1 +Bw(z))

(1 +Bw(z)).

This class was investigated by Polatoglu [18], and further by putting σ = 0 in P (A,B, σ) ,we get the class P (A,B) intoduced by Janowski [6]. Also we note that P (1,−1, σ) ≡ P(σ)denotes the familiar class of functions with positive real part greater than σ (see, fordetails, [4]). The classes P and P[A,B] are connected by

p (z) ∈ P(σ)⇐⇒ (A+ 1) p (z)− (A− 1)

(B + 1) p (z)− (B − 1)∈ P[A,B, σ].

Janowski functions are studied by several researchers like Cho [2], Liu and Noor [10], Liuand Srivastava [12], Noor and Arif [13], Polatoğlu [17], Shams et al. [21] and Wang et al.[24], see also [3, 11].

Consider the domain

(1.2) Ωk =

u+ iv : u > k

√(u− 1)2 + v2

,

for fixed k, Ωk represents the conic region bounded by the imaginary axis (k = 0), theright branch of a hyperbola (0 < k < 1) and a parabola (k = 1) and an ellipse (k > 1).Also, we note that, for no choice of k (k > 1), Ωk reduces to a disk. This domain wasstudied by Kanas [7] and Kanas and Wisniowska [8, 9]. They also extended this domainto Ωk,σ defined by

Ωk,σ = (1− σ) Ωk + σ (0 ≤ σ < 1).

The function pk,σ, with pk,σ (0) = 1, p′k,σ (0) > 0 plays the role of extremal for theseconic domain Ωk,σ and is given by

(1.3) pk,σ (z) =

1+(1−2σ)z1−z , k = 0,

1 + 2(1−σ)π2

(log 1+

√z

1−√z

)2, k = 1,

1 + 2(1−σ)1−k2 sinh2

[(2π

arccos k)

arc tanh√z], 0 < k < 1,

1 + (1−σ)k2−1

sin

π2R(t)

u(z)√t∫

0

1√1−x2√

1−(tx)2dx

+ 1k2−1

, k > 1,

Page 3: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

263

where u(z) = z−√t

1−√tz

(t ∈ (0, 1)) and t is chosen such that k = cosh(πR′(t)4R(t)

), with R(t) is

Legendre’s complete elliptic integral of the first kind and R′(t) is complementary integralof R(t). For details on related work about conic domains, see [1, 5, 8, 9, 14, 23].

Let Ppk,σ denote the class of all functions p which are analytic in D with p (0) = 1and p (z) ≺ pk,σ (z) for z ∈ D. Clearly, it can be seen that Ppk,σ ⊂ P.

1.1. Definition. (See [15]) A function p ∈ k − P [A,B] if and only if

(1.4) p (z) ≺ (A+ 1) pk(z)− (A− 1)

(B + 1) pk(z)− (B − 1)(k ≥ 0),

where pk(z) = pk,0 (z) and −1 ≤ B < A ≤ 1.

Geometrically, the function p ∈ k−P [A,B] takes all values in conic domain Ωk [A,B] , −1 ≤B < A ≤ 1, k ≥ 0 such that for w ∈ Ωk [A,B], we have

(1.5) <(

(B − 1)w(z)− (A− 1)

(B + 1)w(z)− (A+ 1)

)> k

∣∣∣∣ (B − 1)w(z)− (A− 1)

(B + 1)w(z)− (A+ 1)− 1

∣∣∣∣ ,or equivalently,

Ωk [A,B] =u+ iv :

[(B2 − 1

) (u2 + v2

)− 2 (AB − 1)u+

(A2 − 1

)]2> k2

[− 2 (B + 1)

(u2 + v2

)+ 2 (A+B + 2)u− 2 (A+ 1)2

+ 4 (A−B)2 v2].

The domain Ωk [A,B] contains the conic domain Ωk inside the circular region definedby Ω [A,B] . The impact of Ω [A,B] on the conic domain Ωk changes the original shapeof the conic regions. The ends of hyperbola and parabola get closer to each other butnever meet anywhere and the ellipse gets the shape of oval. When A = 1, B = −1, theradius of the circular disk defined by Ω [A,B] tends to infinity, consequently the arms ofhyperbola and parabola expand and the oval turns into ellipse.

Motivated essentially by the recent paper of Noor and Malik [15], we define someclasses of analytic functions associated with conic domains as follows:

1.2. Definition. A function p ∈ k − P [A,B, σ] if and only if

p (z) ≺ (A+ 1) pk,σ (z)− (A− 1)

(B + 1) pk,σ (z)− (B − 1),

where pk,σ (z) is defined by (1.3) and 0 ≤ σ < 1, k ≥ 0 and −1 ≤ B < A ≤ 1.

1.3. Definition. Let f ∈ A. Then f ∈ k−US [A,B, σ, t] if and only if

(1− t) zf ′ (z)f (z)− f (tz)

∈ k − P [A,B, σ] ,

for some 0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

1.4. Definition. Let f ∈ A. Then f ∈ k−UC [A,B, σ, t] if and only if

(1− t) (zf ′ (z))′

f ′ (z)− tf ′ (tz) ∈ k − P [A,B, σ] ,

for some 0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

It can easily be seen that

(1.6) f ∈ k−UC [A,B, σ, t]⇐⇒ zf ′ ∈ k−US [A,B, σ, t] .

We here present several special cases of the above mentioned function classes.

Page 4: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

264

(1) For σ = 0 and t = 0 the above classes reduce to the classes k−ST [A,B] andk−UC [A,B] studied recently by Noor and Malik [15];

(2) For k = 0, A = 1, B = −1, we obtain the classes S (σ, t) and T (σ, t) discussedin [16];

(3) The classes 0−US [1,−1, σ,−1] = S (σ,−1) and 0−UC [1,−1, σ,−1] = T (σ,−1)were introduced and studied by Owa et al. [16];

(4) The classes 0−US [1,−1, 0,−1] = S (0,−1) and 0−UC [1,−1, 0,−1] = T (0,−1)were defined by Sakaguchi [20];

(5) The classes 0−ST [A,B] = S∗ [A,B] and 0−UC [A,B] = C [A,B] , were intro-duced and studied by Janowski [6].

Unless otherwise mentioned, throughout this paper, we assume that

0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

The main objective of the present paper is to introduce and study some new subclassesof Sakaguchi-type functions defined by using the concept of Janowski functions in conicregions. Various interesting properties such as sufficiency criteria, coefficient estimatesand distortion result are investigated for these function classes.

2. Main ResultsTo prove our main results, we need the following two lemmas.

2.1. Lemma. (See [19]) Let

p (z) = 1 +

∞∑n=1

pnzn ≺ F (z) = 1 +

∞∑n=1

dnzn (z ∈ D).

If F is univalent in D and F (D) is convex, then

|pn| ≤ |d1| (n ≥ 1).

2.2. Lemma. (See [15]) Let p (z) = 1 +∞∑n=1

cnzn ∈ k − P [A,B, σ] . Then

|cn| ≤ |δAB | ,where

(2.1) |δAB | =(A−B) |δk,σ|

2,

and

(2.2) δk,σ =

8(1−σ)(arccos k)2

π2(1−k2), 0 ≤ k < 1,

8(1−σ)π2 , k = 1,

π2(1−σ)4√t(k2−1)R2(t)(1+t)

, k > 1.

We begin by deriving the following result.

2.3. Theorem. Let f ∈ k−US [A,B, σ, t]. Then

|a2| ≤|δAB ||2− u2|

,

and for n ≥ 3

|an| ≤|δAB ||vn|

1 + |δAB |

n−1∑j=2

|uj ||vj | + |δAB |2

n−1∑j2>j1

n−2∑j1=2

|uj1uj2 ||vj1vj2 |

+

|δAB |3n−1∑j3>j2

n−2∑j2>j1

n−3∑j1=2

|uj1uj2uj3 ||vj1vj2vj3 |

+ · · ·+ |δAB |n−2n−1∏j=2

|uj ||vj |

,

Page 5: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

265

where δAB is defined by (2.1) and

(2.3) un = 1 + t+ t2 + · · ·+ tn−1 and vn = n− un.

Proof. Consider

(2.4) (1− t) zf ′ (z) = (f (z)− f (tz)) p (z) ,

where p ∈ k − P [A,B, σ]. Let p (z) = 1 +∞∑n=1

cnzn. It follows from (2.4) that

z +

∞∑n=2

nanzn =

(z +

∞∑n=2

unanzn

)(1 +

∞∑n=1

cnzn

).

Equating the coefficients of zn on both sides of the above equation, we have

nan = unan +

n−1∑j=1

an−jun−jcj ,

which implies that

(2.5) |n− un| |an| ≤n−1∑j=1

|un−j | |an−j | |cj | .

Since p ∈ k − P [A,B, σ], by Lemma 2.2, we obtain

|cn| ≤ |δAB | ,

where δAB is defined by (2.1). Hence (2.5) reduces to

(2.6) |an| ≤|δAB ||n− un|

n−1∑j=1

|un−j | |an−j | (n ≥ 2).

It is clear from (2.6) that for n ≥ 2, we see that

|a2| ≤|δAB ||2− u2|

,

|a3| ≤|δAB ||3− u3|

[1 + |δAB |

|u2||2− u2|

],

and

|a4| ≤|δAB ||4− u4|

[1 + |δAB |

|u2||2− u2|

+|u3||3− u3|

+ |δAB |2

|u2| |u3|

|2− u2| |3− u3|

].

Hence by using mathematical induction, we obtain the desired result.

For t = 0 and σ = 0, we get the following result obtained in [15].

2.4. Corollary. Let f ∈ k−ST [A,B]. Then

|an| ≤n−2∏j=0

|δk (A−B)− 2jB|2 (j + 1)

(n ≥ 2).

Furthermore, by taking A = 1 and B = −1 in the last Corollary 2.4, we obtain thefollowing result for the class k−ST, which was introduced by Kanas and Wisniowska [8].

2.5. Corollary. Let f ∈ k−ST. Then

|an| ≤n−2∏j=0

|δk + j|(j + 1)

(n ≥ 2).

Page 6: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

266

By putting A = 1 − 2β, 0 ≤ β < 1, B = −1, t = 0 and σ = 0 in Theorem 2.3, weobtain the coefficient bounds for SD (k, β), defined by Shams et al. [21].

2.6. Corollary. Let f ∈ SD (k, β). Then

(2.7) |an| ≤n−2∏j=0

|δk (1− β) + j|(j + 1)

(n ≥ 2).

The inequality (2.7) is better than the result obtained by Owa et al. [16].

By setting t = 0, σ = 0, k = 0 and δk = 2 in Theorem 2.3, we get the followingcoefficient bounds which was proved by Janowski [6].

2.7. Corollary. Let f ∈ S∗ [A,B]. Then

|an| ≤n−2∏j=0

|(A−B)− jB|(j + 1)

(n ≥ 2).

Further by setting A = 1 − 2β with 0 ≤ β < 1, B = −1, we obatin the coefficientestimates for the class S∗(β), introduced by Robertson [4].

2.8. Theorem. Let f ∈ k−UC [A,B, σ, t]. Then, for n ≥ 2

|an| ≤|δAB |n |vn|

1 + |δAB |

n−1∑j=2

|uj ||vj | + |δAB |2

n−1∑j2>j1

n−2∑j1=2

|uj1uj2 ||vj1vi2 |

+ |δAB |3n−1∑j3>j2

n−2∑j2>j1

n−3∑j1=2

|uj1uj2uj3 ||vj1vj2vj3 |

+ · · · |δAB |n−2n−1∏j=2

|uj ||vj |

,

where δAB, un and vn are defined by (2.1) and (2.3), respectively.

Proof. By virtue of Theorem 2.3 and the relationship (1.6) , we get the required result.

2.9. Theorem. Let f ∈ A satisfies the condition

(2.8)∞∑n=2

[2 (k + 1)

(1− σ)|n− un|+ |n (B + 1)− (A+ 1)un|

]|an| < (A−B) .

Then f ∈ k−US [A,B, σ, t] .

Page 7: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

267

Proof. Assume that (2.8) holds. Let us consider

(2.9)

k

∣∣∣∣∣∣ (B − 1) (1−t)zf ′(z)f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣=k

∣∣∣∣ (B − 1) (1− t) zf ′ (z)− (A− 1) (f (z)− f (tz))

(B + 1) (1− t) zf ′ (z)− (A+ 1) (f (z)− f (tz))− 1

∣∣∣∣=2k

∣∣∣∣ (1− t) zf ′ (z)− (f (z)− f (tz))

(B + 1) (1− t) zf ′ (z)− (A+ 1) (f (z)− f (tz))

∣∣∣∣=2k

∣∣∣∣∣∣∣∣∞∑n=2

(n− un) anzn

(B −A) z +∞∑n=2

(n (B + 1)− (A+ 1)un) anzn

∣∣∣∣∣∣∣∣≤

2k∞∑n=2

|(n− un) an| |zn|

(A−B) |z| −∞∑n=2

|n (B + 1)− (A+ 1)un| |an| |zn|

≤2k∞∑n=2

|(n− un) an|

(A−B)−∞∑n=2

|n (B + 1)− (A+ 1)un| |an|,

it follows from (2.8) that

(A−B)−∞∑n=2

|n (B + 1)− (A+ 1)un| |an| > 0.

To show that f ∈ k−US [A,B, σ, t] , it is sufficient to show that

k

∣∣∣∣∣∣ (B − 1) (1−t)zf ′(z)f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣−< (B − 1) (1−t)zf ′(z)

f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)f(z)−f(tz) − (A+ 1)

− 1

< 1−σ.

From (2.9), we obtain

k

∣∣∣∣∣∣ (B − 1) 2zf ′(z)f(z)−f(−z) − (A− 1)

(B + 1) 2zf ′(z)f(z)−f(−z) − (A+ 1)

− 1

∣∣∣∣∣∣−< (B − 1) 2zf ′(z)

f(z)−f(−z) − (A− 1)

(B + 1) 2zf ′(z)f(z)−f(−z) − (A+ 1)

− 1

≤ (k + 1)

∣∣∣∣∣∣ (B − 1) 2zf ′(z)f(z)−f(tz) − (A− 1)

(B + 1) 2zf ′(z)f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣≤

2 (k + 1)∞∑n=2

|(n− un) an|

(A−B)−∞∑n=2

|n (B + 1)− (A+ 1)un| |an|.

Last inequality is bounded by 1− σ if

2 (k + 1)

∞∑n=2

|(n− un) an| < (1− σ)

((A−B)−

∞∑n=2

|n (B + 1)− (A+ 1)un| |an|

).

Hence, we have∞∑n=2

[2 (k + 1)

(1− σ)|n− un|+ |n (B + 1)− (A+ 1)un|

]|an| < (A−B) .

Page 8: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

268

This completes the proof.

Taking t = 0, σ = 0, A = 1 and B = −1 in Theorem 2.9, then we get the followingknown result, proved by Kanas and Wisniowska [8].

2.10. Corollary. If f ∈ A satisfies the condition∞∑n=2

[n+ k (n− 1)] |an| < 1 (k ≥ 0),

then f ∈ k−ST.

When we put t = 0, σ = 0, A = 1 − 2β and B = −1 in the Theorem 2.9, we obtainthe following result proved by Shams et al. [21].

2.11. Corollary. If f ∈ A satisfies the condition∞∑n=2

[n(k + 1)− (k + β)] |an| < 1− β (k ≥ 0),

then f ∈ SD (k, β) .

Moreover, by taking k = 0 in Corollary 2.11, we get the following known result provedby Silverman [22].

2.12. Corollary. If f ∈ A satisfies the condition∞∑n=2

[n− β] |an| < 1− β (0 ≤ β < 1),

then f ∈ S∗(β).

2.13. Theorem. If f ∈ A satisfies the condition

(2.10)∞∑n=2

n

[2 (k + 1)

(1− σ)|n− un|+ |n (B + 1)− (A+ 1)un|

]|an| < (A−B) ,

then f ∈ k−UC [A,B, σ, t].

Proof. The proof follows directly by Theorem 2.9 and (1.6) .

When t = 0 and σ = 0, we obtain the following result proved in [15].

2.14. Corollary. If f ∈ A satisfies the condition∞∑n=2

n [2 (k + 1) (n− 1) + |n (B + 1)− (A+ 1)|] |an| ≤ (A−B) ,

then f ∈ k−UC [A,B].

We now define the classes k−US∗ [A,B, σ, t] and k−UC∗ [A,B, σ, t]:

k−US∗ [A,B, σ, t] = f ∈ A : f satisfies the condition (2.8) ,

and

k−UC∗ [A,B, σ, t] = f ∈ A : f satisfies the condition (2.10) .

Page 9: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

269

2.15. Theorem. If f ∈ k−US∗ [A,B, σ, t] , then

|z| −∞∑n=2

|an| |z|n −Al |z|l+1 ≤ |f (z)| ≤ |z|+∞∑n=2

|an| |z|n +Al |z|l+1 ,

where

Al =

(1− σ) (A−B)−l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an|

[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|.

Proof. From (2.8), we have

(2.11)∞∑

n=l+1

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an|

≤ (1− σ) (A−B)−l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an| .

Since

(2.12)[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|]≥ [2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un| ,

and hence

[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un|

is monotonically increasing with respect to n. Thus, from (2.11) and (2.12), we get

(2.13)∞∑

n=l+1

[[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un|] |an|

≤ (1− σ) (A−B)−l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an| .

Moreover, we see that

(2.14)

[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|∞∑

n=l+1

|an|

≤∞∑

n=l+1

[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un| |an|

From (2.13) and (2.14), we can write∞∑

n=l+1

|an| ≤ Al.

Therefore, we obtain

|f (z)| ≤ |z|+l∑

n=2

|an| |z|n +

l∑n=2

|an| |z|l+1 ≤ |z|+l∑

n=2

|an| |z|n +Al |z|l+1

Page 10: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

270

and

|f (z)| ≥ |z| −l∑

n=2

|an| |z|n −Al |z|l+1 .

This completes the proof.

Similarly, we get the following result.

2.16. Theorem. If f ∈ k−UC∗ [A,B, σ, t] , then

|z| −l∑

n=2

|an| |z|n −Bl |z|l+1 ≤ |f (z)| ≤ |z|+l∑

n=2

|an| |z|n +Bl |z|l+1 ,

and

1−l∑

n=2

n |an| |z|n−1 − Cl |z|l ≤∣∣f ′ (z)∣∣ ≤ 1 +

l∑n=2

n |an| |z|n−1 + Cl |z|l ,

where

Bl =

(1− σ) (A−B)−l∑

n=2

n [2 (k + 1) |n− un|+ (1− σ) |n (B + 1)− (A+ 1)un|] |an|

(l + 1) [2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|and

Cl =

(1− σ) (A−B)−l∑

n=2

n [2 (k + 1) |n− un|+ (1− σ) |n (B + 1)− (A+ 1)un|] |an|

[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|.

Acknowledgments

The present investigation was supported by the Natural Science Foundation of HunanProvince under Grant no. 2016JJ2036.

References[1] M. Arif, S. Mehmood, J. Sokól and J. Dziok, New subclass of analytic functions in conical

domain associated with a linear operator, Acta Math. Sci., 36B (2016), 704–7016.[2] N. E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math.

Anal. Appl., 283 (2003), 202–212.[3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties

for certain subclasses of multivalent functions associated with a family of linear operators,J. Math. Anal. Appl., 292 (2004), 470–480.

[4] A. W. Goodman, Univalent functions, Vol. I & II, Polygonal Publishing House, Washington,New Jersey, 1983.

[5] W. Haq and S. Mahmood, Certain properties of a class of close-to-convex functions relatedto conic domains, Abstr. Appl. Anal., 2013 (2013), 6 pp.

[6] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon.Math., 28 (1973), 297–326.

[7] S. Kanas, Techniques of the differential subordination for domains bounded by conic sec-tions, Int. J. Math. Math. Sci., 38 (2003), 2389–2400.

[8] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math.Pures Appl., 45 (2000), 647–657.

[9] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl.Math., 105 (1999), 327–336.

Page 11: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal

271

[10] J.-L. Liu and K. I. Noor, On subordinations for certain analytic functions associated withNoor integral operator, Appl. Math. Comput., 187 (2007), 1453–1460.

[11] J.-L. Liu and J. Patel, Certain properties of multivalent functions associated with an ex-tended fractional integral operator, Appl. Math. Comput., 203 (2004), 703–713.

[12] J.-L. Liu and H. M. Srivastava, Certain properties of the Dziok–Srivastava operator, Appl.Math. Comput., 159 (2004), 485–493.

[13] K. I. Noor and M. Arif, Mapping properties of an integral operator, Appl. Math. Lett., 25(2012), 1826–1829.

[14] K. I. Noor, M. Arif and W. Ul-Haq, On k-uniformly close-to-convex functions of complexorder, Appl. Math. Comput., 215 (2009), 629–635.

[15] K. I. Noor and S. N. Malik, On coeffcient inequalities of functions associated with conicdomains, Comput. Math. Appl., 62 (2011), 2209–2217.

[16] S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput.,187 (2007), 356–361.

[17] Y. Polatoglu, Some results of analytic functions in the unit disc, Publ. Inst. Math. (Beograd)(N. S.), 78 (2005), 79–86.

[18] Y. Polatoglu, S. M. Bolcal and E. Yavuz, A study on the generalization of Janowski functionsin the unit disc, Acta Math. Acad. Paedagog. Nyhazi. (N. S.), 22 (2006), 97–105.

[19] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lodon Math. Soc., 48(1943), 48–82.

[20] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75.[21] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex

functions, Int. J. Math. Math. Sci., 55 (2004), 2959–2961.[22] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51

(1975), 109–116.[23] H. M. Srivastava, M. R. Khan and M. Arif, Some subclasses of close-to-convex mappings

associated with conic regions, Appl. Math. Comput., 285 (2016), 94–102.[24] Z.-G. Wang, M. Raza, M. Ayaz and M. Arif, On certain multivalent functions involving the

generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067–6076.

Page 12: CoefficientinequalitiesforJanowski-Sakaguchi ...hjms.hacettepe.edu.tr/uploads/91efa30b-c18d-42fc... · andSrivastava[12],NoorandArif[13],Polatoğlu[17],Shamsetal. [21]andWangetal