color theory project

28
Appearance of Color: Daylight vs. Retail Department Stores By: Kelly McCamley DS 451 Professor Sarmadi 4/30/2014

Upload: kelly-mccamley

Post on 12-Jan-2017

140 views

Category:

Documents


0 download

TRANSCRIPT

   

Appearance  of  Color:    Daylight  vs.  Retail  Department  Stores  

 By:  Kelly  McCamley  

DS  451  Professor  Sarmadi  

4/30/2014  

  2  

Table  of  Contents      Proposal                     3  

Introduction  and  Statement  of  Problem       4  

Literature  Review                 5  

Objectives                   8  

Hypothesis                   9  

Limitations                   9  

Assumptions                   10  

Procedures                   11  

Results  and  Discussion               12  

Summary  and  Conclusion             24  

Appendix                   27  

References                   38    

  3  

Approved  Proposal      

Perception  of  Color:  Daylight  vs.  Retail  Department  Stores    Topic:  

• My  project  proposal  is  to  compare  and  contrast  daylight  and  the  lighting  in  a  popular  retail  department  store.    The  specific  retail  department  store  that  I  am  going  to  focus  on  is  Target  because  it  was  ranked  3rd  in  2013’s  Top  Retailers.    The  type  of  lighting  that  Target  uses  is  cool  fluorescent  and  I  will  be  comparing  the  cool  fluorescent  lighting  to  daylight.    

 Samples:  

• 150  paint  chips  o Standard:  Daylight    o Sample:  Cool  Fluorescent      

Measurement:  • I  will  perform  the  research  using  the  spectrophotometer  to  obtain  the  lightness  

(L*),  a*,  b*,  chroma  (C*),  and  hue  (h)  levels  of  150  paint  chips.  After  organizing  such  values  in  an  excel  spreadsheet,  I  will  then  determine  whether  or  not  the  colors  on  the  paint  chips  under  daylight  or  cool  fluorescent  have  any  relationships.      

Hypothesis:  • My  hypothesis  is  that  there  will  be  a  difference  in  the  levels  of  saturation  (C*)  in  

colors  under  daylight  (standard)  and  cool  fluorescent  lighting  (batch).    More  specifically,  I  predict  that  blue  colors  under  cool  fluorescent  lighting  will  have  higher  saturation  (C*)  and  that  red  and  green  color  will  have  a  lower  saturation  (C*)  in  comparison  to  daylight.      

Questions:  • Between  the  standard  (daylight)  and  cool  fluorescent  light,  were  there  any  

similarities  or  differences  between  the  lightness  (L*)  values?  • Between  the  standard  (daylight)  and  cool  fluorescent  light,  were  there  any  

similarities  or  differences  between  a*  and  b*  values?  • Between  the  standard  (daylight)  and  cool  fluorescent  light,  were  there  any  

similarities  or  differences  between  the  chroma  (C*)  values?  • Should  consumers  take  into  consideration  the  type  of  lighting  in  departments  

stores,  such  as  cool  fluorescent,  while  shopping?        

  4  

 Introduction  and  Statement  of  Problem:    

As  a  retail  student,  I  have  been  exposed  to  internships  and  part-­‐time  jobs  in  

retail  department  stores.    While  gaining  work  experience  in  various  retail  stores  such  

as  JC  Penney  and  Maurice’s  I  noticed  there  was  different  lighting  used  when  displaying  

products.    Also,  while  shopping  I  have  noticed  the  products  I  purchase  appear  different  

at  home  or  outside  in  comparison  to  inside  retail  stores.  From  both  my  work  and  

shopping  experiences  is  where  I  gained  interest  in  the  lighting  used  in  retail  

department  stores.  

Target  has  been  a  department  store  that  I  have  been  shopping  at  for  as  long  as  I  

can  remember  and  is  one  of  the  top  retailers  in  the  United  States  today.    I  want  to  use  

Target’s  lighting  as  my  batch  since  I  am  and  always  will  be  a  loyal  customer  to  them.    

Target  uses  cool  fluorescent  lighting  throughout  their  entire  store  and  I  will  be  

comparing  Target’s  cool  fluorescent  lighting  to  daylight.    Daylight  is  my  standard  

because  it  has  the  largest  spectrum.    I  also  believe  that  daylight  would  be  an  

appropriate  standard  because  Target’s  products  that  are  purchased  are  exposed  to  a  

great  amount  of  natural  daylight  in  consumer’s  everyday  lives  and  households.    I  have  

obtained  150  paint  chips  that  will  be  compared  under  daylight  and  cool  fluorescent  

lighting.    I  have  decided  to  use  paint  chips  because  I  will  be  able  to  clearly  see  

similarities  and  differences  amongst  colors  under  daylight  verses  cool  fluorescent  

lighting.    Considering  that  cool  fluorescent  light  bulbs  have  high  amounts  of  short  

wavelengths  (blue)  I  believe  colors  such  as  red  and  green  will  appear  gray  and  dull  in  

comparison  to  blue.    

  5  

 Literature  Review:      

Out  of  all  of  our  senses,  sight  is  the  most  dominant.    Sight  controls  and  defines  

how  people  perceive  the  world  (“Lightpoints”  4).    With  sight  being  such  an  important  

factor  in  people’s  everyday  lives  it  is  important  to  be  aware  of  different  types  of  light  

sources  people  are  exposed  too.    Daylight  is  a  light  source  that  people  are  exposed  to  

several  times  a  day.      Daylight  has  the  best  representation  of  color  because  it  has  the  

largest  spectrum.    Direct  sunlight  at  noon  is  an  almost  perfectly  balanced  light  source  

and  contains  all  color  in  nearly  equal  quantities  (“Lightpoints”  20).    Another  type  of  

lighting  is  incandescent  lighting.    Many  people  consider  incandescent  light  to  be  

normal  because  it  is  what  a  large  amount  of  people  use  to  illuminate  their  homes.  

Incandescent  light  tends  to  produce  more  red  and  yellow  light  than  green  and  blue,  and  

appear  to  be  “warm”  in  color  (“Lightpoints”  5).    People  like  incandescent  light  bulbs  

because  they  are  affordable  but  one  major  drawback  is  that  they  are  inefficient.    A  light  

source  that  is  efficient  and  has  a  longer  lamp  life  is  cool  fluorescent  light  bulbs.    Cool  

fluorescent  light  is  an  unevenly  balanced  light  source  with  a  greater  amount  of  short  

(blue)  wavelengths  in  comparison  to  longer  (green  and  red)  wavelengths.    Fluorescent  

lightings  account  for  approximately  67  percent  of  lightings  used  worldwide  due  to  the  

new  lighting  energy  policy,  but  it  lacks  the  warm  colors  of  the  spectrum.    Even  though  

cool  fluorescent  light  enhances  blue  and  green,  it  makes  red  and  orange  appear  dull  

(Singh,  783).    

  Consumers  are  beginning  to  see  a  shift  in  not  only  the  lighting  in  retail  

department  stores,  but  also  their  own  homes  because  of  the  United  States  lighting  

  6  

energy  policy.    In  2007,  president  Bush  signed  the  energy  independence  and  security  

act,  which  moved  towards  increased  efficiency  in  order  to  lower  green  house  gas  

emissions  and  energy  use.    One  of  the  three  provisions  enacted  was  the  lighting  and  

efficiency  standards,  which  focused  on  phasing  out  incandescent  light  bulbs  with  more  

efficient  light  sources  (“Lights  out  for  the  Incandescent  Light  Bulb”  1).    The  most  

common  way  to  express  the  energy  efficiency  of  a  light  source  is  its  “efficiency”  which  

is  the  ratio  of  lumens  it  produces  to  each  watt  of  power  it  consumes.    According  to  our  

lecture  on  April  16th,  this  ratio  is  also  known  as  the  lumens  per  watt  (LPM).  It  is  one  of  

the  most  critical  characteristics  because  it  is  the  LPM  that  reports  the  efficiency  of  the  

light  bulb,  not  the  amount  of  watts  (Sarmadi).  Beginning  January  1st  2014  the  two  most  

popular  incandescent  light  bulbs,  60  and  40  watt,  were  banned  (“Lights  out  for  the  

Incandescent  Light  Bulb”  1).    Retailers  such  as  Home  Depot  have  been  purchasing  

incandescent  light  bulbs  in  bulk  to  try  to  supply  consumers  as  long  as  possible  but  are  

expected  to  run  out  within  6  months.    Retailers  are  not  the  only  ones  buying  

incandescent  light  bulbs  in  bulk,  interior  designers  have  been  hoarding  as  early  as  two  

years  ago  (“Lights  out  for  the  Incandescent  Light  Bulb”  1).    One  of  the  main  reasons  

that  retailers  and  consumers  were  hoarding  incandescent  light  bulbs  was  because  

compact  fluorescent  light  bulbs  emit  a  pale  blue  or  whiter  light  that  does  not  quite  

match  the  already  familiar  incandescent  light  bulbs.    Even  though  consumers  are  not  

used  to  compact  fluorescent  lighting  in  their  homes,  they  will  eventually  start  to  see  

compact  fluorescent  lighting  as  the  new  normal.  Compact  fluorescent  light  bulbs  are  

costly  but  the  tradeoff  is  the  dramatic  drop  in  power  consumption  and  the  much  longer  

lifespan,  which  can  last  up  to  15  times  longer  than  incandescent  lighting.    

  7  

  Target  has  been  influenced  by  the  United  States  light  energy  policy  and  has  

taken  steps  to  be  more  eco-­‐friendly.    Target  has  replaced  their  cool  fluorescent  lamps  

in  their  refrigerators  with  GE  LED  lighting.    According  to  Leds  Magazine,  moving  to  

LEDs  in  reach-­‐in  freezer  and  cooler  door  cases,  Target  expects  to  cut  energy  use  by  

60%  relative  to  the  previously  used  fluorescent  systems  (1).    The  remainder  of  Target  

is  still  using  cool  fluorescent  lighting  and  there  has  been  no  update  on  whether  or  not  

Target  will  expand  their  LED  lighting  to  their  entire  store  in  the  near  future.    Currently,  

Target  has  taken  steps  to  abide  by  the  United  States  light  energy  policy  and  use  cool  

fluorescent  in  the  majority  of  their  store,  with  LED  lighting  in  their  refrigerators.    

  Especially  now  with  the  phasing  out  of  incandescent  light  bulbs,  the  colors  seen  

in  retail  department  stores  verses  at  home  may  appear  different.  With  retail  

department  stores  such  as  Target  using  cool  fluorescent  lighting  in  the  majority  of  their  

store,  consumers  are  likely  to  perceive  the  colors  on  the  products  differently  than  

when  they  see  the  products  under  daylight.    Items  of  clothing  bought  at  a  store  under  

fluorescent  light  may  appear  to  change  color  when  viewed  at  home  under  incandescent  

light  or  daylight.  In  this  case,  each  light  source  causes  the  same  objects,  to  reflect  a  

different  combination  of  wavelengths  back  to  the  viewer  (“How  Color  is  Perceived”  6)  

Daylight  and  incandescent  lighting  are  what  consumers  were  originally  accustomed  

too  seeing  the  colors  of  their  products  on  an  everyday  bases.    With  the  implementation  

of  the  light  energy  policy  to  ban  incandescent  lighting,  consumers  will  begin  to  see  

more  fluorescent  lighting  in  their  homes.    This  will  cause  consumers  to  not  only  be  

exposed  to  cool  fluorescent  lighting  in  their  homes  but  also  in  retailer  stores  such  as  

Target.    Consumers  are  not  yet  as  used  to  cool  fluorescent  lighting  as  they  are  too  the  

  8  

previous  familiar  incandescent  lighting.    Cooley  from  Cooley  Montano  Studios  stated,  

“Retailers  certainly  want  products  to  stand  out,  but  they  also  want  the  architectural  

space  to  have  a  life  of  its  own  and  lighting  today  is  more  and  more  about  the  

environment  (Weathersby,  188).''  So  when  retailers  are  trying  to  create  welcoming  

environments  like  Cooley  stated,  it  is  important  they  consider  how  consumers  may  

react  to  being  exposed  more  often  to  different  light  sources  than  they  are  already  used  

too  seeing.    Consumers  will  begin  to  see  incandescent  lighting  being  faded  out  and  

noticing  a  difference  between  daylight  and  cool  fluorescent  lighting.    That  is  way  it  is  

important  to  measure  the  difference  between  daylight  and  cool  fluorescent  lighting  

because  consumers  will  eventually  not  be  exposed  to  incandescent  lighting  at  all.    

       Objectives:         The  purpose  of  this  experiment  is  to  gain  knowledge  on  the  differences  between  

daylight  and  the  lighting  used  in  retail  department  stores.    More  specifically,  I  will  

compare  and  contrast  150  paint  chips  under  daylight  and  cool  fluorescent  lighting  and  

determine  if  there  are  any  similarities  or  differences  between  the  two.    Daylight  is  my  

standard,  whereas  cool  fluorescent  lighting  is  my  batch  because  it  is  the  light  source  

that  a  U.S.  leading  retailer,  Target,  is  using  in  their  stores.    From  the  results,  I  will  be  

able  to  discover  if  there  are  any  consistencies  between  daylight  and  the  cool  

fluorescent  lighting  used  in  Target  stores.    Consistencies  may  be  between  lightness,  

saturation,  etc.    If  there  are  differences  between  the  color  of  the  paint  chips  and  the  

type  of  light  source  I  will  take  into  account  the  light  source’s  spectrum  of  light.    My  goal  

  9  

is  to  determine  whether  the  results  I  predicted  are  true  or  false.    I  also  hope  to  discover  

a  relationship,  either  between  the  lightness,  saturation,  etc.  that  I  may  not  have  initially  

predicted  in  the  first  place.    

 

Hypothesis:    

  My  hypothesis  is  that  there  will  be  a  difference  in  the  levels  of  saturation  (C*)  in  

colors  under  daylight  (standard)  and  cool  fluorescent  lighting  (batch).    More  

specifically,  I  predict  that  blue  colors  under  cool  fluorescent  lighting  will  have  higher  

saturation  (C*)  and  that  red  and  green  color  will  have  a  lower  saturation  (C*)  in  

comparison  to  daylight.  I  believe  blue  colors  under  cool  fluorescent  lighting  will  appear  

more  saturated  because  there  is  a  spike  in  the  amount  of  short  (blue)  wavelengths  in  

its  spectrum.    The  spectrum  of  daylight  is  equally  balanced  by  all  colors  resulting  in  

one  not  to  stand  out  amongst  the  others.  

 

Limitations:    

  My  first  limitation  is  that  paint  chips  are  not  an  accurate  representation  of  all  

surface  colors  viewed  by  consumers  in  retail  department  stores.    Consumers  see  colors  

on  a  wide  array  of  merchandise  ranging  from  clothing  to  food  packaging  to  sports  

equipment.    The  surfaces  of  all  the  in-­‐store  merchandise  are  not  the  same  and  may  be  

round,  rough,  or  shiny  which  are  all  not  represented  in  my  selected  paint  chips.    All  

these  different  types  of  surfaces  cause  light  to  be  reflected  differently  and  can  change  

the  consumers  perception  of  the  color.  I  will  be  able  to  get  significant  results  from  my  

  10  

paint  chips  but  will  not  be  able  to  assume  that  all  the  colors  on  the  merchandise  will  

have  the  same  results  as  the  150  paint  chips.    

  My  second  limitation  is  that  I  tested  my  samples  over  a  course  of  4  lab  visits.    

With  multiple  people  using  my  station  and  calibrating  it  multiple  times,  there  is  some  

room  for  error.    It  would  have  been  ideal  if  I  could  have  completed  all  150  samples  in  

one  visit  but  my  schedule  did  not  allow  that  amount  of  time  allocation.    

  My  third  and  final  limitation  was  the  large  quantity  of  data  I  had  to  manually  

enter  into  excel.    The  total  amount  of  numbers  I  had  to  enter  was  1500,  seeing  as  (150  

samples  under  daylight  +  150  samples  under  cool  fluorescent  lighting)*  (5  color  values  

including  L*,a*,b*,  h,  and  C)=1500.    Even  with  double-­‐checking  my  manual  results  

there  is  still  room  for  errors  in  my  data  entry.  This  limitation  occurred  because  the  

spectrophotometer  only  reported  the  ΔE*  values  between  the  light  sources  and  did  not  

report  any  L*,  a*,  b*,  h  or  C  values.    The  opportunity  for  data  entry  error  may  result  in  

my  ΔE*  values  to  be  slightly  off  as  well  as  any  number  that  I  manually  typed  into  excel.  

 

 Assumptions:    

  For  the  purpose  of  this  experiment,  I  am  assuming  that  the  spectrophotometer  

reads  and  analyses  color  both  accurately  and  equally.    Even  more  specifically,  I  am  

assuming  the  spectrophotometer  reads  both  accurately  and  equally  among  my  150  

paint  chip  samples  under  daylight  and  cool  fluorescent  light.    I  am  also  assuming  that  

daylight  at  noon  (D65  10  Deg)  and  cool  fluorescent  (F02  10  Deg)  are  both  accurate  

representations  of  natural  daylight  and  the  cool  fluorescent  lighting  used  in  Target  

department  stores.    I  am  also  assuming  that  the  BEHR  Premium  Plus  paint  chips  I  

  11  

collected  are  labeled  as  their  correct  colors  (red,  blue,  orange,  etc.)  as  an  accurate  

representation  of  colors.    Overall,  I  will  assume  that  all  of  these  factors  remain  constant  

and  not  impact  my  results.    

 

Procedure:  

  Once  Professor  Sarmadi  approved  my  project,  I  called  the  Target  store  located  

in  Hilldale  Mall,  Madison  to  ask  a  manager  what  type  of  lighting  they  used  in  stores.    

After  I  learned  that  Target  used  cool  fluorescent  lighting  I  decided  that  it  would  be  the  

type  of  light  source  I  would  compare  to  my  standard  daylight.    I  then  drove  to  the  local  

Home  Depot  to  collect  150  paint  samples.    I  collected  a  wide  array  of  paint  samples  

with  different  hue  and  chroma  values.    I  organized  the  samples  by  color  into  groups  as  

follows:  red,  orange,  green,  yellow,  blue,  violet,  and  brown.    I  did  not  need  to  label  the  

samples  prior  to  measuring  them  on  the  spectrophotometer  because  I  decided  to  

identify  them  according  to  their  name  on  the  paint  chip.      

  In  the  lab  I  used  Station  2  and  recorded  my  results  during  four  separate  lab  

visits.    I  began  by  calibrating  the  spectrophotometer  using  the  medium  size  aperture  

for  each  sample.    I  used  the  medium  sized  aperture  because  it  was  the  largest  opening  I  

could  fit  my  paint  chips  on.    During  my  first  and  second  lab  visits  I  tested  my  150  paint  

chips  under  daylight-­‐D65  10  Deg  (standard).    During  my  third  and  forth  lab  visits  I  

tested  my  150  paint  chips  under  the  cool  fluorescent  lighting-­‐F02  10  Deg  (batch).    As  

stated  earlier  in  my  limitations,  I  had  to  test  all  150  samples  twice.    This  is  because  the  

spectrophotometer  only  reported  the  ΔE*  values  between  the  light  sources  and  did  not  

report  any  L*,  a*,  b*,  h  or  C  values  between  light  sources.      After  I  tested  each  sample  I  

  12  

immediately  saved  the  results  directly  into  its  corresponding  folder,  which  was  either  

daylight  samples  or  cool  fluorescent  samples.    It  took  me  approximately  6  hours  to  

measure  and  save  all  of  my  samples  onto  the  classroom  computer.  

  After  all  of  my  samples  were  tested  under  daylight  and  cool  fluorescent  lighting  

it  was  time  to  manually  enter  the  L*,  a*,  b*,  h,  and  C  values  into  an  excel  spreadsheet.    I  

organized  the  excel  spreadsheet  by  color  and  entered  all  1500  values  manually.    Once  

all  the  data  was  recorded  I  calculated  the  ΔE*  for  all  150  samples  in  order  to  determine  

the  difference  between  the  colors  of  the  paint  chips  under  daylight  and  cool  fluorescent  

lighting.    

  For  the  presentation  I  have  arranged  samples  by  color  groups  with  their  L*,  a*,  

b*,  h,  and  C  values  displayed.    My  presentation  board  will  only  show  the  150  paint  

chips  but  not  what  they  exactly  looked  like  under  daylight  and  cool  fluorescent  lighting  

since  none  of  the  paint  chips  required  to  physically  be  manipulated.  

 

Results  and  Discussion:  

  I  have  decided  to  use  the  CIE  1976  space  (CIELAB)  system  for  this  experiment.  

Seeing  as  I  have  tested  the  colors  of  paint  chips,  I  decided  to  use  the  CIE  1976  space  

(CIELAB)  system  because  it  is  mainly  used  to  study  object  or  surface  colors.    The  

following  variables  have  been  recorded  and  have  helped  me  process  my  results:  L*,  a*,  

b*,  h,  and  C*.    The  L*  variable  measures  lightness  and  ranges  from  0  (being  completely  

black)  to  100  (being  completely  white).    The  a*  variable  measures  the  red-­‐green  

components  and  b*  measure  the  yellow-­‐blue  components  of  a  color.    When  an  a*  value  

is  negative  it  is  more  green  whereas  when  an  a*  value  is  positive  it  is  more  red.    

  13  

Similarly,  a  negative  b*  value  is  more  blue  whereas  a  positive  b*  values  is  more  yellow  

(Christment,  22).    As  a  cylindrical  coordinate  the  h  value  describes  the  hue  angle  and  

the  value  C*  describes  the  chroma  or  saturation  of  the  color  (Christment,  19).    The  

value  ΔE*  represents  the  total  color  difference  between  two  colors.    In  my  experiment  

the  ΔE*  values  will  represent  the  total  color  difference  between  the  paint  chips  under  

daylight  and  cool  fluorescent  lighting.      

  Instead  of  comparing  each  sample  individually  between  daylight  and  cool  

fluorescent  lighting  I  have  divided  the  samples  into  groups  of  colors.    For  example,  I  

will  not  be  comparing  the  color  “cheery  to  “firecracker”.    Instead  I  will  be  comparing  

the  overall  groups  of  colors  as  follows:  red,  orange,  yellow,  green,  blue,  violet,  and  

brown.    It  is  more  appropriate  to  interpret  the  data  in  groups  of  colors  because  I  am  

looking  for  any  similarities  or  differences  in  the  saturation  between  different  groups  of  

colors.    Referring  back  to  my  hypothesis,  I  am  predicting  there  will  be  a  difference  in  

the  levels  of  saturation  (C*)  in  colors  under  daylight  and  cool  fluorescent  lighting.    I  

have  predicted  that  blue  colors  under  cool  fluorescent  lighting  will  have  higher  

saturation  (C*)  and  that  red  and  green  will  have  a  lower  saturation  (C*)  in  comparison  

to  daylight.    

  My  data  will  be  represented  in  charts  showcasing  4  representations  of  each  

color  group.    This  way  the  results  can  be  clearly  viewed  and  explained  thoroughly.    The  

name  of  the  paint  chip  is  shown  followed  by  the  daylight  sample  values  and  cool  

fluorescent  samples  (cool)  values.    The  values  I  have  included  in  my  charts  are  L*,  a*,  

b*,  h,  and  C*  which  coordinate  with  the  CIE  1976  space  (CIELAB)  system.    

 

  14  

 

   

 

 

 

 

 

 

 

 

The  first  color  category  I  have  interpreted  from  my  results  is  red.  The  remaining  

18  red  samples  can  be  found  in  my  appendix.    Using  the  CIE  1967  (L*a*b*)  system  I  

calculated  the  ΔE*  values  with  the  equation:    ΔE*=((ΔL*)^2+(Δa*)^2+(Δb*)^2)^.5  between  

the  daylight  and  cool  fluorescent  samples.    The  ΔE*  values  on  the  chart  range  from  7.67  

to  12.19  and  show  that  there  is  a  color  difference  between  the  color  of  the  paint  chips  

under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  among  the  

daylight  samples  compared  to  the  cool  fluorescent  samples  (cheery  C*:  daylight=42.92  

vs  cool=36.59).    This  means  that  the  red  paint  chips  under  daylight  appear  more  

saturated  in  comparison  to  cool  fluorescent  lighting.  The  L*  values  are  higher  among  

the  cool  fluorescent  samples  in  comparison  to  the  daylight  samples  (cheery  L*:  

daylight=  68.45  vs  cool=70.5).    This  means  that  the  red  paint  chips  under  daylight  are  

slightly  darker  in  comparison  to  the  cool  fluorescent  samples.    When  comparing  the  a*  

values,  daylight  has  a  higher  amount  of  red  in  comparison  to  cool  fluorescent  lighting  

  15  

(firecracker  a*:  daylight=  52.38  vs.  cool=  40.28).  When  comparing  the  b*  values,  cool  

fluorescent  lighting  has  a  higher  amount  of  yellow  in  comparison  to  daylight  

(firecracker  b*:  daylight=  29=26.6  vs.  cool=  29.01).    It  is  important  to  note  that  the  red  

paint  chip  “poinsettia”  has  a  slightly  higher  amount  of  yellow  under  daylight  in  

comparison  to  cool  fluorescent  lighting.    The  results  of  my  red  category  support  my  

hypothesis  because  C*  values  are  lower  for  the  samples  exposed  to  cool  fluorescent  

lighting  in  comparison  to  the  samples  exposed  to  daylight.    This  means  the  red  paint  

chips  appear  less  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    

 

 

 

 

 

 

 

 

 

 

     

   

 

The  second  color  category  I  have  interpreted  from  my  results  is  orange.  The  

remaining  18  orange  samples  can  be  found  in  my  appendix.    The  ΔE*  values  on  the  

  16  

chart  range  from  7.92  to  13.74  and  show  that  there  is  a  color  difference  between  the  

color  of  the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  value  is  

higher  among  daylight  samples  and  lower  among  cool  samples  (aurora  orange  C*:  

daylight=65.99  vs.  cool=62.78).    This  means  that  the  daylight  samples  have  a  higher  

level  of  saturation  in  comparison  to  the  cool  fluorescent  samples.    The  L*  value  is  lower  

among  daylight  samples  and  higher  among  cool  fluorescent  samples  (aurora  orange  L*:  

daylight=61.66  vs.  cool=64.92).    This  finding  means  that  the  daylight  samples  are  

slightly  darker  in  comparison  to  the  cool  fluorescent  samples.    When  looking  at  the  a*  

values,  daylight  has  an  overall  higher  amount  of  red  in  comparison  to  cool  fluorescent  

lighting  (sunset  strip  sample  a*:  daylight  =26.03  vs.  cool=19.77).    When  looking  at  the  

b*  values,  cool  fluorescent  lighting  has  an  overall  higher  amount  of  yellow  in  

comparison  to  daylight  (sunset  strip  sample  b*:  daylight  =25.25  vs.  cool=29.62).    Since  

orange  is  between  red  and  green  on  the  spectrum  I  would  expect  it  to  appear  less  

saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    The  results  from  

my  orange  category  support  my  hypothesis  because  the  C*  values  among  the  cool  

fluorescent  samples  were  lower  in  comparison  to  the  daylight  samples.    This  means  

that  the  orange  paint  chips  appeared  less  saturated  under  cool  fluorescent  lighting  in  

comparison  to  daylight.    

 

     

 

   

 

  17  

 

 

                 

 

 

 

 

The  third  color  category  I  have  interpreted  from  my  results  is  yellow.  The  

remaining  18  yellow  samples  can  be  found  in  my  appendix.  The  ΔE*  values  on  the  chart  

range  from  6.63  to  13.67  and  show  that  there  is  a  color  difference  between  the  color  of  

the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  

among  the  cool  fluorescent  samples  and  lower  among  the  daylight  samples.    This  

means  that  the  yellow  paint  chips  under  cool  fluorescent  lighting  have  a  higher  level  of  

saturation  in  comparison  to  the  daylight  (lemon  pound  cake  C*:  daylight=40.71  vs.  

cool=44.93).    The  L*  values  are  lower  among  the  daylight  samples  in  comparison  to  the  

cool  fluorescent  samples.    The  daylight  samples  are  slightly  darker  than  the  cool  

fluorescent  samples  (lemon  pound  cake  L*:  daylight=90.07  vs.  cool=92.86).    When  

looking  at  the  a*  values,  daylight  has  a  higher  amount  of  red  in  comparison  to  cool  

fluorescent  lighting  (mellow  yellow  a*:  daylight  =8.07  vs.  cool=2.98).    When  looking  at  

the  b*  values,  cool  fluorescent  lighting  as  a  higher  amount  of  yellow  in  comparison  to  

  18  

daylight  (mellow  yellow  b*:  daylight  =52.59  vs.  cool=59.3).  Since  yellow  is  between  red  

and  green  in  the  spectrum  and  I  would  expect  it  to  have  a  lower  saturation  under  cool  

fluorescent  lighting  in  comparison  to  daylight.    But  the  results  from  my  yellow  category  

show  otherwise  with  the  C*  values  being  higher  among  the  cool  fluorescent  lighting  in  

comparison  to  daylight.    Meaning  that  the  yellow  paint  chips  actually  appeared  more  

saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    

 

 

 

 

 

   

 

 

 

 

 

 

 

The  fourth  color  category  I  have  interpreted  from  my  results  is  green.  The  

remaining  22  green  samples  can  be  found  in  my  appendix.  The  ΔE*  values  on  the  chart  

range  from  7.40  to  10.82  and  show  that  there  is  a  color  difference  between  the  color  of  

the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  

  19  

among  the  daylight  samples  in  comparison  to  the  cool  fluorescent  samples  (formal  

garden  C*:  daylight=54.49  vs.  cool=44.34).    These  results  mean  that  the  green  paint  

chips  under  daylight  appeared  to  be  more  saturated  in  comparison  to  green  paint  chips  

under  cool  fluorescent  lighting.  The  L*  values  are  also  slightly  higher  among  daylight  

samples  in  comparison  to  cool  fluorescent  samples  (formal  garden  L*:  daylight=56.32  

vs.  cool=54.45).    This  means  that  the  cool  fluorescent  samples  appeared  darker  in  

comparison  to  the  daylight  samples.    When  comparing  the  a*  values,  daylight  has  a  

higher  amount  of  green  in  comparison  to  cool  fluorescent  lighting  (green  grass  a*:  

daylight=  -­‐37.49  vs.  cool=  -­‐27.24).    When  comparing  the  b*  values,  daylight  has  a  

higher  amount  of  yellow  in  comparison  to  cool  fluorescent  lighting  (green  grass  b*:  

daylight=24.95  vs.  cool=22.2).    The  results  from  my  green  category  support  my  

hypothesis  because  C*  values  were  lower  under  cool  fluorescent  lighting  in  comparison  

to  daylight.    Resulting  in  the  green  paint  chips  to  appear  less  saturated  under  cool  

fluorescent  lighting  in  comparison  to  daylight.    

   

  20  

 

 

 

                               

The  fifth  color  category  I  have  interpreted  from  my  results  is  blue.  The  

remaining  18  blue  samples  can  be  found  in  my  appendix.  The  ΔE*  values  on  the  chart  

range  from  7.88  to  11.38  and  show  that  there  is  a  color  difference  between  the  color  of  

the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  

among  the  cool  fluorescent  samples  and  lower  among  the  daylight  samples  (blue  ocean  

C*:  daylight=35.43  vs  cool=40.51).    This  means  that  the  blue  paint  chips  under  the  cool  

fluorescent  lighting  appear  more  saturated  in  comparison  to  the  daylight  samples.  The  

L*  values  are  higher  among  the  daylight  samples  in  comparison  to  the  cool  fluorescent  

samples  (blue  ocean  L*:  daylight=  44.78  vs  cool=39.86).    This  means  that  the  cool  

fluorescent  samples  are  slightly  darker  in  comparison  to  the  daylight  samples.    When  

comparing  the  a*  values,  daylight  has  a  higher  amount  of  green  in  comparison  to  cool  

fluorescent  lighting  (windjammer  a*:  daylight=  -­‐15.74  vs.  cool=  -­‐10.53).  When  

  21  

comparing  the  b*  values,  cool  fluorescent  lighting  has  a  higher  amount  of  blue  in  

comparison  to  daylight  (windjammer  b*:  daylight=  -­‐33.03  vs.  cool=  -­‐40.62).    The  

results  of  my  blue  category  support  my  hypothesis  because  the  C*  values  are  higher  

under  cool  fluorescent  lighting  in  comparison  to  daylight.    Meaning  that  the  blue  paint  

chips  appeared  more  saturated  under  cool  fluorescent  lighting  in  comparison  to  

daylight.      

   

                                              The  sixth  color  category  I  have  interpreted  from  my  results  is  violet.  The  

remaining  18  violet  samples  can  be  found  in  my  appendix.  The  ΔE*  values  on  the  chart  

range  from  3.47  to  5.55  and  show  that  there  is  a  color  difference  between  the  color  of  

the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  

among  the  cool  fluorescent  samples  and  lower  among  the  daylight  samples  (Pixie  

  22  

Violet  C*:  daylight=20.41  vs  cool=23.14).    This  means  that  the  violet  paint  chips  under  

the  cool  fluorescent  lighting  appear  more  saturated  in  comparison  to  the  daylight  

samples.  The  L*  values  are  higher  among  the  daylight  samples  in  comparison  to  the  

cool  fluorescent  samples  (Pixie  Violet  L*:  daylight=  72.96  vs  cool=71.48).    This  means  

that  the  cool  fluorescent  samples  are  slightly  darker  in  comparison  to  the  daylight  

samples.    When  comparing  the  a*  values,  daylight  has  a  higher  amount  of  red  in  

comparison  to  cool  fluorescent  lighting  (Magic  Moment  a*:  daylight=  10.19  vs.  cool=  

8.56).  When  comparing  the  b*  values,  cool  fluorescent  lighting  has  a  higher  amount  of  

blue  in  comparison  to  daylight  (magic  moment  b*:  daylight=  -­‐29.17  vs.  cool=  -­‐34.13).    

The  results  of  my  violet  category  support  my  hypothesis  because  the  violet  paint  chips  

appear  more  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    This  

is  due  to  the  greater  amount  of  blue  (-­‐b*)  in  the  violet  paint  samples  in  proportion  to  

the  amount  of  red  (a*).      

   

  23  

The  seventh  color  category  I  have  interpreted  from  my  results  is  brown.  The  

remaining  12  brown  samples  can  be  found  in  my  appendix.  The  ΔE*  values  on  the  chart  

range  from  2.07  to  2.94  and  show  that  there  is  a  color  difference  between  the  color  of  

the  paint  chips  under  daylight  and  cool  fluorescent  lighting.    The  C*  values  are  higher  

among  the  cool  fluorescent  samples  compared  to  lower  the  daylight  samples  (Desert  

Shadows  C*:  daylight=13.52  vs  cool=15.86).    This  means  that  the  brown  paint  chips  

under  the  cool  fluorescent  lighting  appear  more  saturated  in  comparison  to  the  

daylight  samples.  The  L*  values  are  higher  among  the  cool  fluorescent  samples  in  

comparison  to  the  daylight  samples  (Desert  Shadows  L*:  daylight=  61.15  vs  

cool=62.24).    This  means  that  the  daylight  samples  are  slightly  darker  in  comparison  to  

the  cool  fluorescent  samples.    When  comparing  the  a*  values,  daylight  has  a  higher  

amount  of  red  in  comparison  to  cool  fluorescent  lighting  (lemon  pepper  a*:  daylight=  

1.29  vs.  cool=  .31).  When  comparing  the  b*  values,  cool  fluorescent  lighting  has  a  

higher  amount  of  yellow  in  comparison  to  daylight  (lemon  pepper  b*:  daylight=  15.95  

vs.  cool=  18.45).    Since  the  a*  values  are  so  low  (ranging  from  -­‐.15  to  1.29)  there  is  a  

more  even  balance  between  red  and  green  in  the  brown  paint  chips.    But  there  is  a  

slightly  higher  proportion  of  yellow  in  the  brown  paint  chips  because  the  b*  values  are  

higher  (ranging  from  10.48  to  18.45).    According  to  my  results  the  brown  paint  chips  

appear  more  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight  and  

this  could  be  attributed  to  the  higher  proportion  of  yellow.    Depending  on  what  color  

(red,  yellow,  green,  or  blue)  has  the  greatest  proportion  in  the  brown  paint  chips  may  

affect  how  saturated  it  looks  under  cool  fluorescent  verses  daylight.        

 

  24  

Summary  and  Conclusion:      

  After  thorough  analysis  of  my  150  paint  chip  samples  under  both  daylight  and  

cool  fluorescent  lighting,  I  have  tested  the  validity  of  my  hypothesis.    My  hypothesis  is  

that  there  will  be  a  difference  in  the  levels  of  (C*)  in  colors  under  daylight  (standard)  

and  cool  fluorescent  lighting  (batch).    More  specifically,  I  predict  that  blue  colors  under  

cool  fluorescent  lighting  will  have  higher  saturation  (C*)  and  that  red  and  green  color  

will  have  a  lower  saturation  (C*)  in  comparison  to  daylight.    While  interpreting  the  

results  I  found  out  that  my  hypothesis  was  correct.    In  my  research  and  discussion  

section  I  interpreted  seven  different  color  categories  in  order  to  determine  how  

saturated  the  colors  appeared  under  daylight  and  cool  fluorescent  lighting.    Referring  

back  to  my  results,  the  blue  and  violet  paint  chips  both  had  higher  C*  values  under  cool  

fluorescent  lighting  in  comparison  to  daylight.    The  colors  blue  and  violet  appeared  

more  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    These  

results  support  my  hypothesis  when  I  predicted  that  blue  colors  under  cool  fluorescent  

lighting  would  have  a  higher  saturation  in  comparison  to  daylight.    Also  referring  back  

to  my  results,  the  red,  orange,  and  green  paint  chips  had  lower  C*  values  under  cool  

fluorescent  lighting  in  comparison  to  daylight.      The  colors  red,  orange,  and  green  

appeared  less  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    

These  results  support  the  last  part  of  my  hypothesis  when  I  predicted  that  red  and  

green  colors  under  cool  fluorescent  lighting  would  have  a  lower  saturation  in  

comparison  to  daylight.      I  was  not  surprised  when  violet  also  appeared  more  saturated  

under  cool  fluorescent  light.    This  is  because  the  violet  samples  had  a  greater  

proportion  of  blue  in  them  then  red.    I  was  also  not  surprised  when  orange  appeared  

  25  

less  saturated  under  cool  fluorescent  lighting  because  it  is  located  between  red  and  

green  on  the  spectrum.    I  was  surprised  by  the  results  of  my  yellow  and  brown  paint  

chips  under  daylight  and  cool  fluorescent  lighting.    I  found  that  my  yellow  paint  chips  

appeared  more  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    I  

find  this  interesting  because  on  the  CIE  L*a*b*  non-­‐linear  diagram,  blue  and  yellow  are  

on  totally  opposite  sides  of  the  b*  values.    So  maybe  since  b*  contains  both  the  blue  and  

yellow  component,  yellow  appears  saturated  under  cool  fluorescent  lighting  as  well.    

One  other  result  that  surprised  me  was  that  my  brown  paint  chips  appeared  more  

saturated  under  cool  fluorescent  in  comparison  to  daylight.    I  assumed  that  the  brown  

paint  chips  would  have  almost  equal  L*,  a*,  b*,  C*,  and  h  values  because  brown  is  often  

a  mixture  of  all  the  colors.    But  I  believe  that  the  brown  paint  chips  appear  more  

saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight  because  my  brown  

samples  had  a  higher  proportion  of  yellow  in  them.    Depending  on  what  color  (red,  

yellow,  green,  or  blue)  has  the  greatest  proportion  in  the  brown  paint  chips  may  affect  

how  saturated  it  looks  under  cool  fluorescent  verses  daylight.      So  if  I  would  have  

gotten  brown  paint  chips  with  a  greater  proportion  of  red,  the  brown  may  have  looked  

less  saturated  under  cool  fluorescent  lighting  in  comparison  to  daylight.    

  Overall,  I  learned  that  there  is  a  difference  between  the  cool  fluorescent  lighting  

in  department  stores  in  comparison  to  daylight.    I  learned  that  if  I  ever  need  to  

consider  what  type  of  lighting  to  use  in  a  retail  store  I  need  to  be  aware  of  its  effects.    

Specifically  with  cool  fluorescent  lighting  I  need  to  be  aware  that  any  products  that  are  

blue  will  appear  to  be  more  saturated  and  visually  look  more  appealing  to  consumers.    

Whereas  cool  fluorescent  lighting  will  cause  my  red  and  green  products  to  appear  

  26  

unsaturated  and  duller  in  comparison  to  my  blue  products,  which  will  not  be  as  

attractive  to  my  consumers.      

  If  I  were  to  re-­‐do  my  project  I  would  compare  a  LED  light  source  as  well.    Even  

though  this  would  have  taken  me  a  lot  more  time  to  complete  my  project,  I  think  it  

would  have  been  very  beneficial.    A  lot  of  retailers  not  only  use  cool  fluorescent  

lighting,  but  are  also  using  LED  lighting  in  their  stores.    It  would  be  interesting  to  see  

switch  colors  are  more  saturated  under  LED  lighting  compared  to  cool  fluorescent  

lighting  and  daylight.    I  would  also  want  to  not  only  use  paint  chips  as  my  sample  but  

use  fabric  as  a  sample  as  well.    A  large  majority  of  products  in  retail  stores  are  clothing  

and  my  paint  samples  do  not  represent  how  colors  would  react  to  light  on  fabric.      

Fabric  has  a  completely  different  surface  texture  than  the  paint  chips  and  it  would  have  

been  beneficial  to  extend  my  sampling  to  fabric  as  well.    Given  a  situation  where  I  had  

more  time  I  would  have  definitely  liked  to  incorporate  both  LED  lighting  and  fabric  

samples.    

  If  I  were  to  change  anything  in  my  project  it  would  have  been  focusing  more  on  

how  cool  fluorescent  lighting  and  daylight  affect  black  and  white  colors.    When  I  was  at  

Home  Depot  collecting  samples,  I  did  not  think  to  grab  white  or  black  paint  chips  

because  I  thought  I  only  needed  to  focus  on  the  colored  chips.    Seeing  how  cool  

fluorescent  lighting  and  daylight  would  have  impacted  black  and  white  surfaces  would  

have  shown  me  real  life  results,  aside  from  what  I  learn  in  class  or  research.      Through  

class  and  research  I  know  that  the  cool  fluorescent  spectrum  has  a  spike  in  its  smaller  

(blue)  wavelengths  and  that  daylight  has  the  largest  and  most  even  spectrum.    It  would  

have  been  helpful  to  reinforce  these  concepts  I  learn  in  class  with  real  life  results.    

  27  

  In  the  end,  this  project  has  made  me  more  aware  and  educated  on  the  different  

effects  of  cool  fluorescent  lighting  and  daylight  on  colors.    In  my  retail  career  I  will  take  

what  I  have  learned  from  this  project  and  make  sure  to  take  into  account  the  type  of  

light  source  that  is  used  to  illuminate  product.    When  it  comes  to  cool  fluorescent  

lighting  I  will  be  an  expert.    

 

Appendix:    

 

References:  

Chrisment,  Alain.  Color  &  Colorimetry.  Paris:  Editions  3C  Conseil,  1998.  Print.  

“How  Color  is  Perceived.”  American  Printer  (2000):  6-­‐7.  Print.    

Lightpoints.  Westfield:  Sylvania,  2003.  Print.  

"Lights  out  for  the  Incandescent  Light  Bulb  as  of  Jan.  1,  2014."  Fox  News.  FOX  News    

Network,  31  Dec.  2013.  Web.  20  Apr.  2014.  

Sarmadi,  Majid.  “Class  Lecture  April  16th.”  DS  451  Color  Theory  and  Technology,    

University  of  Wisconsin-­‐Madison,  Madison  WI,  25  April.  2014.    

Singh,  Satyendra.  “Impact  of  color  on  Marketing.”  Emerald  Group  44.6  (2006):  783-­‐789.    

Print.  

"Target  Supermarkets  Will  Install  GE  LED  Lighting  in  Refrigerated  Cases."  LEDs.  LEDs    

Magazine,  2014.  Web.  20  Apr.  2014.  

Weathersby,  William.  “What’s  In  Store:  Retailing  lighting  standards  focus  on  consumer    

psychology  and  flexible  fixture  schedules.”  Cooley  Monato  Studio  188.  8  (2000):    

188.  Print.  

  28  

Author(s).  "Title  of  Article."  Title  of  Journal  Volume.Issue  (Year):  pages.  Medium  of  

publication.