comparison between the smm and gemini++ de-excitation models … · 2009. 5. 6. · 150 175 200 150...

62
Physical ingredients Results Conclusions Comparison between the SMM and GEMINI++ de-excitation models D. Mancusi 1 J. Cugnon 1 A. Boudard 2 S. Leray 2 A. Botvina 3 R. Charity 4 1 IFPA, University of Liège, Belgium 2 SPhN, IRFU, CEA, Saclay, France 3 Reactions and nuclear astrophysics, GSI, Darmstadt, Germany 4 Department of Chemistry, Washington University, St. Louis, MO, U.S.A. 5 th May 2009 — Satellite Meeting on Spallation Reactions AccApp’09, Vienna (Austria)

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Physical ingredients Results Conclusions

    Comparison between the SMM and GEMINI++de-excitation models

    D. Mancusi1 J. Cugnon1 A. Boudard2 S. Leray2

    A. Botvina3 R. Charity4

    1IFPA, University of Liège, Belgium

    2SPhN, IRFU, CEA, Saclay, France

    3Reactions and nuclear astrophysics, GSI, Darmstadt, Germany

    4Department of Chemistry, Washington University, St. Louis, MO, U.S.A.

    5th May 2009 — Satellite Meeting on Spallation ReactionsAccApp’09, Vienna (Austria)

  • Physical ingredients Results Conclusions

    Outline

    1 Physical ingredientsCascade stageDe-excitation stage

    2 ResultsResidue cross sectionsNeutron spectraLight clusters

    3 Conclusions

  • Physical ingredients Results Conclusions

    INCL4.5

    Features

    INCLDeveloped by ULg@Liège,CEA@SaclayBinary nucleon-nucleoncollisionsNucleus (remnant) left inan excited state

    Must be coupled to apre-equilibrium /de-excitation code

  • Physical ingredients Results Conclusions

    INCL4.5

    Features

    INCLDeveloped by ULg@Liège,CEA@SaclayBinary nucleon-nucleoncollisionsNucleus (remnant) left inan excited state

    Must be coupled to apre-equilibrium /de-excitation code

  • Physical ingredients Results Conclusions

    The SMM model

    SMM = Statistical Multifragmentation Model

    De-excitation mechanismsSimultaneous break-up

    Thermodynamical configurationweightsRemnant splits in several “chunks”

    Fragment de-excitationFermi break-upEvaporation Z ≤ 2 (Weisskopf-Ewing)Fission (Bohr-Wheeler)

  • Physical ingredients Results Conclusions

    The SMM model

    SMM = Statistical Multifragmentation Model

    De-excitation mechanismsSimultaneous break-up

    Thermodynamical configurationweightsRemnant splits in several “chunks”

    Fragment de-excitationFermi break-upEvaporation Z ≤ 2 (Weisskopf-Ewing)Fission (Bohr-Wheeler)

  • Physical ingredients Results Conclusions

    The GEMINI++ model

    De-excitation mechanismsNo simultaneous break-upSequence of binary decaysEvaporation Z ≤ 3 (Hauser-Feshbach)Asymmetric fission Z > 3 (Moretto)Symmetric fission (Bohr-Wheeler)

  • Physical ingredients Results Conclusions

    The GEMINI++ model

    De-excitation mechanismsNo simultaneous break-upSequence of binary decaysEvaporation Z ≤ 3 (Hauser-Feshbach)Asymmetric fission Z > 3 (Moretto)Symmetric fission (Bohr-Wheeler)

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    1

    10

    10 2

    0 10 20 30 40 50A

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    1

    10

    10 2

    0 5 10 15 20 25Z

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    P. Napolitani et al., PRC70 (2004)

    SMM improves with pre-equilibrium

    IMF productionSMM→ multifragmentationGEMINI++→ asymmetricfissionThe question is not settled

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    P. Napolitani et al., PRC70 (2004)

    SMM improves with pre-equilibrium

    IMF productionSMM→ multifragmentationGEMINI++→ asymmetricfissionThe question is not settled

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    0 20 40 0 20 40 0 20 40

  • Physical ingredients Results Conclusions

    1-GeV p + 56Fe

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    40 50 40 50 40 50

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    1

    10

    10 2

    0 25 50 75 100 125 150 175 200A

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    1

    10

    10 2

    0 10 20 30 40 50 60 70 80Z

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    50 100 50 100 50 100

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    52.94 83.61 114.28 144.9452.94 83.61 114.28 144.9452.94 83.61 114.28 144.94

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    122.02 147.96 173.89 199.83122.02 147.96 173.89 199.83122.02 147.96 173.89 199.83

  • Physical ingredients Results Conclusions

    1-GeV p + 208Pb

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    150 175 200 150 175 200 150 175 200

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    1

    10

    10 2

    0 25 50 75 100 125 150 175 200 225A

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    1

    10

    10 2

    0 10 20 30 40 50 60 70 80 90Z

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    1

    10

    10 2

    0 10 20 30 40 50 60 70 80 90Z

    Cro

    ss S

    ecti

    on

    (m

    b)

    INCL45-SMM

    INCL45-GEMINI++

    Not enoughIMFs!

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    10-3

    10-2

    10-1

    1

    10

    0 1 2 3 4 5 6 7 8Excitation energy E* (MeV/nucleon)

    dσ/

    dE

    * (

    mb

    /(M

    eV/n

    ucl

    eon

    ))

    56Fe

    208Pb

    238U No break-upin Pb and U!

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    50 100 50 100 50 100

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    100 150 100 150 100 150

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    125 150 125 150 125 150

  • Physical ingredients Results Conclusions

    1-GeV p + 238U

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    150 200 150 200 150 200

  • Physical ingredients Results Conclusions

    In short

    GEMINI++ has good fission and spallation yieldsSMM less good for fission

    SMM prefers pre-equilibrium + de-excitation

    IMF production mechanism?

  • Physical ingredients Results Conclusions

    In short

    GEMINI++ has good fission and spallation yieldsSMM less good for fission

    SMM prefers pre-equilibrium + de-excitation

    IMF production mechanism?

  • Physical ingredients Results Conclusions

    In short

    GEMINI++ has good fission and spallation yieldsSMM less good for fission

    SMM prefers pre-equilibrium + de-excitation

    IMF production mechanism?

  • Physical ingredients Results Conclusions

    In short

    GEMINI++ has good fission and spallation yieldsSMM less good for fission

    SMM prefers pre-equilibrium + de-excitation

    IMF production mechanism?

  • Physical ingredients Results Conclusions

    1.2-GeV p + 208Pb

    1200 MeV p + pb208, n spectra

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    In short

    1200 MeV p + pb208, n spectra

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    SMM spectra look too cold. . . pre-equilibrium might help

  • 63-MeV p + 208Pb (low energy)

    63 MeV p + pb208, n spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    1 10Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    63 MeV p + pb208, p spectra

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 63-MeV p + 208Pb (low energy)

    63 MeV p + pb208, d spectra

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    63 MeV p + pb208, t spectra

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, n spectra

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, p spectra

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, d spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, t spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, He3 spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, a spectra

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • Physical ingredients Results Conclusions

    In short

    Low-energy LCP yields are insensitive to de-excitationVery little 3He in de-excitationGEMINI++ sensibly better than SMM

    No multifragmentationMore accurate evaporation model

  • Physical ingredients Results Conclusions

    In short

    Low-energy LCP yields are insensitive to de-excitationVery little 3He in de-excitationGEMINI++ sensibly better than SMM

    No multifragmentationMore accurate evaporation model

  • Physical ingredients Results Conclusions

    In short

    Low-energy LCP yields are insensitive to de-excitationVery little 3He in de-excitationGEMINI++ sensibly better than SMM

    No multifragmentationMore accurate evaporation model

  • Physical ingredients Results Conclusions

    In short

    Low-energy LCP yields are insensitive to de-excitationVery little 3He in de-excitationGEMINI++ sensibly better than SMM

    No multifragmentationMore accurate evaporation model

  • Physical ingredients Results Conclusions

    In short

    Low-energy LCP yields are insensitive to de-excitationVery little 3He in de-excitationGEMINI++ sensibly better than SMM

    No multifragmentationMore accurate evaporation model

  • Physical ingredients Results Conclusions

    Summary

    SMM needs a pre-equilibrium modelGEMINI++ has accurate physics

    . . . but it is ∼20 times slower than SMM!

    IMF production could be improved

  • Physical ingredients Results Conclusions

    Summary

    SMM needs a pre-equilibrium modelGEMINI++ has accurate physics

    . . . but it is ∼20 times slower than SMM!

    IMF production could be improved

  • Physical ingredients Results Conclusions

    Summary

    SMM needs a pre-equilibrium modelGEMINI++ has accurate physics

    . . . but it is ∼20 times slower than SMM!

    IMF production could be improved

  • Physical ingredients Results Conclusions

    Summary

    SMM needs a pre-equilibrium modelGEMINI++ has accurate physics

    . . . but it is ∼20 times slower than SMM!

    IMF production could be improved

  • Physical ingredients Results Conclusions

    The end

    Thank you for your attention!

  • 1-GeV p + 56Fe10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    0 20 40 0 20 40 0 20 40

  • 1-GeV p + 56Fe

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    10-1

    1

    10

    0 20 40 0 20 40 0 20 40

  • 1-GeV p + 56Fe

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    40 50 40 50 40 50

  • 1-GeV p + 208Pb

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    50 100 50 100 50 100

  • 1-GeV p + 208Pb

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    150 175 200 150 175 200 150 175 200

  • 1-GeV p + 238U

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    10-2

    10-1

    1

    125 150 125 150 125 150

  • 1-GeV p + 238U

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    1

    10

    10 2

    150 200 150 200 150 200

  • 1.2-GeV p + 208Pb

    1200 MeV p + pb208, n spectra

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, n spectra

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, p spectra

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, n spectra

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    1 10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, p spectra

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 1.2-GeV p + 181Ta (high energy)1200 MeV p + ta181, d spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, t spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, d spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, t spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

  • 1.2-GeV p + 181Ta (high energy)

    1200 MeV p + ta181, He3 spectra

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    1200 MeV p + ta181, a spectra

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 102

    103

    Energy (MeV)

    d2 σ

    /dΩ

    dE

    (m

    b/s

    r/M

    eV)

    INCL45-SMM

    INCL45-GEMINI++

    Physical ingredientsCascade stageDe-excitation stage

    ResultsResidue cross sectionsNeutron spectraLight clusters

    ConclusionsAppendix