comparison of 3-d geological and geophysical investigation

165
FI9700071 POSIVA-97-03 Comparison of 3-D geological and geophysical investigation methods in boreholes KI-KR1 at Aanekoski Kivetty site and RO-KR3 at Kuhmo Romuvaara site Katriina Labbas Helsinki University of TechnoIogy January 1 997 VOL 2 8 N? 1 6 POSIVA OY Annankatu 4 2 D , FIN-OO1OO HELSINKI. FINLAND Phone (09) 228O 30 (nat). ( + 3 58-9-) 228O 30 (int.) Fax (O9) 2280 3719 (nat j , ( + 3 58-9-) 2280 3719 (int.)

Upload: others

Post on 26-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Comparison of 3-D geological and geophysical investigation

FI9700071

POSIVA-97-03

Comparison of 3-D geological andgeophysical investigation methodsin boreholes KI-KR1 at Aanekoski

Kivetty site and RO-KR3at Kuhmo Romuvaara site

Katriina LabbasHelsinki University of TechnoIogy

January 1 997

VOL 2 8 N? 1 6POSIVA OY

A n n a n k a t u 4 2 D, F I N - O O 1 O O H E L S I N K I . F I N L A N D

P h o n e ( 0 9 ) 2 2 8 O 3 0 ( n a t ) . ( + 3 5 8 - 9 - ) 2 2 8 O 3 0 ( i n t . )

F a x ( O 9 ) 2 2 8 0 3 7 1 9 ( n a t j , ( + 3 5 8 - 9 - ) 2 2 8 0 3 7 1 9 ( i n t . )

Page 2: Comparison of 3-D geological and geophysical investigation

ISBN 951 -652-028-6ISSN 1239-3096

T h e c o n c l u s i o n s a n d v i e w p o i n t s p r e s e n t e d i n t h e r e p o r t a r e

t h o s e o f a u t h o r ( s ) a n d d o n o t n e c e s s a r i l y c o i n c i d e

w i t h t h o s e o f P o s i v a

Page 3: Comparison of 3-D geological and geophysical investigation

ti - POSiVa report Raportintunnus- Report codePOSIVA-97-03

Annankatu 42 D, FIN-00100 HELSINKI, FINLAND Julkaisuaika - DatePun. (09) 2280 30 - Int. Tel. +358 9 2280 30 January 1997

Tekija(t) - Author(s)

Katriina LabbasHelsinki University of TechnologyMaterial Science and Rock Engineering

Toimeksiantaja(t) - Commissioned by

Posiva Oy

Nimeke - Title

COMPARISON OF 3-D GEOLOGICAL AND GEOPHYSICAL INVESTIGATION METHODSIN BOREHOLES KI-KR1 AT AANEKOSKI KIVETTY SITE AND RO-KR3 AT KUHMOROMUVAARA SITE

Tiivistelma - Abstract

The aim of the study is to compare three-dimensional geological and geophysical methods whichprovide information on fractures. Core analysis, borehole television, dipmeter, borehole televiewerand differential flow measurements are the methods described and compared in this master's thesis.The material for the study is from the measurements with these methods performed in the boreholeKI-KR1 at the Kivetty site and in the borehole RO-KR3 at the Romuvaara site in Finland. Fractureswere correlated using the information of location of the fracture, fracture type and fracture angle,direction of dip and dip of fracture detected by each method, aperture of borehole-TV fractures,colour borehole-TV paper image plots and core photographs. Also dipmeter and televiewer logswere utilized. Differential flow measurements were compared with core fractures and borehole-TVfractures. After the comparison study there was a possibility to study some sections of cores.

The length correction is a very important issue in this study. With poor or nonexistent lengthcorrection it is impossible to obtain reliable results of correlation. The length correction of borehole-TV measurements was the best whereas no length correction could be done with televiewermeasurements in the borehole RO-KR3.

In KI-KR1 the dipmeter method detected more core fractures than borehole-TV and televiewermethods, in RO-KR3 borehole-TV was the best method. It detected mostly open and filled corefractures in KI-KR1, in RO-KR3 the proportion of filled fractures detected was considerable.Dipmeter method mostly detected open fractures. However, dipmeter detected more filled fracturesthan open ones in RO-KR3. There was no considerable difference in detecting fractures of differenttypes with televiewer method. No clear linear relationship was noticed between the proportions ofdifferent types of core fractures detected and the fracture frequencies in different rocks. Theorientation was similar between oriented core fractures and borehole-TV fractures and betweendipmeter fractures and borehole-TV fractures. Hydraulic conductivities mainly correlated with openand filled fractures. Borehole-TV fractures supplemented and verified the correlation. This studygives the impression that the use of core analysis and borehole-TV measurements together providesthe best image of the bedrock in the borehole. Borehole-TV is a very useful method, especiallywhen studying the core loss sections.

Avainsanat - Keywordsfracturing, core analysis, borehole television, dipmeter, televiewer, differential flow measurements

ISBN

ISBN 951-652-028-6ISSN

ISSN 1239-3096

SivumSara - Number of pages158

Kieli - LanguageEnglish

Page 4: Comparison of 3-D geological and geophysical investigation

Posiva-raportti - Posiva report Raport.«««-Repot«*POSIVA-97-03

Posiva OyAnnankatu 42 D, FIN-00100 HELSINKI, FINLAND Julka.suaika - DatePuh. (09) 2280 30 - Int. Tel. +358 9 2280 30 Tammikuu 1997

Tekijä(t) - Author(s)

Katriina LabbasTeknillinen korkeakouluMateriaali- ja kalliotekniikka

Toimeksiantaja(t) - Commissioned by

Posiva Oy

Nimeke - Title

KOLMIULOTTEISTEN GEOLOGISTEN JA GEOFYSIKAALISTEN TUTKIMUSMENETEL-MIEN VERTAILU ÄÄNEKOSKEN KIVETYN KAIRANREIÄSSÄ KI-KR1 JA KUHMONROMUVAARAN KAIRANREIÄSSÄ RO-KR3

Tiivistelmä - Abstract

Tämän diplomityön tarkoituksena on vertailla kolmiulotteisia geologisia ja geofysikaalisia mene-telmiä, jotka antavat tietoa raoista. Kiteisessä kivessä raot määrittävät pääasiallisesti hydrogeologisetja kiven mekaaniset ominaisuudet. Kairasydännäytteiden analyysit, reikä-TV, dipmeter, televiewerja eromittausmenetelmä övat menetelmät, jotka kuvataan ja joita vertaillaan tässä työssä. Mittaus-tulokset övat peräisin kairanrei'istä KI-KR1 Konginkankaan Kivetystä ja RO-KR3 KuhmonRomuvaarasta. Rakoja vertailtiin käyttämällä seuraavia tietoja: raon syvyys, raon laatu, rakokulma,raon kaateen suunta ja kaade, reikä-TV -rakojen avonaisuus, värilliset reikä-TV -kuvat mittakaa-voissa 1:10 ja 1:25 ja valokuvat kairanäytteistä lähellä mittakaavaa 1:10. Myös dipmeter-ja tele-viewer-tuloskäyriä käytettiin hyväksi vertailussa. Eromittausmenetelmällä saatuja tuloksia verrattiinkairanäyterakoihin sekä reikä-TV -rakoihin.

Syvyyskorjaus on erittäin tärkeä tekijä tässä työssä. Jos syvyyskorjaus on huono tai sitä ei olelainkaan, on mahdotonta saada luotettavia tuloksia korrelaatiosta. Reikä-TV -mittausten syvyys-korjaus onnistui parhaiten, kun tåas televiewer-mittauksille kairanreiässä RO-KR3 ei pystytty teke-mään lainkaan syvyyskorjausta.

Kairanreiässä KI-KR1 dipmeter-menetelmä havaitsi enemmän kairanäyterakoja kuin reikä-TV jateleviewer. Kairanreiässä RO-KR3 reikä-TV oli paras kairanäyterakojen havaitsemisessa. Selväälineaarista korrelaatiota ei todettu erilaatuisten rakojen havaitsemisen ja rakotiheyden välillä eri kivi-lajeissa. Suunnattujen kairanäyterakojen ja reikä-TV -rakojen sekä dipmeter- ja reikä-TV -rakojenvälinen suuntaus oli samankaltainen. Hydrauliset johtavuudet korreloivat pääasiassa avoimien jatäytteisten rakojen kanssa. Reikä-TV -raot vahvistivat korrelaatiota ja täydensivät mahdollisten vettä-johtavien rakojen listaa. Tämän tutkimuksen perusteella kallioperästä saadaan paras kuvaus käyttä-mällä yhdessä kairanäyteanalyysiä ja reikä-TV -menetelmää. Varsinkin tutkittaessa näytehukka-jaksoja reikä-TV on erittäin käyttökelpoinen menetelmä.

Avainsanat - Keywords

rakoilu, kairasydännäyte, reikä-TV, dipmeter, televiewer, eromittausmenetelmäISBN

ISBN 951-652-028-6ISSN

ISSN 1239-3096Sivumäarä - Number of pages

158Kieli - Language

England

Page 5: Comparison of 3-D geological and geophysical investigation

TABLE OF CONTENTS

Abstract

Tiivistelma

Foreword 1

Preface 2

1 Introduction 4

2 Investigation methods 5

2.1 Core analysis 5

2.2 Borehole television 8

2.2.1 Principles of the borehole-TV method and 9

the equipment used

2.3 Dipmeter 11

2.3.1 Principles of the dipmeter method 12

2.3.2 Equipment used 15

2.3.3 Dipmeter processing 16

2.4 Televiewer 18

2.4.1 Principles of the borehole televiewer method 18

2.4.2 Equipment used 19

2.4.3 Televiewer processing 20

2.5 Differential flow measurements 21

2.5.1 Principles of differential flow measurements 22

and the equipment used

3 The Kivetty and the Romuvaara area 24

3.1 Location and topography 24

3.2 The rock types and fracturing of the investigation site 25

3.2.1 Kivetty 25

3.2.2 Romuvaara 28

4 Results 30

4.1 Core analysis 30

4.1.1 KI-KR1 31

4.1.2 RO-KR3 33

Page 6: Comparison of 3-D geological and geophysical investigation

4.2 Borehole television 35

4.2.1 KI-KR1 36

4.2.2 R0-KR3 37

4.3 Dipmeter 38

4.3.1 KI-KR1 40

4.3.2 RO-KR3 41

4.4 Televiewer 41

4.4.1 KI-KR1 42

4.4.2 RO-KR3 42

4.5 Differential flow measurements 42

4.5.1 KI-KR1 43

4.5.2 RO-KR3 43

5 Results of core analysis and borehole-TV compared 44

with other results

5.1 General 44

5.2 Number of fractures detected 47

5.2.1 KI-KR1 47

5.2.2 RO-KR3 51

5.3 Correlation of fractures orientations 57

5.3.1 KI-KR1 57

5.3.2 RO-KR3 61

5.4 Core and borehole-TV fractures vs. 64

differential flow measurements

5.4.1 KI-KR1 65

5.4.2 RO-KR3 65

6 Summary 67

Supplement 71

References 74

Appendices 78

Page 7: Comparison of 3-D geological and geophysical investigation

Foreword

This study was carried out as a master's thesis for the Laboratory of Engineering

Geology and Geophysics, Helsinki University of Technology. The study was done in the

facility of Fintact Ltd. I would like to thank both the Laboratory of Engineering Geology

and Geophysics and Posiva Ltd. for making this study financially possible.

I wish to thank my supervisor, Professor Heikki Niini, for his support and

encouragement throughout the work.

My sincere gratitudes go to my instructors, Pekka Anttila at IVO International Ltd. and

Pauli Saksa, managing director of Fintact Ltd., for their guidance and valuable

comments.

I am indebted to Mr Allan Strahle, geologist of Geosigma Ltd., Mr Eero Heikkinen at

Fintact Ltd. and Mrs Pirjo Hella at Fintact Ltd. for their instructions and co-operation.

Associate Professor Markku Peltoniemi I want to thank for his support. I also wish to

thank the rest of the personnel of Fintact Ltd. and the Laboratory of Engineering

Geology and Geophysics for their co-operation.

Helsinki, October 1996.

Katriina Labbas

Page 8: Comparison of 3-D geological and geophysical investigation

PREFACE

Characterisation of the fracturing in three dimensions (3-D) is a demandingtask in nuclear waste disposal site studies. Boreholes and associated datacollection are a principal source of that fracturing information.

Posiva Oy, as a joint venture of Teollisuuden Voima Oy and Imatran Voima Oy,is carrying out site investigations at Kivetty, Olkiluoto and Romuvaara sites inFinland. One identified task in the detailed site investigation programme hasbeen the 3-D mapping of borehole fractures. Goal of the studies is to be able todescribe the fracture orientations and characteristics deep in the bedrock bothfor the average rock matrix and for the observed fracture and crushed zones.

During 1993 - 96 Posiva has utilised several logging methods in slim boreholesto collect the data needed. Oriented drill core has been the basic materialavailable which also serves as a basis for comparison with other methods.Geophysical dipmeter and televiewer tools were also run in selected boreholes.In Sweden SKB has concurrently acquired and tested a borehole-TV system forgeological borehole mapping. Thus, a project between Posiva and SKB wasinitiated to test borehole-TV in certain boreholes in Finland and to compare andevaluate the data between different logging methods. The aim was to find atechnique to map all fractures in 3-D and possibly differentiate between open,hydraulically active and other fractures, and to clarify what type of fractures themethods can see.

The project was divided into different sub-tasks 1 - 4 as follows:

Subtask 1) Borehole-TV loggingFour boreholes, namely KRl and KR3 at Kivetty and KR2 and KR3 at Romu-vaara, were measured in June 1995.

Subtask 2) Preliminary processingThe basic processing covered preparation of a field report and printouts of theTV-logs with corrected depth scales. All the four boreholes logged were proc-essed. Careful depth adjustment in respect to the core depth values was realisedfirst. The depth calibration points were provided by Posiva's representatives.The work was conducted by Allan Strahle, Geosigma Ab in Sweden and pub-lished as a site characterisation project (PATU) work report 95-34e by Posiva.

Subtask 3) Analysis of TV-results with drill coreBoreholes KI-KRl and R0-KR3 were selected to this task. KI-KR1 is 1015 m inlength and located in homogeneous porphyritic granodiorite and graniteformation with mylonitic and even-grained granodiorite seams. RO-KR3 is 477m in length and represents intensively metamorphosed, banded tonalitic gneiss

Page 9: Comparison of 3-D geological and geophysical investigation

formation with intersecting mafic metadiabase and amphibolite sections. Bothhave chemically dilute groundwater conditions.

During the analysis phase depth values were rechecked again and as many aspossible fractures, lithological veins and contacts were oriented from the TV-data and classified according to depth, type, infilling, apparent aperture etc.Preliminary comparisons with known fracture zones in the boreholes and withthe geological logs derived from the core was made. In addition, a brief tentativeintegrated analysis between core, geophysical logs and TV log was done. Themajority of TV logs were plotted in scale 1:25 and some densely fracturedsections in detailed scale 1:10. The work was conducted by Allan Strahle, atGeosigma Ab in Sweden during Autumn 1995 and supported by co-analyzinggeologist Pekka Anttila from IVOIN Ltd., Finland. The results have beenpublished from Romuvaara as Posiva's PATU Work Report 95-90e and fromKivetty as PATU Work Report 95-91e.

Subtask 4) Evaluation between different 3-D geological and geophysicalborehole mapping methods (this report)This part was accomplished by Katriina Labbas as a Master of Science Thesisbetween late 1995 and Autumn 1996 period. In practise the work was commis-sioned from Posiva to Helsinki University of Technology, Laboratory of Engineer-ing Geology and Applied Geophysics. As presented in this report later, itcomprises the comparison of fracture mapping capabilities between geophysicaldipmeter, televiewer, borehole-TV and core log data from boreholes KI-KRl andRO-KR3. The outcome is the estimates of resolving power method by methodand largely the table combining fracture depths and orientations achieved bymultimethod technique.

During subtask 4 Allan Strahle was participating as a SKB's representative tothe study. As a finalising step a two day seminar on "Geological 3-D boreholeimaging methods, surveys and achieved evaluation results" was held in Helsinki20 - 21.8.1996. A group of SKB's and Posiva's representatives and consultantswere involved. During the second meeting day a visit to Geological Survey ofFinland, Central Core Storage Facility at Loppi community was arranged. Therestudy of the cores used in the evaluation work, study of core sections of specificinterest and discussions took place.

Throughout the study Timo Aikas and Heikki Hinkkanen were supervising theproject from Posiva's side and Erik Thurner and Karl-Erik Almen from SKB'sside. Antti Ohberg from Saanio & Riekkola Consulting Engineers was arrangingthe field work part in Finland. I am pleased to take opportunity to thank all whoparticipated to the project of their constructive efforts and comments as well asenjoyable team work as a whole.

Pauli Saksa, Fintact Ltd., Finland

Page 10: Comparison of 3-D geological and geophysical investigation

1 Introduction

This study is connected with site characterization aiming at the selection of a site for the

final disposal of spent nuclear fuel in Finland. Romuvaara at Kuhmo, Kivetty at

Aanekoski and Olkiluoto at Eurajoki are the three sites selected in 1992 for site

characterization. The aim of this study is to compare methods which provide

information of fracturing. Fracture investigation is important for groundwater flow and

rock mechanical assessments.

Core analysis, borehole television (BIP 1500-system), three-arm dipmeter, borehole

televiewer and differential flow measurements are the 3-D geological and geophysical

methods described and compared in this master's thesis. Core analysis, borehole-TV,

dipmeter and televiewer provide information of fractures at certain depth and with

certain orientation. With differential flow measurements it is possible to measure flow

into or out from the borehole and determine hydraulic conductivities and hydraulic

heads in fractures or fracture zones. The material for the study is from the measurements

with these methods performed in the borehole KI-KRl at the Kivetty site and in the

borehole R0-KR3 at the Romuvaara site in Finland. These boreholes are selected

because they represent different types of rock, KI-KR1 granitoids with mylonitic

sections and R0-KR3 migmatitic gneisses with mafic dykes and inclusions, and because

the measurements performed with the methods mentioned are available.

In Finland, the borehole-TV measurements and borehole televiewer measurements have

been performed for the first time at the Romuvaara and the Kivetty site. Logging with

the borehole-TV BIP 1500-system has been also made in two boreholes in Sweden.

Development of routines for logging and analysis is presently (1995-1996) going on III.

The dipmeter measurements are performed in Finland earlier at the Loviisa nuclear

power plant site 111. The differential flow measurement method is developed in Finland

131 and applied in the Kivetty, the Romuvaara and the Olkiluoto site.

Page 11: Comparison of 3-D geological and geophysical investigation

2 Investigation methods

The fractures in crystalline bedrock and their properties are studied for hydrogeological

and engineering purposes. The main objective of the work is to examine the correlation

and fitting between the results of the methods mentioned. The fracture data of cores and

the fractures detected by borehole-TV, dipmeter and televiewer methods were compared

with the information of location of the fracture, fracture type and fracture angle (gon),

dip and direction of dip of fracture detected by each method, aperture of TV-fracture,

colour TV-image plots (scales 1:25, 1:10) and core photographs in a scale of ca. 1:10.

Before the comparison the detailed length correction was made for dipmeter and

televiewer measurements. There was an opportunity for me to check some sections of

cores at the core storage facility. Because the new technically improved borehole-TV

BIP 1500-system is the most interesting method in this study, separate comparisons

were made between borehole-TV and dipmeter and televiewer methods. The hydraulic

conductivity measured by differential flow measurements and the potentially-water-

conducting fractures (open and filled) of the core and borehole-TV fractures were

compared.

2.1 Core analysis

Core samples are the main source of information of the geological conditions in the

bedrock. They give information for example of rock type, rock minerals and their grain-

size, rock weathering and megascopic fracturing. Fracture depth is measured as a

fracture intersection with the axial center line of the core. Fracture angle is also

measured, in this study fracture angle has been measured as gons (100 gon = 90°) and in

respect to cross-direction (0 gon) of the core.

Fracture frequency can be measured from the core sample. According to the Finnish

engineering-geological rock classification /4/, it is determined from the core sample by

counting the number of fractures per core metre. Breaks of the core are excluded when

defining the fracture frecquency. When the fracture frequency is <1, 1-3, 3-10 or >10

pcs/m, the bedrock is poorly, sparsely, abundantly or densely fractured, respectively.

Fractures of the core sample can be determined as open, filled or tight according to the

Finnish engineering-geological rock classification /4/. The surfaces of an open fracture

do not touch each other and there is no filling between them. Open fractures occur

Page 12: Comparison of 3-D geological and geophysical investigation

especially in the upper parts of the bedrock and are usually water conducting ones. The

minerals of fracture surfaces are often altered and rust can also occur on the surfaces.

The fracture infilling consists of soft and/or loose mineral ingredients, e.g., clay

minerals (clayey fracture), carbonates and chlorite. The water conductivity of filled

fractures depends on the filling quality and the filling quantity. The surfaces of the

slickenside are covered by the smooth mineral layer often composed of chlorite. The

filling of the grainy fracture consists of coarse mineral ingredients. The water

conductivity of grainy fractures is moderately good.

The surfaces of a tight fracture touch each other. They are dimmed in the core sample,

but there is neither filling nor weathering. The water does not flow in tight fractures or

the mobility of the water is insignificant.

The dips of fractures and directions of dips can be determined from oriented core. The

dip is defined in terms of two components: the angle from the horizontal (dip) and the

direction with respect to north in the horizontal plane (direction of dip). The orientations

of core fractures has been detected at even intervals of 5 gon (= 4.5°). To orient the core,

a wireline marking method and the marking peak fastened in the top of drilling bar have

been used in this study. In the wireline method the marking peak is lowered into the

borehole with the wire. Usually the quantity of oriented core is quite small, which is

caused by many reasons. An oriented core is usually obtained from most intact bedrock,

because orienting of the core does not usually succeed in a densely fractured bedrock.

When the bottom of the borehole is sloping or it is crushed during marking or drilling,

the marking is not reliable. Sometimes there is dropped rock material in the bottom of

the borehole and the mark has become invisible. If stroke energy has not been sufficient

when marking with drilling equipment, the mark in the end of the core sample has

become indistinct or invisible. Sometimes the core sample has been rotated or crushed

during marking 151.

Photographs has been taken from core samples. In Figure 1 there is a photograph of a

section of R0-KR3 in a scale of ca. 1:10.

Page 13: Comparison of 3-D geological and geophysical investigation

m 11 m 11 m i • m 11 m i •

Figure 1. Photograph (scale ca. 1:10) of the core sample of RO-KR3 151.

A Schmidt equal area projection plotted on the lower hemisphere can be used to

establish fracture orientation in the subsurface. Fracture densities in different directions

can be analyzed. The plane (fracture) is projected and plotted on the lower hemisphere

as a point. The point is determined by the intersection of the normal of the plane and the

lower hemisphere, Figure 2. The point P' represents the fracture dipping N-E with a dip

of 60°. The point P is the intersection of the normal vector of the plane and the lower

hemisphere.

Figure 2. Schmidt equal area projection plotted on the lower hemisphere.

Page 14: Comparison of 3-D geological and geophysical investigation

If there is a concentration of fractures in certain orientation, there will be a

corresponding concentration of points on the projection plane. From the point diagram a

contour diagram may be derived. The construction and the use of the Schmidt equal area

projection and contour diagram are presented in futher detail for example in Reference

161.

2.2 Borehole television

A borehole television has been developed to obtain detailed lithological and fracture

data from boreholes, for example location, orientation, infilling-width and aperture

information. This method complements direct measurement of fractures in rock cores,

and provide essential information in those instances where the core recovery is poor or

nonexistent as a result of highly fractured conditions. Older borehole-TV systems,

which differ greatly from the one used in this study, have been used, e.g., to map

borehole conditions in sedimentary rock environments and in plutonic rock

environments at various research areas on the Canadian Shield for the Canadian Nuclear

Fuel Waste Management Program (CNFWMP) 111. They have also had special

application in the detection and measurement of hydro fractures in boreholes 111.

Logging with the new borehole-TV system, technically improved BIP 1500, has been

conducted in two boreholes in Sweden and in boreholes KI-KR1 and KI-KR3 at the

Kivetty site and in boreholes RO-KR2 and RO-KR3 at the Romuvaara site. Boreholes

KI-KR1 and RO-KR3 were chosen for further evaluations. Development of routines for

logging and analysis is presently going on (1995-1996) III. There are no other

investigation reports on measurements and geological analysis with the BIP 1500 system

available except the reports on the boreholes KI-KR1 and RO-KR3 of this study.

Because the older borehole-TV systems differ.so much from the system used in this

study, any correlation with the results obtained by older systems cannot be meaningful.

Page 15: Comparison of 3-D geological and geophysical investigation

2.2.1 Principles of the borehole-TV method and the equipment used

Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently (1994) purchased

and technically improved a borehole-TV system, BIP 1500, from RaaX Co, Japan. This

TV system operates in boreholes to 1500 m depth and in boreholes with diameter > 56

mm. It presents 360 degrees colour images of the borehole wall in different formats and

scales. This borehole-TV system also enables determination of other geological

structures than fractures - veins, contacts, foliation and alteration. Lithology is also

recognizable, especially when the observer is familiar with the rocks of the area III.

The logging with the BIP 1500 system is performed with a camera probe and a battery

probe attached to a fibre cable 2000 m long on an electrically controlled winch. The

probe is slowly lowered into the borehole. The camera in the camera probe is facing a

conical mirror that reflects the borehole wall into the camera, see Figure 3/1/.

Within the ring shaped picture, created by the conical mirror, there is a thin circle of 360

pixels. It indicates the data grabbed by the system as the probe moves downwards. The

camera video signal is then transferred to the dual monitor unit and to image processing

and recording unit on the ground surface. One of the monitors of the dual monitor unit

shows an unprocessed ring - shaped picture, where is an electronic needle in the centre.

That needle is used to chase a gravitationall ball, via a tuning device. Then a processed

pixel image is created. This image shows the borehole walls rolled out and is continuous

along the borehole. It is also created together with a borehole length scale /I/.

The image data are collected on magneticoptical discs and each disc covers 100 m of the

borehole length. As a back up, the unprocessed image data are recorded on a NTSC

video tape, also covering 100 m. The logging is made in 100 m sections. The velocity of

about 1.5 m/min was used in this study. The length resolution is with that speed about 1

mm and the cross resolution one pixel/degree (in spite of logging speed) and in this

case, 56 mm, it is about 0.5 mm. The velocity used is the fastest and gives the lowest

length resolution. With half, or a quarter of the speed the length resolution can increase

to 0.5 and 0.25 mm/I/.

Page 16: Comparison of 3-D geological and geophysical investigation

Side-viewingcameraprobe

Figure 3. Sideviewing camera probe of the borehole-TV system BIP 1500 /i /

The length correction of the image file is done by using true length data from another

method, normally core logging. The calibration points are selected from fractures or

veins easily recognized in both the BIP file and core log. A correction line is constructed

using the point data from core and BIP. The line has slightly different inclination for

each 100 m section, due to different correction for the individual files /I/.

Image plots can be produced in a number of different scales. As standard format an

overview of 360° out folded borehole wall images in 1:25 scale is chosen. This can

produce an A4 portrait page with 10 m, two lengths of 5 m. with interpreted orientation

data. In some parts of the overview image plots there are many detected features in a

small section of the borehole. For readability these sections are also plotted in the scale

1:10, which gives an image with two lengths of 2 m on each A4 page. In Appendix 5 ,'8/

there is a section of the borehole RO-K.R3 in the scale 1:10. Along the left side of the

borehole image there is a length scale. The corrected length values (red) have been

printed just beneath the corresponding recorded raw length values (black) from the TV

JO

Page 17: Comparison of 3-D geological and geophysical investigation

logging. Orientation (strike/dip) and aperture/width of the detected feature have been

listed along the right side of the image. The direction of dip value is the strike plus 90°

added. In Appendix 5 almost every detected feature is a fracture /8/.

The "blind test" was performed without any other data than TV images, borehole

direction and borehole diameter. The borehole is scanned from top to bottom and each

fracture, fracture zone, vein, contact and foliation is measured and recorded. The

orientation-of fractures is calculated from the position of small crosses (more than 5),

put on the trace of the fracture by using the pointing device (mouse) of the computer.

The apparent aperture of fractures and veins can be measured. The fracture zones are

sections where are fractures not measured. They are not dealed with in this study. Sort,

form, condition and remark are the groups of characteristics that are used by the BIP

system. Sort refers to the type object that is characterized, form is the physical form of

the object, condition is the type of state the object is in and remark normally tells the

mineral or rock type in question III.

2.3 Dipmeter

The dipmeter is one of the geophysical electrical logging methods. The method is based

on the natural differences of the electrical conductivity (opposite to the resistivity) in the

bedrock and in the fracture/layer structures. Due to the higher electrical conductivity the

water-conducting fractures are well presented as resistivity low anomalies. The

approximate electrical conductivity of the water (non-saline) in the bedrock and the

granitic bedrock is 10-2-10-1 S/m and 6.0-20.010-5 S/m, respectively 191. The resistivity

dipmeter tool typically uses three or four horizontal, equally-spaced, microresistivity

pad measurement profiles to determine formation (fractures or the layer structures in

sedimentary bedrock) dip magnitude and direction 12, 10/. Because of the small

resistivity electrodes, a high resolution along the borehole wall is achieved. The

dipmeter tool can be used without recording the microresistivity measurements to obtain

just the borehole directional information. Input needed is borehole deviation and

direction, plus distance along the borehole 110/.

11

Page 18: Comparison of 3-D geological and geophysical investigation

In Finland the dipmeter has been used earlier in at the Loviisa nuclear power plant site.

In 1983 performed measurements indicated that the number of fractures detected with

the dipmeter was considerably lower than the number of fractures interpreted from core

samples. From the 519 fractures mapped from the cores only 23 % was detected with

the dipmeter. The dipmeter reacts evidently only to open fractures in the bedrock. The

number of open fractures in core samples was considerably higher than the number of

open fractures in-situ. In Switzerland the dipmeter has been used experimentally in

crystalline bedrock. In the orientation analysis, densely fractured parts of the bedrock

created difficulties, especially, if fractures nearly parallel to the borehole were present

111.

2.3.1 Principles of the dipmeter method

The accurate determination of in-place formation dip is a two-part problem. First, the

relative dip of formation beds, expressed in bed displacement along the borehole wall, is

measured and then orientation of the borehole wall is measured. The determination of

dip and direction of dip requires the elevation and geological position of at least three

points. Classically, such points can be characterized by their microresistivity values

which are measured by means of small focussed electrodes mounted on at least three

caliper arms 120° apart. The caliper arms ensure that the electrodes are kept in close

contact with the borehole walls. There is also a four electrode version with four caliper

arms 90° apart /I II. The addition of the fourth microresistivity measurement allows for

improved dipmeter quality determination. With just three measurements only a single

dip calculation can be obtained at each depth. With the addition of fourth measurement,

it is possible to make reliable four three-point dip calculations and by comparing the

various calculated dips, an indication of the dip quality is made /10/. No dip can be

calculated, if one arm loses contact with the formation with the three arm system. With

four correlation measurements, if one arm loses contact or anomaly with the formation,

one dip calculation is still obtainable.

In reality the three or four resistivity pads are not located at fixed directions within the

borehole. The natural torque of the wireline causes the tool slowly to rotate as it is

pulled uphole making it necessary to measure the orientation of at least one of the pads

and to use that measured direction in calculating the dip angle and dip direction. Further

on, because the borehole is not always vertical, its angle of deviation from vertical and

the direction of borehole dip must be measured. If the borehole diameter, vertical

Page 19: Comparison of 3-D geological and geophysical investigation

displacement of at least three resistivity curves, orientation of the resistivity curves,

sonde deviation from vertical, and down direction of the sonde axis are known, the bed

dip direction and magnitude can be calculated /10/.

When the sonde being pulled up the hole crosses a dipping formation bed, the change in

microresistivity as seen by the each individual electrode will occur at different depths.

The relative displacement of the resulting resistivity changes are used along with the

hole diameter measurements recorded by the calipers to compute the dip angle and dip

direction relative to the sonde. The sonde is equipped with a set of orthogonally

mounted fluxgate magnetometers and accelerometers to determine its own relative

position with respect to north and the vertical axis and to determine the relative position

of the electodes with respect to the high side of the sonde /11/.

Certain common dipmeter terms are defined in the following /11/:

- dip angle:

- apparent dip angle (6):

- dip azimuth:

- apparent dip azimuth (<f>):

- borehole deviation:

Angle between the bedding plane and the

horizontal (for vertical holes).

Angle between the bedding plane (B) and the

plane (P) perpendicular to the hole axis (for non

vertical holes), see Figure 4.

Clockwise angle measured from the direction of

geographic north to the direction of the horizontal

projection of downward dip. Looking downhole

(for vertical holes).

Clockwise angle between caliper Pad#l and the

downward dip projection on the plane

perpendicular to the downhole axis (for non

vertical holes), see Figure 4.

Angle between the vertical axis and the axis of the

hole.

13

Page 20: Comparison of 3-D geological and geophysical investigation

hole

axis plane

(P)

X"

borehole axis

\

\

• — . — •

bedding plane (B)

\\\

\ - - 4 caliper pad # 1

Figure 4. Apparent dip angle (8) and apparent dip azimuth ((()) IWI.

In Figure 5/10/ there are more dipmeter terms described.

HELATIVEAZIMUTH""OF REFERENCEELECTRODE

NO 1 PAD

DEFINITIONS

(AZI) AZIMUTH Of BEFflENCE ElECTKODE - Cloclrw;»e ongle from N to «EF

(»»«> «EIATIVE »EA«ING = Clock-i ie angle from DMD ta REF

(AMD) AZIMUTH OF HOIE DEV. a O O l AXIS) r- Clock-..e on9le fro"- N to DHD

(DHO) HIGH SIDE OF TOOt - Dt'eclion from center of tool to upper »ide o' tool

(N) NORTH : Direction from center of tool to Magnetic North.

(REFl RFFERfNCE ELEC1KODE Dc.ett.on from center of tool to * I electrode

Figure 5. Definition of dipmeter geometric orientation measurements of the tool and

the borehole: azimuth, relative bearing, and deviation - for the low angle

(36° and less deviation) measurement system /10/.

14

Page 21: Comparison of 3-D geological and geophysical investigation

2.3.2 Equipment used

The equipment used in this study consists of the surface control unit, a 2000 m winch

with 3/16 inch 4 conductor logging cable and a three arm sonde (length 2.97 m,

diameter 50 mm) manufactured by Robertson Geologging Ltd., UK. In this study a three

arm dipmeter sonde, see Figure 6, was used as the more usual four arm tool is too large

(60 mm) in diameter for boreholes KI-KR1 and RO-KR3. The data are logged and

recorded onto 3 1/2 inch disks in the field using software, which allows data acquisition

and control of sondes, display of log curves in real time, log scale selection and various

processing functions. Normal logging speed is 6 m/min. The dipmeter data are recorded

at 10 mm intervals /12, 13/.

In most cases, it is desirable to use centralizers attached to the bodies of the sondes to

keep the sondes in line with the borehole. This is particularly the case in inclined holes.

The narrow diameter of the holes on this programme made it difficult to achieve very

good centralization /13/.

545 mm

sonde head

inclinometer

magnetometer

2936 mm

micro-resistivitypads and caliper arms

Figure 6. Three arm dipmeter /13/.

15

Page 22: Comparison of 3-D geological and geophysical investigation

2.3.3 Dipmeter processing

Recording of the sonde pad 1 azimuth did not function correctly. This was overcome by

using borehole deviation azimuth data from the Fotobor survey in conjunction with the

dipmeter relative bearing data, to calculate pad 1 azimuth data l\ 3/.

The interval correlation method produces an average dip, characteristic of underlying

structures such as bedding planes /13/. An interval is given to the programme which

determines the length of the resistivity curve to be correlated in one calculation of

orientation /10/. The three resistivity curves were compared for similarity over chosen

correlation interval of 1.0 m /12, 13/. Search angle (a) in Figure 7 (maximum expected

dip angle) is used to define the correlation length in respect of the second curve. The

maximum range is called the search distance (H), Figure 7. The search angle must be

chosen high enough to cover most of the expected dips. If not, some data will be lost. If

the search angle chosen is too high, a lot of erroneous dips will be computed if the

correlation curves lack sufficient common features. Search angle selection options are:

(1) angle relative to horizontal, (2) angle relative to the borehole axis (independent of

deviation) and (3) angle relative to any user defined plane /11/. In this study selection

option was (2), angle 75° /12, 13/. The step distance is the distance to move in order to

make the next correlation step. It is usually chosen to give some overlap. However, if

there is too much overlap, it becomes possible for one geological feature to control more

than one correlation resulting in one anomaly being represented by more than one dip

arrow creating the false impression of several parallel beds IWI. The step distance is

normally one-half the correlation length /10/, in this study it was 0.5 m /12, 13/.

!diameter

1i y

/

V

COMPUTATION PARAMETERS-H

/j

[J 'J

<v/ij/ A\

correlation interval

—)i step fS—

distance ;V

next correlation interval

I

a /

A..

/

Figure 7. Illustration of the main computation parameters /11/.

16

Page 23: Comparison of 3-D geological and geophysical investigation

The pattern recognition method calculates dips of individual features recognized by the

programme on at least three of the four microresistivity traces (four armed dipmeter).

This processing method involves no averaging and is useful in the study of isolated

events such as in fracture analysis /13/. The pattern recognition routine is executed for

the current interval after interval correlation has been performed. An individual feature

is a continuous change in microresistivity, that exceeds some present value. They are

identified by integration of area under microresistivity gradient curves. The integration

is continuous but every time the gradient curve becomes zero, the current running sum

of area is assessed to see if it represents a sufficiently large change in microresistivity to

establish a feature /11/. The first search range for pattern recognition used in this study

was 5° and the final 45° about the interval correlation dip, incrementing in 10° steps /12,

13/.

There is a section of dipmeter resistivity data at 45-52 m and 334-353 m of the borehole

RO-KR3 in a scale of 1:100 in Appendix 6/12, length corrected afterwards/. From left

to right the log shows /121:

(1) Down hole corrected length scale.

(2) Arrow plot of the calculated dips. Individual fractures are presented as dip

direction/dip values in tadpole plots. Interval correlation dips are represented by

circular symbols and pattern recognition dips by triangular symbols. The

position of the head of the tadpole shows the dip magnitude, the tail is in the

direction of the dip azimuth (north up the log). Rose diagrams, drawn over 10 m

intervals, with solid elements pattern recognition dip azimuths and with open

elements, show interval correlation dip azimuths.

(3) Microresistivity traces, pad #1 is repeated on the right. Dotted tie-lines join the

individual features that have been identified and correlated to calculate pattern

recognition dips.

(4) Caliper plot.

17

Page 24: Comparison of 3-D geological and geophysical investigation

2.4 Televiewer

The acoustic borehole televiewer has been developed to obtain detailed fracture

information from boreholes as location and orientation. This method has been used at

various research areas on the Canadian Shield for CNFWMP as well as the old

borehole-TV system 111. Televiewer have also had special application in the detection

and measurement of hydrofractures in boreholes 111. According to the televiewer

measurements in Yucca Mountain, Nevada, USA, larger fault zones seen in the

televiewer logs can be correlated with similar features in the core /141. The televiewer

has been used even in the north-central Atlantic Ocean borehole interfaced with the data

recording equipment in the submarine /15/.

2.4.1 Principles of the borehole televiewer method

The borehole televiewer scans the borehole with focussed beam of ultrasound,

registering both the amplitude of the reflected signal and the delay in two-way transit

time. The televiewer provides an direct oriented acoustic picture of the borehole wall as

if the borehole were split vertically along magnetic north and laid out flat. The log

obtained with the televiewer is collected continuously as the tool is moved up in the

borehole, and the results are presented as a continuous recorded image /16/.

The televiewer data are displayed as pictures with amplitude versus azimuth and depth,

but also as a picture showing the arrival time an amplitudes of the reflected signal IIII.

The low amplitudes are in dark and the high amplitudes are clear. A smooth hard

surface reflects more energy than a rough soft one /161, so fractures and other rough

parts of the wall are displayed as dark patches. The travel time image allows us to

identify the problems caused by the ellipticity of the borehole or the position of the tool

in the borehole. On both figures the fractures appear as thin lines /I II. Fractures with

dip appears as sinusoidal lines. The direction of dip is the direction of the minimum and

the dip is determined by measuring the peak-to-peak amplitude of the sinusoid and

combining it with the diameter of the borehole /16/.

18

Page 25: Comparison of 3-D geological and geophysical investigation

2.4.2 Equipment used

The borehole televiewer acquisition equipment used in this study is the same one as

described in Chapter 2.3.2 except the sonde. The televiewer used in this study has been

developed by M.W. Instruments, USA, for the OYO Corporation, Japan, and has been

interfaced with Robertson Geologging Ltd. surface equipment. The sonde is relatively

short, 2.1 m and light, 23 kg, see Figure 8/18/. The acoustic transducer has a diameter

of 24.8 mm and a concave surface with a radius of curvature of 101.6 mm. It rotates at

10 revs/sec and is fired 128 times/rev. The frequency used is 500 kHz. The effective

resolution of the compass is 4°, amplitude and data resolution is 6 bits + 2 gain bits,

travel time resolution is 1 microsec. Depth events are recorded every 1 cm. At logging

speed of 3 m/min, the recorded amplitude and travel time data are distributed on a spiral

with pitch 5 mm, and with angular spacing of the individual data sets 2.8° of arc /19/.

logging

acoustic beam

fluid filledborehole

sonde head

compass

acoustictransducer

rotation rate

Figure 8. Televiewer sonde /18/.

19

Page 26: Comparison of 3-D geological and geophysical investigation

The resolution of the televiewer is a function of borehole size, logging speed, transducer

rotation rate, and tool geometry. Sampling frequency decreased markedly owing to the

doubling of the logging speed accompanied by a gradual decrease in transducer rotation

rate according to the measurements performed in the north-central Atlantic Ocean /I II.

The probe in this study finds particular application in fracture studies where high

resolution (up to 0.5 mm) with continuous orientation is valuable /18/. The minimum

thickness for fracture detection is unknown in 58 mm boreholes in crystalline rocks.

Direct comparison with optical imagery has only been available in a 150 mm diameter

borehole in chalk, where detection limit was 0.8 mm. It is expected that this resolution

or perhaps better could be achieved in the Romuvaara and Kivetty holes /18/.

2.4.3 Televiewer processing

Amplitude and one-way travel-time of the signals reflected off the borehole wall are

interpolated onto a rectangular grid with vertical (depth) spacing 5 mm, and horizontal

(azimuth) spacing 2°. They are presented as grey-scale logs, after histogram-equalisation

over the complete log, at a vertical scale of 1:10. Horizontal format of these logs is

fixed, resulting in an exaggeration of the horizontal scale of about five times relative to

the vertical scale, in these boreholes /18/. The travelling time image and the amplitude

image of the section at 348-352 m of the borehole RO-KR3 is in Appendix 7 /18/.

Planes are identified and interactively digitised on a screen display of the amplitude or

travel-time log. Dips of the planes, in this case all fractures, are calculated in borehole

axis coordinates from the digitised points, then converted to true geographic dips using

the borehole deviation data. Pairs of planes can be linked to define units. These are

shown by shading on the interpreted log, together with the meandip and true thickness

on the borehole axis /191.

There is an interpreted televiewer log of the borehole RO-KR3 at 348-352 m plotted at a

vertical scale of 1:10 in Appendix 8. From left to right the log shows /18/:

(1) A reconstructed core in orthographic projection, viewed from the SE. Traces of

planes are shown on the surface of the core.

(2) A plot of the borehole wall with traces of the calculated planes. This is drawn

with horizontal scale equal to the vertical scale.

(3) Arrow plot of the calculated dips.

(4) Borehole deviation plot.

Page 27: Comparison of 3-D geological and geophysical investigation

2.5 Differential flow measurements

In Finland the unconfmed groundwater of the bedrock occurs primarily in the fractured

rock sections. The fracture frequency, the aperture of fractures and the total porosity

determine the amount of the unconfined water 141. The capacity of the bedrock to move

water in differential pressure field is interpreted and called hydraulic conductivity, K

(m/s). Open fractures are usually classified as water-conducting ones. Some of the filled

fractures are also potentially-water-conducting fractures, especially grainy fractures.

Water-conducting fractures are common especially in the upper parts of the bedrock.

The aperture of fractures decreases as a function of depth. This is due to increasing

pressure and rock stress in the bedrock.

The TVO-flowmeter (developed during 1989-1992) is designed to measure small

groundwater flows in the bedrock, both across and along the hole /3/. With a new type

of the flow guide, flow into the hole or out from the hole can be measured directly as

well. Differential flow measurements are similar to the flow measurements along the

borehole. The method measures differences of flow along the borehole and is thus called

differential flow measurement /20/.

On the basis of the first field tests performed in the borehole KR6B of the Kivetty area

in 1993 1201, hydraulic conductivities and hydraulic heads of fractures or fracture zones

can be determined from the results. The method is fast and good depth resolution can be

obtained with small packed-off intervals. Correlation between measurements of

hydraulic conductivities detected by the conventional double packer test and differential

flow measurements was good in the borehole KR6B /20/. However, the similar

comparison was made in the borehole KR6 at the Olkiluoto site and the results of the

double packer test were systematically double compared to the results of differential

flow measurements. The reason for this is not yet known, but there has to be differences

in the measurement geometry or in the interpretation geometry when differences this big

occur/21/.

21

Page 28: Comparison of 3-D geological and geophysical investigation

2.5.1 Principles of differential flow measurements and the equipment used

The equipment can be used in boreholes with a diameter of 56 mm or larger and depths

less than 1000 m 1221. The groundwater level in the borehole is kept stable by pumping.

The rubber discs of the flowr guide drag on the surface of the borehole wall and guide

flow to the sensor, see Figure 9 1221. They have been cast to the form of cone, so they

slide easily downwards and are tightly pulled upwards /20/.

winch logging computer

ground water flows

m some fractures

Figure 9. Principles of differential flow measurements 111.

If measurements are carried out using two levels of potential in the borehole, then the

hydraulic head in each of the sections and their conductivity can be calculated. It is

assumed that a static flow condition exists /20/:

Q1 = K-a-(h0-h1) (1)

Q2 = K-a-(ho-h2) (2)

where

Q{ and Q2 are measured flows in a section (m3/s),

K is hydraulic conductivity (m/s),

a is a constant depending on the flow geometry (m),

hj and h2 are hydraulic heads of the borehole (m) and

h0 is the head of the measurement range far from the borehole (m).

Page 29: Comparison of 3-D geological and geophysical investigation

The value for the constant a is from the formula of the cylindrical flow, see formula (3),

which is better valid than the formula of Moye (used, e.g., with double packer tests) in

the differential flow measurements 1201.

a = 2-7t-L/ln(R/r0) (3)

where

L is the length of the measurement range (m),

R is the distance to the constant potential \ (m) and

r0 is the radius of the borehole (m).

The distance parameter R to the constant potential \ is not known and must be chosen

1201.

The hydraulic conductivity of the measurement range and the hydraulic head of the

measurement range far from the borehole can be solved with formulae (4) and (5):

K = (l/a)-(QrQ2)/(h2-h,) (4)

ho = (hr[Q,/Q2]-h2)/(l-[Q1/Q2]) (5)

The groundwater level in the borehole is kept stable by using a special pump. This is

carried out with a tube 6 m long. The bottom part of the tube is plugged and the upper

part is open. The pumping itself takes place in this tube and is carried out with

automatic timer and compressor. The water level changes in the tube and is stable in the

borehole. The measurement starts from the bottom of the borehole. When the cable is

lifted, the water level tends to lower in the borehole. This is prevented by pumping

water into the borehole with the tubular pump. Additional water is pumped away. The

control of the tubular pump and lifting the cable are carried out with the computer 1201.

The rubber discs are not tight in the fractured zones. Usually that is not a problem,

because the entire borehole including the measurement range has practically the same

hydraulic head during the differential flow measurements 1201.

23

Page 30: Comparison of 3-D geological and geophysical investigation

3 The Kivetty area and the Romuvaara area

3.1 Location and topography

The Kivetty area is situated about 6 km north-west of the village of Aanekoski (Figure

10). The size of it is about 6 km2. It covers a large part of a bedrock block, which is

bounded by regional fracture zones. The location of this block was determined during

investigations carried out at the site selection stage. The topography of the area is fairly

even and gently undulating (relative altitude differences approx. 10-20 m) except for the

eastern part, the Kumpuvuori and Kilpismaki areas, which are steeper in topography (the

greatest altitude differences approx. 40 m). The highest point in the area is at

Kilpismaki, approx. +219 m a.s.l., and the lowest, around +154 m a.s.l., in the

westernmost part. Most of the area is located between +160 to +180 m a.s.l. /23, 24/.

Figure 10. Location of the Kivetty area /24/.

The Romuvaara area is situated about 30 km north-east of the main population centre of

Kuhmo (Figure 11). The size of the area is approx. 7 km2. It covers the large Romuvaara

bedrock block, bounded by fracture zones. The block was located in the site selection

investigations. The area has a variable topography with quite gentle slopes (relative

altitude differences 10-30 m). The highest point in the area is approx. +227 m a.s.l.

Bedrock outcrops are usually less than 20 m2 in size and together account only some 1%

of the total area 1251.

24

Page 31: Comparison of 3-D geological and geophysical investigation

Kalllofarvi

Figure 11. Location of the Romuvaara area /26/.

3.2 The rock types and fracturing of the investigation site

3.2.1 Kivetty

The Kivetty site is situated in a Svecokarelian granitoid environment, the granitoid

complex of Central Finland. It is mainly composed of intermediate and acid plutonic

rocks, quarts diorites, granodiorites and granites. Porphyritic rocks are common. The

synorogenic granitoids of the complex are 1900-1860 Ma in age, the oldest ones are

polyphasically deformed /27/.

The bedrock of the Kivetty site consists almost entirely of plutonic rocks, which are

chiefly of the acid or intermediate type. Supracrustal rocks are found only as minor

xenoliths. The plutonic rocks in order of age are gabbro (oldest), porphyritic

granodiorite and porphyritic granite, equigranular granodiorite and equigranular granite

(youngest) /27/. The rock determinations are based on visual, microscopic and

lithogeochemical investigations of rock outcrops and core samples. The identifications

were made by reference to a QAP diagram /23/.

The bedrock in the area is dominated by porphyritic plutonic rocks. They occur in two

types: (1) grey, coarse-porphyritic granodiorite and (2) red, porphyritic granite. The

coarse-porphyritic granodiorite (PORGRDR) is the predominant granitoid in the area.

It is characterized by large feldspar phenocrysts (1-4 cm). They consist of both

potassium and plagioclase. The ground mass between the phenocrysts is medium-

25

Page 32: Comparison of 3-D geological and geophysical investigation

grained (1-5 mm) and is composed of feldspars, quarts, biotite and amphibole with

minor sericite, apatite, titanite, fluorite and opaque 1211. The amount of dark minerals is

approx. 20%. The porphyritic granodiorite is characterized by inclusions with a gneiss

and gabbro-diorite composition /23/.

The porphyritic granite (PORGR) consists the phenocrysts (1-2 cm in size) almoust

entirely composed of potassium feldspar. The porphyritic structure of the rock is less

distinct than in the coarse-porhyritic granodiorite due to the small size of the

phenocrysts and the small amount of dark minerals in the matrix between them. The

amount of dark minerals is approx. 10% in granite samples. The porphyritic granite

contains coarse-porphyritic granodiorite in the form of sharply delimited xenoliths.

Gradual transitions have also been found. No gneiss or mafic inclusions have been

found in the porphyritic granite 1231.

The structure of mylonite granodiorite (MY) is crushed. The colour of the rock is dark

grey or red. The rock is re-crystallized and the porphyritic structure is distinct here and

there. The phenocrysts (4-35 mm in size) are composed of potassium feldspar and they

are crushed, rounded or stretched. The ground mass (1-5 mm in size) is composed of

biotite, quartz, potassium feldspar, epidote, chlorite and muscovite /28/.

The medium-grained granodiorite (GRDR) occurs in the forms of E-W and N-S zones

east of Lake Iso-Salminen 1231. The principal minerals of the rock are plagioclase (An

35), quarts and potassium feldspar, with minor constituents including biotite,

amphibole, sericite, apatite, saussurite and opaque. The fine-grained (0.05-0.5 mm)

feldspar-quarts-biotite-amphibole ground mass contains phenocrysts (1-2 mm), which

consist of plagioclase, quartz and potassium feldspar 1211.

Granite (GR) occurs as veins in the other rocks in the area and as intrusions of various

shapes and sizes. West and north-east of Kumpuvuori the northenmost parts of the

granite are homogeneous. The medium-grained granite often contains fine-grained, red

or grey aplitic partitions and coarse-grained, almost pegmatitic partitions. The granite

north-west of Kilpismaki is reddish grey, medium-grained and clearly oriented in places.

The principal minrals are potassium feldspar (occurs also as occasional phenocrysts 0.5-

1 cm in diameter), quartz and plagioclase, minor constituents being biotite and

amphibole 1211.

26

Page 33: Comparison of 3-D geological and geophysical investigation

The mica gneiss (MGN) is even-grained (1-4 mm in size) and dark grey. The structure is

cataclastic. The components are biotite, quartz and feldspars /28/.

The mafic dykes (MD) consist of amphibolitic, granitic, pegmatite and quartz dykes. A

sample taken from the amphibolitic dyke at the depth of 642 m from borehole KR1

contains pyroxene, amphibole biotite, quartz and ore minerals. The granitic dykes can be

classified into medium-coarse granite dykes and fine-grained aplite dykes. Pegmatite

dykes are among the youngest rocks in the area and 1-20 cm in width. NE-SE quartz

dykes 0.5-15 cm in width intersect both the porphyritic granodiorite and the granite /27,

24/.

Fracture data were obtained from both the rock outcrops and the oriented cores (KR1-

KR5) in the Kivetty area. The majority of the fractures are concentrated in two major

strike orientations, NE-SW (30°-80°) and NW-SE (280°-330°). It may be stated that

fracturing with steep dips predominates, although horizontal fracturing also occurs,

especially in the upper parts of the bedrock down to approx. 100 m. The total fracture

frequency is usually 1-3 pcs/m in both outcrop and core samples. Fracturing is usually

more frequent in the upper parts than deeper in the bedrock. The fractures are mainly

tight, but open and filled fractures also occur. The number of open fractures with

hydraulic conductivity is significant only in the upper part of the bedrock. Chlorite and

calsite are the most common fracture filling materials /27/.

The geology of the Kivetty area is presented in futher detail in the summary report of the

geology of the Kivetty area by Anttila et al. (1992). General information of the borehole

KI-KR1 and the rocks and fracturing in that borehole will be discussed later in Chapter

4.1.1.

27

Page 34: Comparison of 3-D geological and geophysical investigation

3.2.2 Romuvaara

The Romuvaara site is situated in an Archean, Presvecokarelian basement complex area.

The bedrock over most of the surrounding area consists mainly of late Archean banded

amphibolites, migmatites, granitoids and the metavolcanic rocks and meta-sediments of

the Kuhmo-Suomussalmi greenstone belt. Polyphasically deformed and metamorphosed

migmatic tonalite/trondhjemite gneisses represent the oldest basic crust of the Archean

basement complex and are over 2800 Ma in age 1291.

The rocks occuring at Romuvaara are migmatitic banded tonalitic, mica and

leucotonalitic gneisses, amphibolite, granodiorite and metadiabase IAI. The gneisses

predominate in the bedrock of the area. The rocks, except for the metadiabase, have

undergone a polyphasic Archean deformation. Determinations of rocks in the area are

based on visual, microscopic and lithogeochemical investigations of rock outcrops and

core samples. The identifications were made by reference to a QAP diagram 1251.

The main rock in the area is migmatitic tonalite gneiss (TONGN). Migmatites are

composite rocks which mainly consists of gneiss (original part/palaeosome) and parts

which resemble plutonic rocks (younger part/neosome). It comprises the largest part of

bedrock in the western and eastern parts of the area. The main minerals of the

palaeosome (with biotite and quartz-feldspar bands) of this tonalite are plagioclase,

quartz and biotite /29/. The neosome intersecting the banded palaeosome occurs as grey

veins, partly granite and partly tonalite, or as red veins, either medium or coarse-grained

pegmatitic granite /25/.

Mica gneiss (MGN) is highly rich in biotite and medium-grained. It is relatively

homogeneous and only slightly migmatitic rock occur in the central and northern parts

of the area. This mica gneiss contains inclusions with amphibole as the only dark

mineral /25/.

In the middle part of the area the dominant rock is a medium-grained, light leucotonalite

gneiss (LTONGN). The leucotonalite is polyphasically deformed and migmatitic in

appearance. The main minerals of palaeosome are plagioclase, quartz, mica and

potassium feldspar. The amount of potassium feldspar varies considerably and

determines whether the rock is a leucotonalite (little or no potassium feldspar) or a

leucogranodiorite. This palaeosome is less banded than the one in tonalite gneiss 1251.

28

Page 35: Comparison of 3-D geological and geophysical investigation

Amphibolite (AFB) occurs in both the tonalite gneiss and in the leucotonalite gneiss as

small, lenticular xenoliths, thin vein-like partitions and larger breccia migmatite units. A

coarse-grained tonalitic and granitic neosome intersects the medium-grained

amphibolite palaeosome without any clear system pattern. The palaeosome is composed

of hornblende and plagioclase /25/.

The tonalite gneiss and the leucotonalite gneiss are intersected by a N-S granodiorite

(GRDR) dyke running through the whole area. Its main minerals are plagioclase, quartz,

biotite and potassium feldspar. The dyke is divided into at least two generations or

pulses. The younger parts are less markedly deformed than the older parts 1251.

Metadiabase (MDB) represents the youngest rock type in the Romuvaara area and

occurs mainly as NW-SE trending dykes approx. 20-40 m in width. The dykes are fine-

medium-grained and almost undeformed. Two groups can be recognized on the basis of

their mineral composition, of which one has 24-37% plagioclase and 56-72% amphibole

(RO-KR5) and the other 15% plagioclase and 74-76% amphibole (RO-KR3). Contacts

of the dykes with the surrounding rocks are usually fractured /25/.

Fracture data were obtained from both the rock outcrops and the oriented cores (KR1 -

KR5) in the Romuvaara area. There are five main fracture directions of which NE-SW

and ESE-WNW are the most pronounced /26, 25/. Fracture frequencies vary according

to the rock type, ranging from 0.4 to 1.2 pcs/m in the outcrops and from 2.4-3.4 pcs/m in

the core samples. The metadiabase has the greatest density of fractures /26/. The

fractures are mainly tight, but open and filled fractures occur as well. Open fractures

with hydraulic conductivity are concentrated in the upper part of the bedrock. Chlorite

and calsite are the most common fracture infillings 1251.

The geology of the Romuvaara area is presented in futher detail in the summary report

of the geology of that area by Anttila et al. (1990). General information of the borehole

RO-KR3 and the rocks and fractures found there will be discussed later in Chapter

4.1.2.

29

Page 36: Comparison of 3-D geological and geophysical investigation

4 Results

4.1 Core analysis

Rock type determinations, core loss analyses and oriented fracture determinations of the

boreholes KI-KR1 and R0-KR3 are based on reports /23, 25/. The original drilling

reports /28, 5/ of the boreholes KI-KR1 and R0-KR3 are used as the fracture data basis

of the study, and the fracture characterisation given in them (depth, type, orientation,

etc.) is utilised. In several drill-core sections of each borehole fractures were re-analysed

/30, 31/. The results of the fracture re-analyses were used in the updating of the fracture

data presented in the original drilling reports.

Core mapping and analysis give a lot of information, but there are also problems and

difficulties with analysing the core. The drilling process affects the covered core sample

in the sense that it is released from internal stress, twisted in the core bar and flushed

with water. The core can be crushed, so determination of real fracturing is very difficult

and usually impossible. The drilling process can produce fractures to core which are

hair-cracks in-situ. These fractures are not detectable by borehole-TV, dipmeter or

televiewer. Sometimes fractures are identified as breaks in the core and they are not

mentioned at all, or breaks are identified erroneously as fractures. Fracture types can be

difficult to determine; for example the fracture filling can be flushed away. The

difference between an open and a tight fracture and the difference between a thin vein

and a filled "sealed" fracture is sometimes dubious. Inexperience or bias of analysing

geologists can also affect considerably results. Human errors in measuring and writing

down the fracture depths and other mentions can occure. I found some fractures which

were written down at the wrong depths in the core log of R0-KR3. These fractures were

corrected with the help of core photographs and marked with symbol # in Tables of

Appendices 1 and 2.

Core loss can occur due to dense fracturing or technical reasons and no information of

rock is obtained from that part of rock. Sometimes it is impossible to determine exact

place of core loss and due to core loss it can be difficult to determine exact depths of

some fractures. The depth of the fracture is incorrect if it is not determined exactly as

the fracture intersection with the axial center line of the core. Depths of the core samples

should be accurate in the places where they have been lifted. When the core is oriented

incorrectly, direction of dips and dips are measured incorrectly. If the oriented core is in

the wrong direction in the core box, orientations of fractures are also incorrect. I found

30

Page 37: Comparison of 3-D geological and geophysical investigation

one incorrect orientation of a section of the core sample of R0-KR3, see later Chapter

5.3.1.

4.1.1 KI-KR1

The borehole KI-KR1 is located in the center part of the Kivetty site (Figure 12). The

diameter of the borehole is 56 mm, length is 1019.50 m, start point azimuth is 225° and

start point inclination is 74.9°. The core has been obtained from the borehole depth

40.05 m to 1019.50 m. The diameter of the core is 42 mm /28/.

Figure 12. Location of the borehole KI-KR1 /24/.

The rocks were determined from the core sample. Table 1 consists of rocks and

distribution of frequency of various fracture types in every rock section in the borehole

KI-KRl. The rock determination is based on Reference /23/ and the abbreviations of

rocks have been explained in Chapter 3.2.1. The number of fractures and the fracture

frequency (pcs/m) are based on Appendix 1.

31

Page 38: Comparison of 3-D geological and geophysical investigation

Table 1. Rocks, number of fractures and distribution of fracture frequency in the

borehole KJ-KR1.Rock

PORGRGRPORGRPORGRDRGRDRPORGRDRPORGRPORGRDRGRDRPORGRDRMYPORGRDRMYPORGRDRMYPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRMGNPORGRDRPORGRGRPORGRTOTAL:

Depth in core(m)

40.05-129.38- 138.73-371.65-452.12- 470.25-630.80-705.00- 722.50- 728.70-750.50-757.50- 773.20-783.10-814.00-833.00- 850.06-851.30- 864.34- 865.90- 889.00- 892.55- 908.70-921.70- 946.90- 949.50- 977.30- 993.00- 996.00- 1019.00

Number of core fracturesOpen8711463-6

-

--

---1-

------

----154

Filled43-2859051175695421272939431146143751592932201595251253

Tight1601434610868204135982923372732444189463924261628610191453

Total290256772011193852041412505066667515811212121211818535836431515442850

Fracture frequency (pcs/rn)Open0.971.180.200.04-0.04---------0.06-----------

-

0.16

Filled0.48-1.221.122.811.090.930.290.650.963.861.853.941.396.000.350.810.311.923.254.230.562.231.277.690.540.571.671.091.41

Tight1.791.501.491.343.751.271.820.511.291.333.292.362.731.042.320.230.810.615.771.990.850.561.851.036.151.010.383.330.831.63

Total3.252.672.912.506.562.402.750.801.942.297.144.206.672.438.320.641.610.927.695.245.071.114.082.3013.851.550.965.001.913.20

The total number of fractures in core log KI-KR1 is 2850. The number of open, filled

and tight fractures is 154, 1253 and 1453, respectively. Open fractures occur in

significant numbers only in the upper parts of the borehole, especially between 40-95 m.

The average frequency of all fractures is 3.20 pcs/m. The average fracture frequency of

open, filled and tight fractures is 0.16 pcs/m, 1.41 pcs/m and 1.63 pcs/m, respectively.

Mica gneiss section (13.80 pcs/m, densely fractured), granodiorite section at 864.34-

865.90 m (7.69 pcs/m, abundantly fractured) and mylonite sections (7.14 pcs/m, 6.64

pcs/m, 8.32 pcs/m, abundantly fractured) are the most frequently fractured rock sections.

All core fractures have been listed in Table of Appendix 1 together with correlated

fractures detected by borehole-TV, dipmeter and televiewer.

32

Page 39: Comparison of 3-D geological and geophysical investigation

The fracture infilling consists of chlorite, epidote, mica and carbonate /28, 30/. The total

length of oriented core is 463.62 m and proportion of total length of core is 47.4%. The

number of oriented fractures is 417 and its proportion of all fractures is 14.6% /28/.

Core loss is totally 5.45 m, due to densily fractured rock tot. 2.5 m and technical reasons

tot. 2.95 m /28/. Core loss sections have been marked in Appendix 1.

4.1.2 RO-KR3

The borehole RO-KR3 is located in the center part of the Romuvaara site (Figure 13).

The diameter of the borehole is 56 mm, length is 476.87 m, start point azimuth is 61.48°

and start point inclination is 70.08°. The core has been obtained from the borehole depth

42.95 m to 476.87 m. The diameter of the core is 42 mm /28/.

Figure 13. Location of the borehole RO-KR3 /26/.

33

Page 40: Comparison of 3-D geological and geophysical investigation

Table 2 consists of rocks determined from the core sample and distribution of frequency

of various fracture types in every rock section in the borehole R0-KR3. The rock

determination is based on Reference 1251 and the abbreviations of rocks have been

explained in Chapter 3.2.2. The number of fractures and the fracture frequency (pcs/'m)

is based on Appendix 2.

Table 2. Rocks, number of fractures and distribution of fracture frequency in the

borehole R0-KR3.Rock

LTONGNMDBLTONGNTONGNLTONGNAFBTONGNGRDRTONGNTOTAL:

Depth in core(m)

42.95-136.50- 157.00- 278.00-285.30-312.00-321.00-371.00-378.00- 476.90

Number of core fracturesOpen682621--16

11163

Filled2142371-11524123

Tight57422202013315321309838

Total1468631922134184263241124

Fracture frequency (pcs/m)Open0.730.100.510.14

-0.320.430.110.38

Filled0.222.050.310.14-0.110.300.290.040.28

Tight0.612.051.822.740.490.333.063.003.121.93

Total1.564.202.643.010.490.443.683.713.282.59

The total number of fractures in the core log RO-KR3 is 1124. The average frequency of

all fractures is 2.59 pcs/m. The number of open, filled and tight fractures is 163, 123 and

838, respectively. The fractures are mainly tight. Open fractures occur in significant

amounts at 43-120 m. The average fracture frequency of open, filled and tight fractures

is 0.38 pcs/m, 0.28 pcs/m and 1.93 pcs/m, respectively. Metadiabase section (4.20

pcs/m, abundantly fractured) is the most densely fractured rock section. All core

fractures have been listed in Table of Appendix 2 together with correlated fractures

detected by borehole-TV, dipmeter and televiewer.

Filled fractures are usually slickensides with chlorite surface. The fracture infilling

consist of chlorite, epidote, mica and carbonate /28, 30/. In the core log at the depths of

328-331 m and 335-336 m occur fractures almost parallel to the borehole 15, 31/.

The total length of oriented core is 96.68 m and proportion of total length of core is

22.3%. The number of oriented fractures is 286 and proportion of all fractures is 25.4%

111. Core loss is totally 3.74 m, due to densily fractured rock tot. 0.90 m and technical

reasons tot. 2.82 m 151. Core loss sections have been marked in Appendix 2.

34

Page 41: Comparison of 3-D geological and geophysical investigation

4.2 Borehole television

The analysis is only based on TV images and the data produced during this phase is

much dependent on the visibility of certain objects. For instance a diffuse rock contact is

probably not discovered on the screen and is normally easier to detect by the core

logging. On the other hand, it is quite easy to detect them on the overview print out

images. A fracture or a vein that cuts the borehole, shows a sinusoidal trace across the

image plot and is clearly seen as a dark or a bright line. Lithology is also recognizable

especially when familiar with the rock types of the area /I/.

The colour and the contrast to the host rock are also parameters that affect the

possibilities to discover fractures/veins in the TV image. It is obvious that the more

filling material a fracture has, the easier it will be to discover the fracture in the TV

image. If the fracture infilling is light-coloured, for example calsite, and the rock is dark,

the fracture is quite easy to discover. However, in the banded gneiss rock sections a

fracture can be difficult to recognize. Sometimes a feature characterized as a filled

"sealed" TV-fracture can be characterized as a thin vein by core analysing geologist.

Also, if the rock type is coarse-grained, the thin fractures can be difficult to detect. The

pixels of the borehole-TV image can be elongated due to the stopped or almost stucked

probe movement resulting in impossible detection of the fractures.

One important reason for not recording not orientable objects is that the system does not

allow the operator to characterize and record data that are not linked to an orientation.

For example if the fracture is only partly visible, it is not mentioned in the borehole-TV

fracture list. This drawback of the system is to be improved in the future /I/. In the

fractured sections, where are a lot of nearby fractures with different orientations, picking

up the right fracture trace can be difficult. An experienced analyst is then needed to

analyse the borehole-TV images.

In the borehole-TV measurements of this study azimuth and inclination of the borehole

measured in the beginning of drilling were used to orientate the borehole-TV

measurements along the borehole. Because the drilling bars deviate always during the

drilling of deep boreholes, azimuth and inclination of the borehole differ from those

measured at the starting point of drilling. This is one of the error sources in orientation.

This means, that the orientation of fractures is not quite correct in the deeper borehole

sections. At the locations where borehole is widened, borehole-TV may also have

problems to detect correct orientation.

35

Page 42: Comparison of 3-D geological and geophysical investigation

The analyst of the borehole-TV image sees a borehole section of 40 cm at a time on the

screen. If the fracture/vein does not fit completely on the screen, it cannot be measured.

The measurement conditions affect also results. The borehole should be washed out

before the measurements. The surface of the old borehole can be oxidized resulting poor

results. It is not yet known, if the salinity of the borehole water affects the results.

All fractures detected by TV system and depth (not corrected), direction of dip, dip, sort,

aperture, form, condition and remark of TV-fractures have been listed in References /I/

and /8/. Because in boreholes KI-KR1 and RO-KR3 there were excellent logging

conditions, there is no excuse for getting better results for evaluation /I, 8/.

4.2.1 KI-KR1

The borehole-TV measurements were performed in KI-KRl at 40.05-1015.30 m. All

fractures detected by TV system in KI-KR1 and depth (corrected), direction of dip, dip

and aperture of TV-fractures have been listed in Table of Appendix 1.

Data from the correlation points in KI-KRl have been plotted in a diagram together with

the constructed length correction line in Figure 14 /I/. At about 250 m (and near this

point) there is a notable difference between correlation point and correction line and this

has been taken into consideration when detected fractures by core log and borehole-TV

have been compared.

The total number of all TV-fractures is 524, TV-veins 332, TV-contacts 70, TV-

foliation 51 and TV-fracture zones 25. In Reference /I/ the number of TV-fractures is

525 which is incorrect, because one fracture is mentioned twice in the fracture list. In

the final fracture data the object (fracture) number 683 has been removed.

36

Page 43: Comparison of 3-D geological and geophysical investigation

,0- KJ-KR1

• Corrtlillon point— Cerraellon ltn«

e »-

400 MO MO TOO

Borehole length (m)

Figure 14. Data from the correlation points in KI-KR1 plotted in a diagram together

with the constructed length correction line III.

422 RO-KR3

The borehole-TV measurements were performed in RO-KR3 at 42.95-427.30 m. hi

Table of Appendix 2 there have been listed all fractures detected by TV system in RO-

KR3 and depth (corrected), direction of dip, dip and aperture of TV-fractures. The total

number of all TV-fractures is 378, TV-veins 205, TV-contacts 13, TV-foliation 46 and

TV-fracture zones 6.

Data from the correlation points in R0-KR3 have been plotted in a diagram together

with the constructed length correction line in Figure 15 /8/.

37

Page 44: Comparison of 3-D geological and geophysical investigation

0 . R0-KR3

* Correlation point— Correction line

200 300 400 MO BOO 700 BOO BOO IOO0

Borehole length <m)

Figure 15. Data from the correlation points in RO-KR3 plotted in a diagram together

with the constructed length correction line /8/.

4.3 Dipmeter

The principal aim of the dipmeter logging was to quantify fracture orientations and

frequencies. Less resistive features on the traces were assumed and fixed to represent the

passage of the electrodes over fractures in this study. Pattern recognition dips, resulting

from identification and correlation of individual features, are better suited to this task

than the strictly statistical interval correlation dips. Correct correlation of individual

features is fairly simple when they are sparsely distributed on the microresistivity traces.

If features are densely or overlappingly distributed, correct correlation is ambiguous and

almost impossible. The dip angle was calculated manually in cases that the dipmeter

anomalies indicated larger dip angles than could be correlated with the automatic

procedure /13, 14/.

38

Page 45: Comparison of 3-D geological and geophysical investigation

The dipmeter electrodes are circular in plan, in this study 8 mm diameter (10 mm

including the guard). The microresistivity data were acquired at 10 mm depth intervals,

so adjacent fractures with separation on the borehole wall of less than 8 mm may both

have contributed to a single data set. This may have resulted in underestimation of very

high fracture frequencies /13, 14/.

If the borehole is widened, measurements may be incorrect 111. When the fracture is

long, almost parallel to the borehole, almost vertical or almost horizontal, direction of

dip and dip measured are uncertain. This is due to the fact, that the measurement is

performed only by three focused electrodes. The fracture roughness produces less

reliable determinations of orientation. Rough wall of the borehole can be a source of

errors on measurements. Also electrically conductive minerals in the bedrock can

produce "ghost" fractures, especially when they occur as strings or thin veins.

The length correction of dipmeter logs was done by using the fracture log data from

cores and single point resistance measurements from KI-KR1 and RO-KR3 /32/. It was

made with the formula (6):

Xc = (Xw - Xws) • Zc/Zw + Xcs (6)

where

xc = the corrected depth

xw = the depth to be corrected

xws = the starting depth of the interval to be corrected

zc = the length of the correct interval

zw = the length of the interval to be corrected

xcs = the starting depth of the correct interval.

For example, the last correct interval in KI-KR1 is 837.02-988.70 m (from core log) and

the corresponding interval to be corrected is 836.936-988.601 m, see Chapter 4.3.1,

Table 3. All the not corrected fracture depths have been corrected. The difference

between the starting depth of the first correct interval and the starting depth of the first

interval to be corrected has been added to the depths of the fractures which occur before

the first interval to be corrected. The difference between the ending depth of the last

correct interval and the ending depth of the last interval to be corrected has been added

to the depths of the fractures which occur after the last interval to be corrected.

39

Page 46: Comparison of 3-D geological and geophysical investigation

Following principles were applied when depths compared for the length correction 1321:

(1) Only single or two nearby fractures in core log without any fractures within

interval ± 1.0-2.0 m were compared with single dipmeter resistivity and single-

point resistivity' spike locations and televiewer results (KI-KR1 only).

(2) Some sharp boundaries of fracture zones were used when identified clearly.

(3) If core log and dipmeter provided orientation data they were compared.

When comparing the fractures it was noticed, that the number of correlation points of

the length correction was partly insufficient resulting in problems in comparison.

4.3.1 KI-KRl

In Table 3 there are the compared depths of dipmeter, electric single-point and core log

used for length correction /32/.

Table 3. The compared depths of dipmeter, electric single point and core log used for

length correction in KI-KR1 12,21.Core depth (m) 50.45 51.47 #85.50 183.74 183.98 198.36 221.78 269.10Dipmeter depth (m) 50.48 51.68 84.45 182.00 182.30 198.55 222.01 269.66

Core depth (m) 310.10 329.14 330.83 331.09 357.53 360.45 445.00 478.81Dipmeter depth (m) 310.39 329.19 330.52 331.01 357.43 361.06 445.00 478.93

Core depth (m) 492.33 *539.88 557.90 683.97 820.51 837.02 988.61Dipmeter depth (m) 492.49 537.93 558.05 683.76 820.72 836.94 988.61

# single point resist, depth * corrected (538.88 in /32/)

The dipmeter measurements were performed in KI-KRl at 41-995 m. In Appendix 1

there have been listed all fractures detected by dipmeter in KI-KR1 and depth (corrected

with formula 6), direction of dip and dip of dipmeter fractures. The total number of

fractures detected by dipmeter is 640.

40

Page 47: Comparison of 3-D geological and geophysical investigation

4.3.2 R0-KR3

In Table 4 there are the compared depths of dipmeter and core log used for length

correction /32/.

Table 4. The compared depths of dipmeter and core log used for length correction in

R0-KR3 /32/.Core depth (m) 65.13 80.27 110.71 118.78 136.21 172.60Dipmeter depth (m) 64.48 79.97 109.93 117.95 135.31 172.11Core depth (m) 236.47 240.13 316.95 339.66 424.06Dipmeter depth (m) 235.86 239.43 316.19 339.50 423.09

The dipmeter measurements were performed in RO-KR3 at 44-474 m. All fractures

detected by dipmeter in RO-KR3 and depth (corrected with formula 6), direction of dip

and dip angle of dipmeter fractures have been listed in Appendix 2. The total number of

fractures detected by dipmeter is 357.

4.4 Televiewer

The televiewer sonde was not well centralized in the boreholes, resulting in the sonde

being too close to the borehole wall in some directions and the characteristic vertical

banding on both travel-time and amplitude logs. The result is that very few features of

geologic interest have been identified in the boreholes KI-KR1 and RO-KR3 /18/.

The vertical banding pattern rotates at certain levels. These apparent rotation patterns

can be produced either when the sonde moves laterally in the borehole, or when the

compass malfunctions. There were also occasional communication errors, in both

boreholes, resulting in loss of data /18/.

Other factors which can affect the results, especially orientation, are widened borehole

121 and the presence of magnetic minerals in the boreholes /33/. The fact seems to be

that televiewer misses extremely fine fractures. Also the televiewer method performance

will be better in larger diameter boreholes than in those used in this study /18/.

41

Page 48: Comparison of 3-D geological and geophysical investigation

4.4.1 KJ-KR1

In Table 5 there are the compared depths of televiewer and core log used for length

correction 1221.

Table 5. The compared depths of televiewer and core log used for length correction

in KI-KR1 /32/.Core depth (m) 50.45 166.92 175.53 176.50 221.78Televiewer depth (m) 50.74 167.06 175.30 175.90 222.26

Core depth (m) 310.10 325.76 330.83 331.09 357.53Televiewer depth (m) 310.52 326.14 330.68 331.17 357.65

The televiewer measurements were run in three sections because of "time out" problems

in KI-KR1 at 40.05-380 m. All fractures detected by televiewer in K1-KR1 and depth

(corrected with formula 6), direction of dip and dip of televiewer fractures have been

listed in Appendix 1. The total number of fractures detected by televiewer is 178.

4.4.2 RO-KR3

No correction for depths of fractures detected by televiewer in RO-KR3 could be done

mi. This results in unreliable correlation.

The televiewer measurements were performed in RO-KR3 at 299-379 m. All fractures

detected by televiewer in RO-KR3 and depth (not corrected), direction of dip and dip

angle of televiewer fractures have been listed in Appendix 2. The total number of

fractures detected by televiewer is only 38.

4.5 Differential flow measurements

Single borehole hydraulic tests by the method of differential flow measurements were

performed with 10 m and 2 m measurement sections (the distance between rubber discs)

along the boreholes KI-KR1 and RO-KR3 /30, 31/.

The viscosity of the water affects the hydraulic conductivity of the bedrock. The

difference of the viscosity is however easy to take into consideration, when the

temperature of the borehole water is known. Also the warming and cooling of the water

42

Page 49: Comparison of 3-D geological and geophysical investigation

during measurement can affect the results, when measuring under 10"10 m/s hydraulic

conductivities. The density of the borehole water can influence on the hydraulic

conductivity, and it can be taken into consideration. The salinity in the borehole water

can also be a problem. However, at the Kivetty and the Romuvaara sites the

concentrations of salinity are very low /3/. In some cases small errors in flow

measurement can lead to large errors in calculated values for hydraulic head and

hydraulic conductivity. This occurs if the hydraulic head in a fracture dominates the

flow, i.e., if the hydraulic head in a fracture is very high or very low compared to the

hydraulic head in the borehole 1221.

4.5.1 KI-KR1

The sections measured by the method of differential flow measuremets were 40.9-263.3

m, 313.4-343.4 m, 363.5-403.5 m, 423.5-573.8 m, 724.0-854.2 m and 874.2-1004.4 m.

The non-conductive sections were 252-313 m, 342-373 m, 402-433 m, 552-733 m, 852-

883 m and 912-973 m based on preliminary study by hydraulic testing unit, HTU,

(double packer unit) conducted during the period 1987-1992 /30/. The measured

hydraulic conductivities in KI-KR1 /30/ have been listed in Appendix 3.

The upper part of the bedrock (40-180 m) is typically more hydraulically conductive

than the lower part (181-1000 m). The upper part contains several sections, which are

highly conductive (>10-6 m/s) and plenty of sections of moderate conductivity (10"6-

10"8 m/s). The lower part contains only a small number of sections of moderate

conductivity, which are normally isolated through separation by thick, non-conductive

rock sections. There are two sections in the lower part of the borehole at the depth

ranges of 820.15-822.15 m and 824.15-826.15 m which are highly conductive (2.0-10"6

m/s) /30/. The hydraulic conductivities have been compared with open/filled fractures of

the core and borehole-TV fractures of KI-KR1 in Chapter 5.4.1.

4.5.2 RO-KR3

The sections measured by differential flow method were 43.0-283.5 m, 323.5-393.6 m

and 413.7 m. The non-conductive sections were 270-331 m and 390-477 m based on

preliminary study by hydraulic testing unit, HTU, (double packer unit) conducted during

1987-1992 /31/. The hydraulic conductivities 731/ have been listed in Appendix 4.

43

Page 50: Comparison of 3-D geological and geophysical investigation

There are three principal zones of moderate conductivity (1O8- >10~7 m/s) at the depth

ranges of 44-130 m, 157-280 m and 335-375 m, which are seperated by relatively thick

(30-50 m). non-conductive rock sections /31/. The hydraulic conductivities have been

compared with open/filled fractures of the core and borehole-TV fractures of RO-KR3

in Chapter 5.4.2.

5 Results of core analysis and borehole-TV compared with other results

5.1 General

Fractures were correlated using the information of location of the fracture, fracture type

and fracture angle (gon), direction of dip and dip of fracture detected by each method,

aperture of TV-fracture, colour TV-image paper plots (scale 1:25 and 1:10) and core

photographs (scale ca. 1:10). Also dipmeter and televiewer logs were used. The depth

value of the fracture was the most important information when fractures were compared.

In addition it was possible for me to study some sections of cores for a one day in the

central core storage facility of Geological Survey of Finland at Loppi.

Fractures detected by each method have been compared and listed in Appendices 1 (KI-

KR1) and 2 (RO-KR3). The columns include following information: the serial number

of the core fracture in question (1. column), depth of the core fracture (2.), fracture type

in question: (Av, Ta, TaHa, TaMu, TaSa, Ti, TiHa = open, filled, slickenside, grainy,

clayey, tight, tight slickenside fracture, respectively) and fracture angle (gon) (3.),

direction of dip (4.) and dip (5.) of the core fracture, special information of fractures

(6.), e.g. weathering (Rpl = slightly weathered) or if the fracture is not mentioned in

core log due to core loss. Next columns consist of core data of borehole-TV, dipmeter

and televiewer. The final column includes the rock type in question. All abbreviations of

the rock types refer to the names explained in Chapters 3.2.1 and 3.2.2.

The length correction plays a very important role on general. There are sections, where

the depth values vary systematically several decades of centimeters due to insufficient or

lacking length correction (no length correction at all in televiewer measurements of RO-

KR3). For example in KI-KR1 at about 250 m (and near this point) there is a quite

difference between depths of borehole-TV fractures and core fractures as mentioned

before. Usually the comparison is the best near the length correction points. If there is a

long distance between these points (especially in the lower parts of KI-KR1), the

44

Page 51: Comparison of 3-D geological and geophysical investigation

comparison is more difficult and more unreliable. If the fracture detected by one method

has been compared with the fracture detected by another method, the depths have varied

from each other usually ± 30 cm. The tendency of local difference at depths has been

taken into consideration. The core depth has been considered as the "real" depth.

There are cases, that there is a fracture detected by some method, but there is no core

fracture nearby or at the depth of "ghost" fracture in question. This can be partly due to

poor length correction. Especially, televiewer and dipmeter detected a lot of "ghost"

fractures. Some sections with "ghost" fractures were studied from cores, see Chapters

5.2.1 and 5.2.2. Likewise, due to the poor length correction, fracture indications can be

correlated, although they do not correlate with each other in reality. If there are a lot of

nearby fractures in the core log, it is sometimes impossible to determine the correct core

fracture which corresponds to the fracture detected by another method, e.g. if there are

no orientation data of core fractures and the fracture type and the angle of all nearby

core fractures are similar. For example in KI-KR1, see Appendix 1, at the core depth of

110.30-111.07 m the bedrock is densely fractured. It is obvious, that the correct

comparison between core fractures and fractures detected by other method is difficult to

achieve, especially when the quality of length correction is different with each method.

In this depth section the length correction of dipmeter measurements is the best one.

There are length correction points of dipmeter log nearby the core depth range

mentioned, see Table 4.

Comparisons were made in the following cases: the number and the proportion of

fractures detected, detecting of different type of fractures, the number of fractures in

core loss sections and orientation of fractures of oriented core samples and fractures

detected by borehole-TV, dipmeter and televiewer. Differential flow measurements

were correlated with core and borehole-TV fractures.

Proportions of core fractures have been counted in the following way: for example in

porphyritic granite section at 40.05-129.38 m of the core KI-KR1 there are totally 87

open, 43 filled and 160 tight fractures (Table 1). Totally 66 borehole-TV fractures

correlate with core fractures at 40.05-129.38 m (Table 6) at 40.05-129.38 m, so the

proportion is 66*100/(87+43+160) = 23%. Proportion of open fractures is 25*100/87 =

29%. If the measurement range does not completely cover the rock type section, the core

fractures are counted only at that measurement range. For example, the dipmeter

measurement range starts at 41 m in KI-KRl, so there are less fractures to be correlated

in the PORGR section (corresponding figures: 81, 37, 147).

45

Page 52: Comparison of 3-D geological and geophysical investigation

The Pearson coefficient of correlation is used to determine a linear relationship with two

variables. In this study it was used to determine linear relationship between proportions

of detected core fractures with different fracture types and fracture frequency in the

boreholes. The Pearson correlation, r, between variables x and y is given by (7) /34/:

I (x-x)(y-y)r = — (7)

\JE (x-x)2I (y-y)'

where

x, y = averages of x and y, respectively.

If there is a linear relationship between x and y, then this fact is reflected in a correlation

coefficient of 1 or -1. If r = 1, then we say that x and y have perfect positive correlation.

This implies that small values of x are associated with small values of y, and large

values of x with large values of y. Perfect negative correlation implies that small values

of x are associated with large values of y and vice versa. It is seldom the variables x and

y assume the easily interpretable values of 1 or -1. However, values of r near 1 or -1 do

occur and indicate a linear trend. If r = 0, we say that x and y are uncorrelated, but we

are not saying that they are unrelated. If a relationship exists, it is not a linear one /35/.

Dips and directions of dips have been presented on a Schmidt equal area projection as a

contour diagram, plotted on the lower hemisphere and the orientations detected by each

method are compared. Usually the direction of dip varies at the range of ± 40° and the

dip at the range of ± 30°. It must be mentioned that with the dipmeter method almost

horizontal or vertical dips, the direction of dips is difficult to measure accurately, and

that affects the correlation. There are cases where the orientation differs with every

method, for example, at the core depths of 50.45 m and 51.47 m in KI-KR1, see

Appendix 1. The values of dips are similar but the directions of dips differ greatly.

There are no other fractures nearby, so the comparison is correct. The validity of the

orientation of the core is sometimes dubious when the orientation of other methods is

similar but differs from that of the core. There is an example of this in Chapter 5.3.2.

46

Page 53: Comparison of 3-D geological and geophysical investigation

5.2 Number of fractures detected

5.2.1 KI-KR1

In Table 6 there are the numbers of core fractures (open, filled, tight) detected by the

borehole-TV in KI-KR1 at 40.05-1015.3 m (BIP-measuring range in KI-KR1) and the

rock in question. Correspondingly the proportion of the detected core fractures has been

calculated. Totally 15% of core fractures, that is 435, could be linked to borehole-TV

fractures. The borehole-TV detected totally 524 fractures. The average proportions of

open, filled and tight core fractures are 28%, 19% and 10%, respectively, so the

borehole-TV detected mainly open and filled fractures.

Table 6.Rock

PORGRGRPORGRPORGRDRGRDRPORGRDRPORGRPORGRDRGRDRPORGRDRMYPORGRDRMYPORGRDRMYPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRMGNPORGRDRPORGRGRPORGRTOTAL:

Correlation of borehole-TV and core fractures lrDepth in core

(m)

40.05-129.38- 138.73-371.65-452.12- 470.25- 630.80- 705.00- 722.50- 728.70- 750.50-757.50- 773.20-783.10-814.00- 833.00- 850.06-851.30- 864.34- 865.90- 889.00- 892.55- 908.70-921.70- 946.90- 949.50- 977.30- 993.00- 996.00- 1015.30

Number of TV fractures/Proportion of core fracturesOpen25/29%6/55%9/20%1/33%-2/33%

--

-

--

0/0%------

------

43/28%

Filled Tight17/40% 24/15%

3/21%55/19% 38/11%20/22% 6/6%7/14% 3/4%29/17% 16/8%5/7% 6/4%2/40% 4/44%1/25% 3/38%5/24% 2/7%2/7% 3/13%5/17% 1/3%5/13% 3/11%10/23% 1/3%27/24% 8/18%1/17% 3/75%0/0% 0/0%0/0% 2/25%0/0% 0/0%22/29% 4/9%7/47% 0/0%2/22% 0/0%6/21% 4/17%7/22% 2/8%4/20% 0/0%2/13% 5/18%0/0% 1/17%0/0% 3/30%2/8% 4/27%243/ 149/19% 10%

Total66/23%9/36%102/15%27/13%10/8%47/12%11/5%6/43%4/33%7/14%5/10%6/9%8/12%11/15%35/22%4/36%0/0%2/17%0/0%26/21%7/39%2/11%10/19%9/16%4/11%7/16%1/7%3/20%6/15%435/15%

iKI-KRl.Non-correlated

Number Prop.2342874.6

1--36-

-

-

2.2---

-

89

TV fractures

of TV fract. (%)263122212903533-

17

-2115-

--50-18-----

17

47

Page 54: Comparison of 3-D geological and geophysical investigation

The numbers of dipmeter fractures correlated with core fractures and the proportions of

core fractures are shown in Table 7. The dipmeter measurement was carried out at 41-

995 m and totally 640 dipmeter fractures were detected. Totally 464 dipmeter fractures

correlate with core fractures, that is 17% of core fractures. 32% of open, 16% of filled

and 16% of tight fractures correlate with dipmeter fractures. Dipmeter detected mainly

open fractures.

Table 7.Rock

PORGRGRPORGRPORGRDRGRDRPORGRDRPORGRPORGRDRGRDRPORGRDRMYPORGRDRMYPORGRDRMYPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRGRDRPORGRDRMGNPORGRDRPORGRGRTOTAL:

Correlation of dipmeter and core fractures in KI-KR1.Depth in core Number of dipmeter fractures/

(m)

41.00-129- 138.73-371.65-452.12- 470.25- 630.80- 705.00- 722.50- 728.70- 750.50- 757.50- 773.20-783.10-814.00-833.00- 850.06-851.30- 864.34- 865.90- 889.00- 892.55- 908.70-921.70- 946.90- 949.50-977.30-993.00- 995.00

Proportion of core fracturesOpen Filled

.38 25/31% 15/41%6/55% -14/30% 54/19%0/0% 11/12%

7/14%1/17% 27/15%

6/9%0/0%0/0%2/10%2/7%7/24%2/5%6/14%16/14%

1/100% 0/0%0/0%1/25%0/0%7/9%4/27%3/33%11/38%8/25%1/5%0/0%1/11%1/50%

47/ 192/32% 16%

Tight Total30/27% 79/30%6/43% 12/48%

Non-correlated

Number Prop.261

56/16% 124/18% 297/7% 18/9%12/18% 19/16%32/16% 60/16%15/11% 21/10%0/0% 0/0%1/13% 1/8%6/21% 8/16%3/13% 5/10%12/32% 19/29%3/11% 5/8%6/19% 12/16%5/11% 21/13%3/75% 4/36%0/0% 0/0%1/13% 2/17%0/0% 0/0%6/13% 13/11%0/0% 4/22%3/33% 6/33%3/13% 14/26%3/12% 11/19%0/0% 1/3%0/0% 0/0%3/50% 4/27%0/0% 1/17%225/ 464/16% 17%

1232414-44-4-1282---8-6313.21-176

dipm. fractures

of dipm. fract. (%)2581940142940-8033-17-502833---38.501854

20-

28

There are 122 fractures detected both by borehole-TV and by dipmeter in KI-KR1.

These fractures could be linked to 109 core fractures. The numbers of open, filled and

tight fractures are 20, 53 and 36, respectively and the proportions are 14%, 4% and 3%,

respectively. If we combine the analysis of both borehole-TV logs and dipmeter logs,

totally 790 of core fractures can be detected and verified. This is 28% of all the core

fractures mapped.

48

Page 55: Comparison of 3-D geological and geophysical investigation

In Table 8 there are the numbers of core fractures detected by the borehole televiewer in

KI-KR1 at 40.05-380.00 m and the rock type in question. The televiewer detected totally

178 fractures of which 111 correlated to the core fractures. This is 11% of all core

fractures. The proportions of open, filled and tight core fractures are 14%, 11% and

10%. No considerable difference in detecting fractures of different types is noticed.

Table 8. Correlation of televiewer and core fractures in KI-KR1.Rock

PORGRGRPORGRPORGRDRTOTAL:

Depth in core(m)

40.05-129.38- 138.73-371.65- 380.00

Number of televiewer fractures/Proportion of core fracturesOpen11/13%2/18%7/15%-

47/14%

Filled5/12%-33/12%0/0%38/11%

Tight25/16%3/21%25/7%0/0%53/10%

Total41/14%5/20%65/10%0/0%111/11%

Non-correlated televiewer fract.

Number41125-

67

Prop, of telev. fract. (%)501728-

38

The highest frequency of open fractures in the borehole KI-KR1 is in the granite section

at 129.38-138.73 m, 1.18 pcs/m. The highest proportion of open fractures detected by

borehole-TV and by dipmeter is found also at that section, where 55% of open fractures

were detected by both methods. Measured widhts of TV-fractures vary between 2-8 mm.

Televiewer detected 18% of open fractures in that section, which is also the highest

proportion of open fractures detected by televiewer.

The highest frequency of filled fractures is 7.69 pcs/m in the mica gneiss section at

946.90-949.50 m. The proportions of filled fractures detected by borehole-TV and

dipmeter in that section are 20% and 5%, respectively. It is very interesting to notice,

that in the low fracture frequency section (0.48 pcs/m) at 40.05-129.38 m (PORGR) the

proportions of filled fractures detected by borehole-TV and dipmeter are high, 40% and

41%, respectively. Also, in the section at 705.00-722.50 m (PORGRDR) the fracture

frequency of filled fractures is 0.29 pcs/m, the lowest in the core, and the proportion of

filled fractures detected by borehole-TV is 40%. Corresponding proportion for dipmeter

is 0%.

The highest frequency of tight fractures is 6.15 pcs/m in the mica gneiss section at

946.90-949.50 m and the proportions of mapped tight fractures are 0% and 0% for

borehole-TV and dipmeter, respectively. Because neither borehole-TV nor dipmeter

detected fractures, it is obvious that these core fractures have been hair-cracks in-situ

and the core has been broken along them during drilling. In the low fracture frequency

sections of 0.23 pcs/m at 833.00-850.06 m (PORGRDR) and of 0.38 pcs/m at 977.30-

49

Page 56: Comparison of 3-D geological and geophysical investigation

993.00 m (PORGR) the proportions of tight fractures detected by borehole-TV are 75%

and 0% and by dipmeter the figures are also 75% and 0%, respectively.

Pearson correlation coefficients show that there is no clear linear relationship between

proportions of detected core fractures with different fracture types and fracture

frequency in the borehole KI-KR1 in rock sections, see Table 9. However, generally

there is a slight tendency of negative correlation, in other words small values of fracture

frequency are slightly associated with large values of proportions and vice versa. For

open borehole-TV fractures there seems to predominate a positive correlation. However,

number of correlations is low and the result is not quite clear. Pearson correlation

coefficients of televiewer fractures are also only suggestive because of few correlations.

Table 9. Pearson correlation coefficient, r, correlation between proportions of

detected core fractures with different fracture types and fracture frequency in

the borehole KI-KR1 in rock sections. N = number of correlations.KI-KRl

Borehole-TVDipmeter(Televiewer

Openr0.620.130.37

N664

Filledr0.15-0.10-0.03

N28273

Tightr-0.34-0.350.80

N29284

Totalr-0.22-0.300.68

N29284)

InKI-KRl at the depths of 48.054 m, 48.818 m, 94.07 m, 131.17 m, 131.58 m, 452.357

m, 824.216-824.871 m (tot. 6 fractures), 901.806 m, and 902.504 m there are fractures

detected by BIP which are not mentioned in core log due to core loss. There are also

"core loss" fractures detected by dipmeter at the depths of 48.717 m, 54.39 m, 94.14 m,

256.20 m, 539.55 m, 645.86 m, and 824.49 m. Dipmeter fractures at 48.717 m and

824.49 m correlate with TV-fractures at 48.717 m and 824.47 m. At the depth of

131.707 m there is one fracture detected by televiewer which is not mentioned in core

log due to core loss.

The number of non-correlating TV-fractures is 89 and it is 17% of all TV-fractures

(524). Core loss fractures are 14 of those 89 TV-fractures, so the proportion is 14%

without core loss fractures. There is one set of nearby borehole-TV fractures at 214.461-

216.956 m, totally 4 borehole-TV fractures, without correlation to core log fractures.

There are three possible fractures near these borehole-TV fracture depths in core not

mentioned in core log according to the core check done at Loppi. Two of these possible

core fractures are at the depths of 216.89 and 216.90 m. These possible fractures look

primarily like breaks, there are no evidence of fracture infilling or weathering. Totally

50

Page 57: Comparison of 3-D geological and geophysical investigation

176 dipmeter fractures (28% of all dipmeter fractures) do not correlate with core

fractures. This is a considerable part of the dipmeter fractures. Seven of those 176

dipmeter fractures are core loss fractures, so the real proportion without core loss

fractures is 26%. There are many sets of nearby dipmeter fractures, which do not

correlate with core fractures, for example at the depths of 723.45-724.34 m (tot. 4

fractures), 784.38-786.38 m (tot. 5), 800.68-802.08 m and 944.43-945.40 m (tot. 4).

Core analysing at Loppi revealed that in these sections there are many break-looking

possible core fractures. The dipmeter fractures in question and correlation to possible

core fractures and borehole-TV fractures have been listed in Table 10. Totally 67 (66

without a core loss fracture) of televiewer fractures (178) are non-correlating ones. The

proportion is big, 38%. There are also sets of nearby televiewer fractures which do not

correlate with core log fractures, for example at 109.271-109.675 m (tot. 7 televiewer

fractures). However, there were no evidence of fracturing at that section in the core

according to the core studing at Loppi.

Table 10. Possible core fractures mapped as breaks in original mapping andcorrelating dipmeter and borehole-TV fractures in KI-KR1.

Possible core fracturedepth (m)723.35723.76723.88724.30784.43786.01786.44801.05801.20801.99944.70944.82945.13

Dipmeter fracturedepth (m)723.45723.84723.98724.34784.38785.99786.38801.08801.24802.08944.71944.84945.07

Borehole-TV fracturedepth (m)

945.13

5.2.2 RO-KR3

In RO-KR3 at 42.95-427.3 m (BIP-measuring range in RO-KR3) 28% of core fractures

(totally 257) could be correlated with borehole-TV fractures (Table 11). The proportion

of core fractures of RO-KR3 is almost double the size of KI-KR1. The average

proportions of open, filled and tight fractures are 25%, 48% and 24%, respectively. It is

noticed that borehole-TV detected relatively more filled fractures than open and tight

ones in RO-KR3. In KI-KR1 borehole-TV detected on average 19% of filled fractures.

51

Page 58: Comparison of 3-D geological and geophysical investigation

Table 11.Rock

LTONGNMDBLTONGNTONGNLTONGNAFBTONGNGRDRTONGNTOTAL:

Correlation of borehole-TV andDepth in core

(m)

42.95-136.50- 157.00-278.00-285.30-312.00-321.00-371.00- 378.00-427.30

Numbercore fractures in RO-KR3.

of TV fractures/Proportion of core fracturesOpen16/24%2/100%16/26%0/0%'--3/19%1/33%1/33%39/25%

Filled5/24%27/64%16/43%0/0%-1/100%8/53%0/0%2/67%59/48%

Tight4/7%16/38%27/12%2/10%5/39%2/67%36/24%6/29%61/52%159/24%

Total25/17%45/52%59/19%2/9%5/39%3/75%47/26%7/27%64/52%257/28%

Non-correlated

Number Prop.10523.91444313121

TV fractures

ofTVfract. (%)291028-648248301732

In Table 12 there are the numbers of core fractures detected by the dipmeter at 44.00-

474.00 m in RO-KR3. The dipmeter detected totally 357 fractures of which 291

correlated to the core fractures, that is 26% of all fractures. The corresponding figure is

17% in KI-KR1. The proportions of open, filled and tight fractures are on average 33%,

42% and 22%, respectively. Considerably more filled fractures were detected in RO-

KR3 than in KI-KR1 (proportion 16%) by dipmeter.

Table 12.Rock

LTONGNMDBLTONGNTONGNLTONGNAFBTONGNGRDRTONGNTOTAL:

Correlation of dipmeter and core fractures in RO-KR3.Depth in core

(m)

44.00-136.50- 157.00-278.00-285.30-312.00-321.00-371.00-378.00- 474.00

Number of dipmeter fractures/Proportion of core fracturesOpen22/33%1/50%24/39%0/0%--6/38%0/0%0/0%53/33%

Filled Tight Total12/57% 15/26% 49/34%15/36% 13/31% 29/34%17/46% 46/21% 87/27%1/100% 4/20% 5/23%

2/15% 2/15%1/100% 0/0% 1/25%4/27% 46/30% 56/30%0/0% 1/5% 1/4%2/50% 59/20% 61/19%52/ 186/ 291/42% 22% 26%

Non-correlated

Number Prop.144732-2141166

dipm. fractures

of dipm. fract. (%)221273850-27801518

There are 122 fractures detected both by borehole-TV and by dipmeter in RO-KR3.

These fractures correlate to 101 core fractures. The numbers of open, filled and tight

fractures are 20, 29 and 52, respectively and the proportions are 13%, 24% and 6%,

respectively. If we use both borehole-TV logs and dipmeter logs, totally 447 of core

fractures can be detected. This is 40% of all core fractures.

52

Page 59: Comparison of 3-D geological and geophysical investigation

There are totally 38 fractures detected by televiewer at 299.00-379.00 m in RO-KR3. In

R0-KR3 21 fractures detected by televiewer were correlated with core fractures, so

there are 17 fractures which are not correlated, see Table 13. The average proportion of

all fractures is only 10%. Only 4 (21%) open, 1 (6%) filled and 16 (9%) tight fractures

were detected. Because no length correction was made the result of correlation is

uncertain.

Table 13. Correlation of televiewer and core fractures in RO-KR3.Rock

LTONGNAFBTONGNGRDRTONGNTOTAL:

Depth in core(m)

299.00-312.00-321.00-371.00- 378.00- 379.00

Number of televiewer fract./Proportion of core fracturesOpen--4/25%0/0%-4/21%

Filled

0/0%1/7%0/0%

1/6%

Tight0/0%1/33%14/9%1/5%0/0%16/9%

Total0/0%1/33%19/10%1/4%0/0%21/10%

Non-correl. televiewer fractures

Number Prop.

116

17

of telev. fract. (%)

5046

45

In RO-KR3 the highest fracture frequency of open fractures is at 42.95-136.50 m

(LTONGN) and the lowest at 129.38-138.73 m (MDB). The fracture frequencies in

question are 0.73 pcs/m and 0.10 pcs/m, respectively. Borehole-TV detected 24% and

100% (tot. 2 fractures) of open fractures in these sections, respectively. Corresponding

figures for dipmeter are 33% and 50% (1 of 2 fractures). Because the number of open

fractures is low in the last section mentioned, no clear conclusions of these proportions

can be made. The proportions of open fractures in the first section are near the average.

The highest fracture frequency of filled fractures is at 129.38-138.73 m (MDB), which is

2.05 pcs/m. Borehole-TV detected 64% of filled fractures and dipmeter 36% of filled

fractures in that section. These are high scores compared to proportions of the highest

fracture section in KI-KR1, which were for borehole-TV 20% and 5% for dipmeter.

However, in KI-KR1 the highest fracture frequency in filled fractures was as high as

7.69 pcs/m. The fracture frequency of filled fractures is lowest (0.04 pcs/m) at 378.00-

474.00 m (TONGN) and the proportions of borehole-TV and dipmeter fractures are 67%

and 50%, respectively.

The highest fracture frequency (3.12 pcs/m) of tight fractures is between 378.00-476.90

m in the migmatitic tonalite gneiss section. Borehole-TV detected 52% of tight fractures

and dipmeter 20% of tight fractures in that section. The lowest fracture frequency of

tight fractures is 0.33 pcs/m at 312.00-321.00 m in the amphibolite section. Borehole-

53

Page 60: Comparison of 3-D geological and geophysical investigation

TV detected 67% (of 3 fractures) and dipmeter 0% (of 3 fractures) of tight fractures.

Televiewer detected 1 of the 3 tight fractures (33%). The number of tight fractures is

low in the last section mentioned and no clear conclusions of proportions can be made.

Pearson correlation coefficients show that there is no clear linear relationship between

proportions of detected core fractures with different fracture types and fracture

frequency in the borehole RO-KR3 in rock sections, see Table 14. Also in K1-KR1 there

does not exist clear relationship. Generally there is a slight tendency of negative

correlation as in RO-KR3. Pearson correlation coefficients of open televiewer fractures

are not calculated because of only two correlations. Coefficient of filled televiewer

fractures is also only suggestive.

Table 14. Pearson correlation coefficient, r, correlation between proportions of

detected core fractures with different fracture types and fracture frequency in

the borehole RO-KR3 in rock sections. N = number of correlations.RO-KR3

Borehole-TVDipmeterTeleviewer

Openr-0.300.24

N772

Filledr0.18-0.28-0.54

N883

Tightr-0.29-0.18-0.45

N995

Totalr-0.340.03-0.39

N995

There are fractures detected by borehole-TV not mentioned in core log due to core loss

at the depths of 215.114 m, 333.65 m, 341.795 m and within the fracture zone at

349.004-352.665 m (tot. 28 fractures) in RO-KR3. Some of these fractures are detected

also by dipmeter and/or televiewer. The core loss sections at 348.90-349.84 m and at

349.84-352.84 m in RO-KR3 are shown in the borehole-TV image plot, Appendix 5.

The core photograph (scale ca. 1:10) of that section has been shown previously in Figure

1. In Appendices 6-8 there are dipmeter and televiewer logs of that same section in

question. It can be seen that the borehole-TV produces a very good view of these core

loss sections when no information from core samples can be obtained. Furthermore, it

can be seen that the image plots of borehole-TV are more representative image

documentations compared to the core photographs. The number of borehole-TV

fractures in that core loss section is also much more larger than the corresponding

numbers of dipmeter and televiewer.

54

Page 61: Comparison of 3-D geological and geophysical investigation

In R0-KR3 there are fractures detected by dipmeter not mentioned in core log due to

core loss at the depths of 215.511 m, 275.955 m, 333.353 m, at the zone 349.158-

351.191 m (tot. 8 fractures which all correlate with TV-fractures), 351.450 m and

351.999 m. Televiewer fractures not mentioned in core log due to core loss are at the

depths of 349.049 m, 349.792 m, 350.332 m, 350.538 m, 351.101 m, 351.924 m which

correlate with borehole TV-fractures, at 350.538 m and 351.101 m located televiewer

fractures correlate both with the dipmeter fractures and the borehole-TV fractures. Also

at the depths of 350.548 m, 351.481 m and 351.976 m there are core loss fractures.

The number of non-correlating TV-fractures is 121 and it is 32% of all TV-fractures

(378). Core loss fractures are 31 of those 121 dipmeter fractures, so the proportion is

24% when core loss fractures are excluded. There is one set of nearby borehole-TV

fractures at 49.195-52.871 m (3 fractures) and another one at 169.81-170.723 m (3

fractures) with no clear correlation to core fractures. Core analysing revealed that there

are break-looking possible fractures at these depths, see Table 15. There are also many

TV-fractures not correlated at 296.424-320.711 m, totally 14 TV-fractures. There is a

core photograph and borehole-TV image plot of that section in Figure 16 and in

Appendix 9, respectively. The length correction of borehole-TV seems to be excellent at

this depth. The rock types in that section are leucotonalite gneiss and amphibolite. The

gneiss is banded and there are thin, light-coloured veins in amphibolite. According to

the core study at Loppi almost all of these borehole-TV fractures have been probably

characterized as thin veins by core analysing geologist and that is why these filled

"sealed" borehole-TV fractures are not mentioned in core log.

Totally 66 dipmeter fractures (18% of all dipmeter fractures) do not correlate with core

fractures. 13 of those 66 dipmeter fractures are core loss fractures, so the real proportion

is 15%. In Table 15 there are five dipmeter fractures which correlate to the possible

break-looking fractures according to the core study at Loppi.

There are 17 televiewer fractures which do not correlate with core fractures, 9 of those

fractures are core loss fractures, so the real proportion of televiewer fractures is 21%. It

must be remembered that no length correction was perfomed in RO-KR3 for televiewer

method.

55

Page 62: Comparison of 3-D geological and geophysical investigation

Table 1 5. Possible core fractures mapped as breaks in original mapping and

correlating dipmeter and borehole-TV fractures in R0-K.R3.

Possible corf fracturesdepth (m)

45.1445.6346.0349.1249.3251.5252 7553.30169.83170.40

Dipmeter fracturesdepth (m)

45.1445.6946.00

51.53

53.41

Borehole-TV fracturesdepth (m)

49.2050.53

52.87

169.81170.57

i ijm 11 m i j j n 11 JTI • i m 11 m

Figure 16. Photograph (scale ca. 1:10) of the core sample of RO-KR3 151.

56

Page 63: Comparison of 3-D geological and geophysical investigation

5.3 Correlation of fracture orientations

Dips and directions of dips were presented on a Schmidt equal area projection as

contour diagrams on the lower hemisphere and compared. The Schmidt contour

diagrams were calculated and plotted by the computer. The main sources of error in the

correlation between core, borehole-TV, dipmeter and televiewer orientations are:

(1) The orientations of core fractures were detected at even intervals of 5 gon (4.5°).

(2) Failed orientation in some sections of the core sample is possible.

(3) No differences in deviation of the borehole are taken into consideration in the

borehole-TV measurements.

(4) When the fracture is long, almost parallel to the borehole, almost vertical or

almost horizontal, direction of dip and dip detected by 3-arm dipmeter are

uncertain.

(5) Nearby fractures intersecting each other make determination of the orientation

unreliable.

(6) The widened borehole affects the orientation measurements of borehole-TV,

dipmeter and televiewer.

(7) If the length correction is poor, the correlations of fractures are unreliable.

5.3.1 KI-KR1

According to Table of Appendix 1 there are 74, 72 and 26 oriented fractures of the core

log KI-KR1 correlated with borehole-TV, dipmeter and televiewer fractures,

respectively. As a total, 122 fractures of borehole-TV and dipmeter are correlated.

First the Schmidt contour diagrams of core and borehole-TV fracture orientations are

examined, totally 74 observations, see Figure 17. In the core fracture diagram the

highest frequency of points is 13% in the orientation of 15°/75° (direction of dip/dip

angle). The frequency of 13% means that 13% of all the points lie within an area equal

to 1% of the total area of the diagram 161. There is also another minor concentration of

core fractures with the orientation of 200°/5°. In the borehole-TV fracture diagram the

highest frequency of points is 10% in the orientation of 30°/80°, so the main orientation

of core fractures correlates well with the main orientation of dipmeter fractures. Also the

other main orientation of borehole-TV fractures in 225°/10° is similar to that of core.

Although, there is some distribution in the fractures of steep dips; dips of steep core

fractures are 5°-10° lower than dips of borehole-TV fractures.

57

Page 64: Comparison of 3-D geological and geophysical investigation

Figure 17. Schmidt contour diagrams of core (left) and borehole-TV (right) fracture

orientations in KI-KR1. Observations: 74, contours: 1%, 3%, 6%, 9%, 12%.

There are totally 72 observations in Schmidt contour diagrams of core and dipmeter

fractures, see Figure 18. In the core fracture diagram the highest frequency of points is

10% in orientation of 180°/5o-20°. In the direction of 45° there is a concentration of

quite steep core fractures. In the dipmeter fracture diagram the highest frequency of

points is 13% in the orientation of 315°/5°. The difference in direction of dip between

core and dipmeter fractures is due to the fact that the direction of almoust horizontal

fractures detected by dipmeter is uncertain. There is another main orientation of

dipmeter fractures in 35790°. This orientation is similar to the concentration of steep

core fractures. Dips of steep core fractures are lower than dips of dipmeter fractures.

Figure 18. Schmidt contour diagrams of core (left) and dipmeter (right) fracture

orientations in KI-KR1. Observations: 72, contours: 1%, 2%, 4%, 6%, 8%.

58

Page 65: Comparison of 3-D geological and geophysical investigation

Schmidt contour diagrams of core and televiewer orientations are illustrated, totally 26

observations, in Figure 19. In the core fracture diagram the highest frequency of points

is 15% in orientation of 330°/70°. There is also another minor concentration of fractures

with the orientation of 200°/20°. In the televiewer fracture diagram the highest

frequency of points is 19%. The main orientations are in 5790° and in 335765°. The

less concentrated orientation of televiewer fractures is in 110725°. There is a quite

considerable distribution of fractures, even though the orientation of core fractures in

330770° correlates well with the orientation of televiewer ones in 335765°.

Figure 19. Schmidt contour diagrams of core (left) and televiewer (right) fracture

orientations in KI-KR1. Observations: 26, contours: 1%, 3%, 6%, 9%, 12%.

There are totally 122 observations in Schmidt contour diagrams of borehole-TV and

dipmeter fractures, see Figure 20. In the borehole-TV diagram the highest frequency of

points is 9% in the orientation of 230720°. There is another main orientation in 50790°.

In the dipmeter fracture diagram the highest frequency of points is also 9% in the

orientation of 27075° which correlates quite well with the borehole-TV main

orientation. There is another main orientation of dipmeter fractures in 35790°. This

orientation is similar to that of borehole-TV.

59

Page 66: Comparison of 3-D geological and geophysical investigation

Figure 20. Schmidt contour diagrams of borehole-TV (left) and dipmeter (right)

fracture orientations in KI-KR1. Observations: 122, contours: 1%, 2%, 4%,

6%, 8%.

Schmidt contour diagrams of borehole-TV and televiewer orientations, totally 27, are

illustrated in Figure 21. In the borehole-TV diagram the highest frequency of points is

14% in the orientation of 45785°. There is also other minor concentrations of fractures

with the orientation of 10780° and 230720°. In the televiewer fracture diagram the

highest frequency of points is 22% and its orientation is in 350780°. Other main

orientations are in 10780° and in 160715°. There is a quite considerable distribution of

fractures, even though the orientations are relatively similar between borehole-TV and

televiewer fractures.

Figure 21. Schmidt contour diagrams of borehole-TV (left) and televiewer (right)

fracture orientations in KI-KR1. Observations: 27, contours: 2%, 4%, 7%,

11%, 16%.

60

Page 67: Comparison of 3-D geological and geophysical investigation

5.3.2 R0-KR3

The comparison of orientation ofTV-fractures with the orientation of oriented core was

performed. In the comparison of R0-KR3 there was noticed a section in 204.16-209.3 m

of the core sample which was oriented incorrectly, see Appendix 2. The direction of dip

of fractures detected by borehole-TV is larger than the direction of dip of core fractures.

It is circa 90° larger in the TV-fractures correlated with core fractures no: 360 and 362

and circa 180° larger in the TV-fractures correlated with core fractures no: 367 and 371.

According to the drilling report of RO-KR3 151 the sample has been rotated during

orientation at the depth of 209.30 m and the orientation has stopped. The correlation

indicated that the core sample has rotated before noticing it. The core fractures

mentioned are not included to the comparison when discussing about orientations.

According to Table of Appendix 2 there are 65, 57 and only 3 oriented fractures of the

core log RO-KR3 correlated with borehole-TV, dipmeter and televiewer fractures,

respectively. The number of observations affect the correlation. The greater the number

of observations is the more reliable is the correlation. So, the correlation with televiewer

and core fractures is not made, because there are only 3 observations, which does not

give a reliable illustration of correlation. Totally 122 fractures of borehole-TV and

dipmeter were correlated.

First the Schmidt contour diagrams of core and borehole-TV orientations are examined,

totally 57 observations, see Figure 22. In the core fracture diagram the highest frequency

of points is 21% and it is in the orientation of 260°/45°. In the borehole-TV fracture

diagram the highest frequency of points is 19% and its orientation is 270°/45°. The

diagrams are very similar and no considerable distribution is visible. The correlation is

very good.

61

Page 68: Comparison of 3-D geological and geophysical investigation

Figure 22. Schmidt contour diagrams of core (left) and borehole-TV (right) fracture

orientations in RO-KR3. Observations: 57, contours: 1%, 2%, 5%, 10%,

15%.

Schmidt contour diagrams of core and dipmeter orientations, totally 65, are illustrated in

Figure 23. In the core fracture diagram the highest frequency of points is 10% in the

orientation of 250°/40°. There is also another minor concentration of core fractures with

the orientation of 60°/30°. In the dipmeter fracture diagram the highest frequency of

points is 9% and its orientation is in 270°/50°. Another main orientation is in 45720°.

The orientations correlate well with each other.

Figure 23. Schmidt contour diagrams of core (left) and dipmeter (right) fracture

orientations in RO-KR3. Observations: 65, contours: 1%, 3%, 5%, 7%,

12%.

62

Page 69: Comparison of 3-D geological and geophysical investigation

There are totally 122 observations in Schmidt contour diagrams of borehole-TV and

dipmeter see, Figure 24. In the borehole-TV diagram the highest frequency of points is

9% in the orientation of 270740°. In the dipmeter fracture diagram the highest

frequency of points is 13% in the orientation of 270735° which correlates very well

with the borehole-TV main orientation. The diagrams of borehole-TV and dipmeter are

very similar, almost look-alikes.

Figure 24. Schmidt contour diagrams of borehole-TV (left) and dipmeter (right)

fracture orientations in RO-KR3. Observations: 122, contours: 1%, 2%, 4%,

6%, 8%.

Schmidt contour diagrams of borehole-TV and televiewer orientations, totally 12, are

illustrated in Figure 25. In the borehole-TV diagram the highest frequency of points are

16% in the orientations of 280740° and 40790°. In the televiewer fracture diagram the

highest frequency of points is 25% and its orientation is in 300725° which correlates

quite well with the borehole-TV orientation of 280740°. It must be noticed that only 12

fractures are correlated.

63

Page 70: Comparison of 3-D geological and geophysical investigation

Figure 25. Schmidt contour diagrams of borehole-TV (left) and televiewer (right)

fracture orientations in R0-KR3. Observations: 12, contours: 2%, 6%, 10%,

14%.

5.4 Core and borehole-TV fractures vs. differential flow measurements

The hydraulic conductivities and the related, potentially-water-conducting core fractures

along the depth interval sections are presented for boreholes KI-KR1 and RO-KR3 in

Appendices 3 and 4, respectively. In principle, for every given 2 m depth interval

section of the rock, which is regarded as water conductive (> 10"10 m/s), open fractures

have been used (if available) to explain the hydraulic conductivity. If no open fractures

have been found for a certain conductive rock section, filled fractures have been

presented. Measurement intervals of 10 cm were used in location of the most

hydraulically conductive fractures or sections. Depth error of the measurement is ± 7 cm

+ X. The first part is random, caused by measurement interval of 10 cm. The unknown

part X is due to cable length errors /30, 31/.

Borehole-TV fractures which correlate with potentially-water-conducting core fractures

have also been listed. If there is a borehole-TV fracture with aperture of > 3 mm, which

correlates to tight or filled fracture not mentioned in the list of water-conducting

fractures, it has also been supplemented. There are borehole-TV fractures, which can be

water-conducting ones (with wide aperture) and not correlated with core fractures, for

example when there are no core fractures which can explain the hydraulic conductivity,

but there are borehole-TV fractures with wide aperture which can. These fractures have

also been supplemented to the list. All 2 m sections where hydraulic conductivity is

10'1 * m/s have been removed.

64

Page 71: Comparison of 3-D geological and geophysical investigation

5.4.1 KI-KR1

In the upper part of the bedrock, the correlation is good and clear between the

conductive rock sections and the presence of potentially-water-conductive open (mainly)

fractures (Appendix 3) in core log of KI-KR1. However, there are conductive sections in

the bedrock, that either contain only filled fractures or lack of presence of any

potentionally-water-conducting (filled/open) fractures in their vicinity.

The conductive rock sections specifically revealed in the hydraulic tests with 10 cm

measurement intervals at the depths of 62.88 m, 169.98 m and 170.88 m correlate with

single, open fractures reported /21/ and verified at the depths of 61.45 m, 169.29 m and

171.01 m, respectively. On the other hand, no filled or open fractures can be found in

the vicinity of the conductive section at the depth of 214.66 m /30/. Borehole-TV found

one fracture at that depth, at 214.657 m, of 2 mm aperture.

There are many moderately conductive (10"8-10-6 m/s) 2 m sections, where no TV-

fractures have been detected, for example at 66.94-68.94 m, 68.94-70.94 m, 177.15-

179.15 m and 183.16-185.16 m. However, there are borehole-TV fractures (with

aperture >3 mm) not correlated with core fractures, which can explain the hydraulic

conductivity entirely, at 71.616 m, 77.124 m and 216.941 m. Borehole-TV fractures not

correlated with core fractures have been supplemented also in sections where open

and/or filled fractures have already been listed. Fractures of this kind exist for example

at 120.525 m (aperture 13 mm), 118.656 m (aperture 12 mm), 125.279 m (aperture 41

mm) and 147.711 m (aperture 37 mm). Also five core loss fractures have been

supplemented. There are two borehole-TV fractures with aperture of > 3 mm, which

have been classified as tight fractures and not listed in the original potentially-water-

conducting fracture list /30/, and which can explain the hydraulic conductivity. They are

at the depths of 73.92 m and 74.74 m.

5.4.2 RO-KR3

A good correlation between the conductive rock sections and the presence of

potentially-water-conducting open (mainly) and filled fractures can be seen along the

entire length of the borehole RO-KR3 (Appendix 4). The hydraulic tests with 10 cm

measurement intervals reveal the conductive rock sections at the depths of 72.85 m,

228.38 m, 348.74 m and 348.90 m, which are very well correlated with the presence of

65

Page 72: Comparison of 3-D geological and geophysical investigation

single, open fractures found in the core log observations at the depths of 72.81 m.

228.26 m and a series of open fractures reported 151 and verified at the depth range of

348.43-348.91 m, respectively. On the other hand, there is a weak correlation between

the sections revealed by the same tests at the depths of 113.97 m and 165.78 m and the

presence of fractures at the depths of 114.42 m (open) and 165.99 m (filled),

respectively/31/.

There are some moderately conductive (10"s-10"6 m/s) 2 m sections, where no borehole

TV-fractures have been detected, for example at 89.12-91.13 m. There is also one highly

conductive (>1O6 m/s) section at 171.28-173.28 m, where no borehole-TV fractures

have been detected. However, there is one section where borehole-TV fracture not

correlated with core fracture explains the hydraulic conductivity, at 212.916 m (with

aperture of 12mm). The section of 273.45-275.45 m can be explained with borehole-TV

fractures at 273.475 and 273.59 m (apertures 4 mm). The first fracture correlates with

tight fracture. Borehole-TV fractures not correlated with core fractures have been

supplemented also in sections where open and/or filled fractures have already been

listed. Fractures of this kind are for example at 117.916 m (aperture 5 mm), 212.916 m

(aperture 6 mm), 221.885 m (aperture 5 mm) and 422.079 m (aperture 11 mm). Also six

core loss fractures have been supplemented. There are many borehole-TV fractures

which are potentially-water-conducting fractures with aperture of > 3 mm, which have

been classified as tight or filled fractures and not listed in the original potentially-water-

conducting fracture list /30/, for example at 80.644 m (aperture 13 mm).

66

Page 73: Comparison of 3-D geological and geophysical investigation

6. Summary

Core analysis, borehole television (BIP 1500-system), three-arm dipmeter, borehole

televiewer and differential flow measurements are the methods described and compared

in this master's thesis. The material for the study is from the measurements performed

in the borehole KI-KR1 at the Kivetty site and in the borehole R0-KR3 at the

Romuvaara site in Finland.

Comparisons were made in the following cases: the number and the proportion of

fractures detected, detecting of different type of fractures, the number of fractures in

core loss sections and orientation of fractures detected by borehole-TV, dipmeter and

televiewer. Differential flow measurements were compared with core and borehole-TV

fractures. After the comparison study there was a possibility to study visually some

sections of cores.

During the study it was not possible for me to study the borehole-TV image from the

monitor and study the cores. These factors made the study very difficult. Also the

dipmeter and televiewer fractures were interpreted by another person. In the future there

should be a possibility to follow and participate in the interpretation and analysing

study, if the results of cores, borehole-TV and other measurements are compared.

The most crusial factor in this study is the detailed length correction procedure. With

poor or nonexistent length correction it is impossible to obtain realible results. The

length correction was the best with borehole-TV, because the correlation of fractures

was the clearliest to perform. There were seldom sections where problems arised.

Comparing dipmeter results and especially televiewer results with core there often

arised problems. No length correction could be made with televiewer measurements in

R0-KR3.

In KI-KR1 15%, 17% and 11% of core fractures correlate with borehole-TV, dipmeter

and televiewer fractures, respectively, at the measurement range of the method in

question, see Table 16. Borehole-TV detected mainly open fractures and filled fractures.

Most of the fractures detected by dipmeter are open. Both borehole-TV and dipmeter

detected relatively more open fractures than filled and tight fractures. With televiewer

no considerable difference in detecting fractures of different types was noticed. In RO-

KR3 the same figures for borehole-TV, dipmeter and televiewer are 28%, 26% and

10%, see Table 17. Both borehole-TV and dipmeter detected relatively more filled

67

Page 74: Comparison of 3-D geological and geophysical investigation

fractures than open fractures in R0-KR3. Televiewer detected relatively more open

fractures than filled and tight ones. The difference between boreholes is due to

fracturing of different type and rock type in question.

Table 16. Proportions of core fractures correlated with fractures detected by method in

question inKI-KRl.

KI-KR1

Open

Filled

Tight

Total

Borehole-TV

28%

19%

10%

15%

Dipmeter

32%

16%

16%

17%

Televiewer

14%

11%

10%

11%

Table 17. Proportions of core fractures correlated with fractures detected by method in

question in RO-KR3.

RO-KR3

Open

Filled

Tight

Total

Borehole-TV

25%

48%

24%

28%

Dipmeter

33%

42%

22%

26%

Televiewer

21%

6%9%

10%

The average fracture frequency of tight fractures is quite high in KI-KR1 and especially

in RO-KR3 compared to open and filled fractures. This is one of the reasons why a lot

of core fractures were not detected with any of the methods used. It is known that tight

fractures are difficult to detect by borehole-TV, dipmeter and televiewer. The resolution

of borehole-TV measurements can be improved, but then the data size will be also

larger and the data processing more time-consuming. Also it must be remembered, what

kind of information we want to know from the bedrock. Are the smallest fractures

important? They are not important for the hydraulic conductivity, but probably in the

rock mechanical point of view.

Fractures can be classified as breaks, also. For example in KI-KR1 there are several

sections, where dipmeter detected fractures and there are no fractures mentioned in core

log. According to the core study, there are several break-looking possible fractures

which correlate with the "ghost" fractures detected by dipmeter. It is not known, if these

are real fractures or if the drilling may have crushed the borehole wall and produced

these artificial fractures. Usually no borehole-TV fractures were detected at these

depths.

68

Page 75: Comparison of 3-D geological and geophysical investigation

The low numbers of televiewer fractures detected were due to decentralization of the

televiewer probe in the boreholes KI-KR1 and R0-KR3 and the narrow borehole

diameter. The low numbers of televiewer fractures made the correlation unreliable. Also

the televiewer measurements of the borehole R0-KR3 were not length corrected and

this affected also results.

There was no clear linear relationship between proportions of different kinds of core

fractures detected and the fracture frequencies in different rock types in boreholes KI-

KR1 and R0-KR3 according to the Pearson correlation coefficients. However, different

kind of correlation could be possible to achieve, if the comparison will be made between

separate fracture zones and intact bedrock. The rock type did not affect on the number of

borehole-TV fractures detected. For example borehole-TV detected fractures averagely

in coarse-grained porphyritic granodiorite sections in KI-KR1. However, in the

amphibolite section in R0-KR3 there are plenty of "ghost" fractures detected by

borehole-TV. Core study confirmed that almost all of these features characterized as

"sealed" filled fractures by borehole-TV analysing geologist were characterized as thin

veins by core analysing geologist. So these borehole-TV fractures have not been listed

in core log. As shown, two geologists may characterize the features differently.

Borehole-TV gives the best image of core loss sections compared to dipmeter and

televiewer. Borehole-TV produces a colour image plot of the core loss sections in

addition to fracture detections. These images produce information on the rock quality,

weathering, etc. Televiewer and dipmeter detected also less fractures in core loss

sections than borehole-TV.

According to orientation analysis in KJ-KR1, it seems that the steep fractures from core

have systematically lower dips than borehole-TV and dipmeter. The steep fractures of

borehole-TV correlate well with the steep fractures of dipmeter. Correlations between

core and borehole-TV orientations and borehole-TV and dipmeter orientations were

good. There are differences in directions of low dips between core and dipmeter and

borehole-TV and dipmeter which is due to dipmeter measurements only with three

electrodes. Correlations of orientations in R0-KR3 were very good between all

methods, especially between borehole-TV and dipmeter. The correlation between the

televiewer and the borehole-TV orientations was not that good because of few

observations.

69

Page 76: Comparison of 3-D geological and geophysical investigation

Hydraulic conductivity correlated mainly with open and filled fractures both in the

borehole KI-KR1 and in the borehole R0-KR3. Borehole-TV fractures supplemented

and verified the potentially-water-conducting core fracture data. However, there are

some conductive sections, where are neither core fractures nor borehole-TV fractures

which explain the conductivity.

It seems that the true appearance of fracturing exists between the results of all these

methods. Combined use of methods is proposed, because the methods complement each

other. This study gives the impression that the use of core analysis and borehole-TV

measurements together can produce a comprehensive image of the bedrock in the

borehole. Where no core data can be obtained, for example in the core loss sections,

there is a possibility to get an image of that section by borehole-TV measurements.

There are a lot of boreholes where no core is obtainable, for example percussion drilled

boreholes. Borehole-TV measurements are suitable for boreholes of this kind, e.g.,

fracture orientation, weathering and rock type information can be obtained. Dipmeter

method can also be used with core analysis and borehole-TV measurements, especially

when the quantity of open fractures is considered. However, one thing must be taken

into consideration: the expenditure on every method, the cost of measurements, data

processing, analysing, etc. No cost estimates of these methods were available, but

probably the use of these methods can be restricted due to the costs.

70

Page 77: Comparison of 3-D geological and geophysical investigation

SUPPLEMENT

Two conclusive figures were compiled after the report was finished to describe the

achieved results.

On the following page 72 Figure 26 summarises graphically the results from Kivetty

borehole KR1. The base data from core had 2850 fractures. Oriented samples consisted

of 417 fractures (14.6 %). Borehole-TV and electrical dipmeter recorded 265 additional

features. Many of them are fractures from core loss sections, from places where no suit-

able candidates from core could be found (depth uncertainty, mapped as vein in core or

as an artificial core break). However, borehole-TV has veins interpreted as fractures and

some fractures may reach the borehole wall but are not visible in core sample. On the

other hand, dipmeter has features originating from electrically conductive mineral grains

and veins and sometimes oscillating borehole wall rugosity may have caused interpreted

anomalous features.

The best estimate is that Kivetty KR1 borehole has 3000 - 3100 fractures. If overlapping

indications are excluded about 1200 fractures could be orientated and correlated to core

with the methods discussed. This means that fracture orientation recovery has improved

to 38 - 40 % of total fracturing - a significant improvement compared to original 14.6 %

value.

In the Figure 27 on the page 73 are the results from Romuvaara KR3 presented in a

similar manner. The basic core data had 1124 fractures and oriented portion was consid-

erably higher 25.4 %. Taking into account the additional features observed by borehole-

TV and dipmeter, the total amount of fractures is between 1200 - 1300. Again, there is

overlapping indications with the mapping methods used. It is estimated that 700 - 750

fractures mapped in core could be orientated as a whole. Consequently, fracture orienta-

tion recovery has increased up to 54 - 63 % which more than doubles the total number

oriented originally.

71

Page 78: Comparison of 3-D geological and geophysical investigation

KIVETTY, BOREHOLE KR1Core mapped 2850fractures

TV mapped,not in core

Dipmeler mapped^not in core

- ] 09 fractures commonin core, dipmetcr and TV

Statistics offractures in core

Tight 51.0

Filled 44.0 <£

Open 5.4 °.i

- 74 core orientedfractures correlatedboth in core and TV

TV: total of 524 features

DIPMETER:total of 640 features

2 core orientedfractures correlatedboth in core anddipmclcr.

CORE FRACTURES:

n

m

Unoricnled.2433 fractures

Oriented,417 fractures

Borehole KR1 has a total of about3000 fractures or more.Improved fracture orientationrecovery by using core, dipmeterand borehole TV was about 1200fractures (38-40 % of the total).

Figure 26. file: KI-KR1 summ.sp.kuva

72

Page 79: Comparison of 3-D geological and geophysical investigation

ROMUVAARA, BOREHOLE KR3Core mapped 1124fractures

TV mapped,not in core.

Dipmeter mapped)not in core.

-101 fractures commonin core, dipmeter and TV

Statistics offractures in core

Tight 74.6 % •

i-VA"-'".".-:̂ Filled 10.9 %

Open 14.5 %

- 57 core orientedfractures correlated bothin core and TV.

TV: total ol378 features

DIPMETER:total of 357features

CORE FRACTURES

- 65 core orientedfractures correlatedboth in core anddipmeter.

I 1 Unoricnled,838 fractures

| H Oriented,286 fractures

Borehole KR3 has a total of about1200 - 1300 fractures.Improved fracture orientationrecovery by using core, dipmeterand borehole TV was 700 - 750fractures (54-63 % of the total).

Figure 27.file: RO-KR3.summ.sp.kuva

73

Page 80: Comparison of 3-D geological and geophysical investigation

References

1 Strahle, A., 1995. Borehole-TV measurements at Kivetty investigation site,

Finland. Geosigma Ab. TVO/Site Investigation Project, Work report 95-9le.

17 p.

2 Rouhiainen, P., 1989. Geophysical borehole methods in fracture analysis of

crystalline bedrock of the Loviisa site. Report YJT-89-01. 113 p.

3 Rouhiainen, P., 1993. Virtausmittarin kaytto vesinaytteenotossa ja

vedenjohtavuusmittauksessa, esiselvitys. PRG-Tec Oy.

TVO/Paikkatutkimusprojekti, Tyoraportti PATU-93-02. 43 p.

4 Korhonen, K.-H., Gardemeister, R., Jaaskelainen, H., Niini, H. & Vahasarja, P.,

1974. Rakennusalan kallioluokitus. VTT, Geotekniikan laboratorio, tiedontanto

12. 78 p.

5 Terraplan Oy, 1988a. Syvakairaus R0-KR3 Kuhmon Romuvaarassa 1988.

Vantaa, Terraplan Oy. TVO/Paikkatutkimukset, Tyoraportti 88-26. 14 p.

6 Billings, M. P., 1972. Structural Geology, third edition. London. 606 p.

7 Lau, J. S. O., Auger, L. F. & Bisson, J. G. Subsurface fracture surveys using a

borehole television camera and acoustic televiewer. National Research Council

Canada. Canadian Geotechnical Journal 24 (1987) 4, p. 499-508.

8 Strahle, A., 1995. Borehole-TV measurements at Romuvaara investigation

site, Finland. Geosigma Ab. TVO/Site Investigation Project, Work report

PATU-95-90e. 16 p.

9 Peltoniemi, M., 1988. Maa-ja kallioperan geofysikaaliset tutkimus-

menetelmat. Espoo, Otakustantamo 515, p. 131-132.

10 Labo, J., 1987. A practical indroduction to borehole geopfysics. Oklaholma,

Society of Exploration Geophysicists, p. 283-304.

74

Page 81: Comparison of 3-D geological and geophysical investigation

11 Robertson Geologging Limited. Digital Geologging Systems and Services.

Dipmeter logging, Dipmeter data processing with RGDIP program. Brochure.

12 Siddans, A.W.B. & Morecroft, S., 1995. Dipmeter survey, processing and

interpretation in boreholes R0-KR3 and R0-KR4 at Kuhmo Romuvaara site,

Finland 1994. Robertson Geologging Limited. TVO/Site Investigation Project,

Work report PATU-95-07e. 15 p.

13 Siddans, A.W.B & Morecroft, S., 1995. Dipmeter survey, processing and

interpretation in boreholes KI-KR1 and KI-KR3 at Aanekoski Kivetty site,

Finland 1994. Robertson Geologging Limited. TVO/Site Investigation Project,

Work report 95-08e. 15 p.

14 Stock, J. M., Healy, J. H., Hickman, S. H. & Zoback, M. D. Hydraulic Fracturing

Stress Measurements at Yucca Mountain, Nevada, and Relationship to the

Regional Stress Field. Journal of Geophysical Research 90 (1985) BIO, p. 8691-

8706.

15 Morin, R. H., Moos, D. & Hess, A. E. Analysis of the borehole televiewer log

from DSDP hole 3 95 A: results from the DIANAUT program. Geophysical

Research Letters 19 (1992) 5, p. 501-504.

16 Zemanec, J., Glenn, E. E., Norton L. J. & Caldwell, R. L. Formation

evaluation by inspection with the borehole televiewer. Geophysics 35 (1970)

2, p. 254-269.

17 Lefeuvre, R., Turpening, R., Caravana, C , Born, A. & Nicoletis, L. Vertical

open fractures and shear-wave velocities derived from VSPs, full waveform

acoustic logs, and televiewer data. Geophysics 58 (1993) 6, p. 818-834.

18 Siddans, A.W.B. & Morecroft, S., 1995. Borehole televiewer test in borehole

RO-KR3 at Kuhmo Romuvaara site and in borehole KI-KR1 at Aanekoski

Kivetty site, Finland 1994. Robertson Geologging Limited. TVO/Site

Investigation Project, Work report PATU-95-09e. 14 p.

19 Siddans, A.W.B. A new digital acoustic borehole televiewer. Robertson

Geologging Limited. Brochure. 26 p.

75

Page 82: Comparison of 3-D geological and geophysical investigation

20 Rouhiainen, P., 1993. Virtausmittarin kaytto vedenjohtavuusmittauksessa,

kenttatesti Kivetyn alueen kairanreiassa KR6B. PRG-Tec Oy. Espoo,

TVO/Paikkatutkimusprojekti, Tyoraportti PATU-93-03. 23 p.

21 Rouhiainen, P., 1995. Testimittaukset virtausmittauslaitteistolla Eurajoen

Olkiluodossa, kairanreika KR6. PRG-Tec Oy. Espoo,

TVO/Paikkatutkimusprojekti, Tyoraportti PATU-94-25. 19 p.

22 Rouhiainen, P., 1996. Difference flow measurements at the Kivetty site in

Aanekoski, boreholes KR1-KR3, KR5, KR8 and KR9. PRG-Tec Oy. Espoo,

POSIVA/Site Investigation Project, Work report PATU-95-36e. 24 p.

23 Anttila, P. (ed.), Paulamaki, S., Lindberg, A., Paananen, M., Koistinen, T., Front,

K. & Pitkanen, P., 1992. The geology of the Kivetty area, summary report.

Helsinki, Nuclear Waste Comissions of Finnish Power Companies, Report YJT-

92-07. 40 p.

24 Saksa, P. (ed.), Paulamaki, S., Paananen, M, Anttila, P., Ahokas, H., Front, K.,

Pitkanen, P., Korkealaakso, J. & Okko, O., 1992. Kivetyn alueen kalliopera-

malli, yhteenveto. TVO/Paikkatutkimukset, Tyoraportti 92-61. 101 p.

25 Anttila, P. (ed.), Paulamaki, S., Lindberg, A., Paananen, M., Pitkanen, P., Front,

K. & Karki, A., 1990. The geology of the Romuvaara area, summary report.

Helsinki, Nuclear Waste Comissions of Finnish Power Companies, Report YJT-

90-21. 42 p.

26 Saksa, P. (ed.), Paananen, M., Paulamaki, S., Anttila, P., Ahokas, H., Pitkanen,

P., Front, K. & Vaittinen, T., 1992. Bedrock model of the Romuvaara area,

summary report. TVO/Site investigations, Work report 92-06. 97 p.

27 Paulamaki, S., 1988. Konginkankaan Kivetyn kivilaji-ja rakokartoitus. Espoo,

Geologian tutkimuskeskus, Ydinjatteiden sijoitustutkimukset.

TVO/Paikkatutkimukset, Tyoraportti 88-61. 69 p.

28 Suomen Malmi Oy, 1988b. Syvakairaus KI-KR1 Konginkankaan Kivetyssa

1988. Espoo, Suomen Malmi Oy. TVO/Paikkatutkimukset, Tyoraportti 88-30.

17 p.

76

Page 83: Comparison of 3-D geological and geophysical investigation

29 Paulamäki, S., 1987. Kuhmon Romuvaaran kivilaji-ja rakokartoitus. Espoo,

Geologian tutkimuskeskus, Ydinj ätteiden sijoitustutkimukset.

TVO/Paikkatutkimukset, Työraportti 87-24. 40 p.

30 Melamed, A. & Front, K., 1995. Hydraulically conductive fractures in

boreholes KR1, KR2, KR3, KR5, KR8 and KR9 at Kivetty, Äänekoski. Espoo,

VTT Communities and Infrastructure Rock and Environmental Engineering.

TVO/Site Investigation Project, Work report PATU-95-61e. 48 p.

31 Melamed, A. & Front, K., 1995. Hydraulically conductive fractures in

boreholes KR3, KR4, KR7, KR8 and KR9 at Romuvaara, Kuhmo. Espoo, VTT

Communities and Infrastructure Rock and Environmental Engineering.

TVO/Site Investigation Project, Work report PATU-95-41e. 33 p.

32 Saksa, P., 1996. Dipmeter and core log depth comparisons. Fintact,

memorandum FT-11.1.1996-PATU-Dipmeter & core depths, job no. 32A. 4 p.

33 Paillet, F., L. & Kunsoo, K. Character and Distribution of Borehole

Breakouts and Their Relationship to in Situ Stresses in Deep Columbia River

basalts. Journal of Geophysical Research 92 (1987) B7, p. 6223-6234.

34 Parkkinen, J., 1992. Geomatematiikka. Espoo, TKK, Materiaali-ja

kalliotekniikan laitos, Opetusjulkaisu TKK-IGE C 15. p. 45-46.

35 Milton, J. S. & Arnold, J. C. 1990. Introduction to Probability and Statistics.

Principles and Applications for Engineering and the Computing Sciences.

McGraw-Hill, Inc, second edition, p. 157-160.

77

Page 84: Comparison of 3-D geological and geophysical investigation

Appendices

1 All fractures detected by core analysis, borehole-TV, dipmeter and televiewer in

KI-KR1.

Abbreviations:

Av/TaVTaHa/TaMu/TaSa/Ti=open/filled/slickenside/grainy/clayey/tight fracture.

Rpl = slightly weathered. * = core fracture list updated 1995. Borehole-TV,

dipmeter and televiewer depths typed in bold style are used in the length

correction. All abbreviations of the rock types have been explained in Chapter

3.2.1.

2 All fractures detected by core analysis, borehole-TV, dipmeter and televiewer in

R0-KR3.

Abbreviations:

Av/TaVTaHa/TaMu/TaSa/Ti/TiHa=open/filled/slickenside/grainy/clayey/tight/

tight slickenside fracture. Rpl = slightly weathered. * = core fracture list

updated 1995. # = depths of fractures corrected 1996. Borehole-TV and dipmeter

depths typed in bold style are used in the length correction. All abbreviations of

the rock types have been explained in Chapter 3.2.2.

3 Hydraulic conductivities and core fracture data by 2 m depths intervals /30/

compared with borehole-TV fracture data in KI-KR1.

4 Hydraulic conductivities and core fracture data by 2 m depths intervals /31/

compared with borehole-TV fracture data in R0-KR3.

5 The borehole-TV image plot (1:10) at 347.569-351.581 m of the borehole RO-

KR3 /8/.

6 Section of dipmeter resistivity data at 45-52 m and 334-353 m of the borehole

RO-KR3 in a scale of 1:100 /12, length corrected afterwards/.

7 Section of televiewer travel-time image and amplitude image at 348-352 m of

the borehole RO-KR3 in a scale of 1:10 /18/.

8 Section of interpreted televiewer data at 348-352 m of the borehole RO-KR3 in

scale of 1:10 /18/.

78

Page 85: Comparison of 3-D geological and geophysical investigation

The borehole-TV image plot (1:25) at 311.011-321.024 m of the borehole RO-

KR3/8/.

79

Page 86: Comparison of 3-D geological and geophysical investigation

Appendix! (1/41)

Cor*

frwttun

serial no

1

2

1

4

5

6

1

8

9

10

11

1213U

15

16

IT

18

19

20

21

22

23

24

25

26

21

28

29

30

31

32

33

34

35

36

37

31

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

6]

64

65

66

67

Condeplh

(ml4014

40 17

40.22

40 38

40 41

40 41

40 42

40 42

4045

40 46

4047

40.51

40.52

40.53

40 56

40 56

40.67

407

4071

40.72

40.74

40 77

40 78

40 92

4093

4107

4108

41 II

4137

4166

41.6S

41 87

42.11

42.11-12.10

42.21

4246

4261

4394

4423

4453

44 64

44.W

45

4506

4308

45.13

45 16

45 18

45 19

45.2

452

45.21

45.73

4576

459

45.95

4596

46 05

46.16

46.29

4632

4637

46 43

466

46 62

46 69

4675

46 77

COTt

fncliype(jon)T16O

TiHaCG

Av95

Av80

Av50

Ti70

Ti40

Ti40

Av30

TiSO

TiSO

TlMuTO

T1MU40

TlMu90

TlMuSO

TiSO

Ti60

Av60

Ti20

TiHO

Ti70

AV60

TlMu70

T16O

Ti 10

Ti25

Av30

Av40

TJH175

AV 15

TiSO

TiO5

TI80

AvIS

T1S»8S

Ti20

Tl60

Av21)

T I H J S O

TJMuSO

Ti30Av20

TiSO

Av30

TiSO

T|3O

Av35

Avl5

Ti 15

Ti2S

Ti 10

TJMu65

Ti30

TlOO

T|35

T.25

Av 15

TIM116S

T|85

TtHa45

TlMu65

Ti95

Av55

TiSO

Av65

TiSO

TinuiTS

Condir.rf

dipf)

3069

2169

351.9

369

225.9

214,9

24t4

2439

2214

549

171.9

639

729

414

144 9

369

111

2304

1089

999

234 9

504

2169

459

459

225 9

414

342 9

2214

243.9

207.9

41 4

414

819

189 9

O r ,

dip

f)

43.2

882

47.7

74.7

162

2.7

16.2

29.7

56.7

2.7

297

11.7

52.2

27

657

I I

197

2.7

47.7

522

25 2

18

7.2

70.2

2.7

72

7.2

657

7.2

162

2.7

27

74.7

79.2

56.7

C»Tt

•pccUl

Rpl

TV

deplt

m)

40 149

40 394

40 567

40.763

40 95

41.392

41.667

TV

dir. oT

dipC)

266

IT

342

31

217

45

166

C o n tou ML 0.07 si (Mesa, rcuoaj)

43413

44 187

44 579

45.703

45983

46 112

260

204

92

221

271

27

TV

dip

O

56

85

43

79

14

90

32

15

6

54

15

7

73

TV

•pen.

(mm)

2

2

2

4

1

4

2

]

5

1

3

4

4

Dipm.

dcptli

(ml

41.428

41.589

4244

43.245

41.629

43 961

U.199

4 ! 135

45332

45577

45.977

46 113

4657

Dips .

dir. of

dipC)

12B

166

276

1

88

296

1

10

31

75

31

28

346

D i p . .

dip

C)

776

697

I

13.3

647

429

654

73 t

618

74 1

753

77 1

28 1

TW

dcptt

(m)

45 13

T *

dir. oT

dipC)

3 !«

TW

dip

O

Mi

Rock

POROR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

80

Page 87: Comparison of 3-D geological and geophysical investigation

s = S 3 S S S S £ S » S

Page 88: Comparison of 3-D geological and geophysical investigation

Appendix 1 (3/41)

129

nois:132

133

134

I3S

136

137

1)5

139

140

141

142

143

144

145

146

U 7

141

149

ISO

1SI

152

153

1S4

1S5

ISA

157

158

159

160

161

162

163

164

165

166

167

161

169

170

171

172

173

174

175

176

177

171

179

180

181

182

183

184

18S

I K

187

IBS

67.36

67 79

67.94

68 27

6831

6833

6834

68 45

68 49

69 08

69.45

69 47

69 48

69.59

70.12

71.22

7325

73 31

73 92

74 74

78.65

79.06

79.65

79.66

80.M

80.57

1109

119

81 93

1214

85 54

86.78

8619

87.03

87.27

87.55

87.72

87.83

(845

1903

8907

89.87

9 1 4

9144

9161

9171

9193

92 07

92 19

9224

92 32

92 37

92 74

93.25

93 56

9381

93 84

94 05

9407-94.11

944!

94 43

IV SO-

TITO

TlMuS5

T. 15

T»Ha90

Av90

AvIS

Ti 15

Ti35

Ti25

«v70-

T, 80

•vSO*

•v65 •

T|4O

Ti35

Ti IS

T I ! 5

Ti20

Ti IS

TISO

TiOO

TilO

TilS

Ti20uoo-Av25

Av30

Ti30

Ti60

TiSO

Ti90

AvSO

Ti30

AvIS

Ti90

TiO5

TiOO

Ti 10

TilO

Av6S

Ti45

Ti70

Ti 15

AvIS

Av70

Ti30

TiTO

TiSS

TIMuSO

Tl90

T. 30

T18O

T|2O

TlmuSS

TiOO

Ti45

TkMutO

Ti 100

Av70

2358

208.8

2011

281

1818

172.8

42.3

348.3

3258

3528

11.7

T.2

20.7

11.7

27

27

117

74.7

74.7

74 7

67.824

71616

73 879

74.69

77.124

78 963

80 975

81.781

83.457

85.387

87.177

S7.5S5

18.889

91.271

92 132

93 029

93 879

93 929

215

230

212

213

244

11

334

253

101

237

9

339

120

97

12

15

9

11

Core lou tot. 0.05 n (fractured rock)

core loss

core loss

94 07 66

88

5

7

9

13

IS

26

16

68

13

88

7

14

22

83

61

88

80

63

3

4

7

6

5

5

1

5

0

2

4

2

2

3

3

4

1

11

1

67.10

67.32

67.71

67.90

68 42

68.81

69 61

71.11

71.34

73.5S

7439

76.93

71.83

7942

79 46

7991

80.96

81.77

•5.50

87.32

87.76

8144

89.02

89.19

9043

90.63

91.42

91.68

9193

92.29

93 26

94 14

354

222

41

51

31

40

70

>6

52

274

200

271

22

45

47

52

322

353

287

192

360

141

123

I3S

210

72

105

225

182

14

S3

201

75 5

86

79

18.9

9.2

795

4.2

6 4

73

3 6

10.3

57

22 9

7.9

7.8

187

215

96

101

883

222

3

12.3

64

269

38 1

40.6

« S

12.4

87 6

20.6

89.5

66 714

66 923

70 728

72 964

73 778

76 241

78.042

78.632

85 86!

86.290

87357

87 447

91274

91 403

92.567

93 023

93.066

93 279

93 314

340

190

193

130

123

168

36

105

4

353

289

117

353

303

115

355

351

351

34S

7 1 2

8 8 2

7 8

9 4

9 8

16.9

47 8

21,3

85.3

86 7

65 3

12 4

79.7

691

SO 8

123

755

82 3

78

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

82

Page 89: Comparison of 3-D geological and geophysical investigation

Appendix 1 (4/41)

119

190

191

192

193

194

195

196

197

198

199

200

201

202

20]

204

205

206

207

201

209

210

211

212

213

214

213

216

217

211

219

220

221

222

223

224

225

226

227

22S

229

230

231

232

23]

234

23J

236

237

231

239

240

241

242

243

244

245

246

247

248

249

250

251

9451

9548

95.5

95.51

95.59

95.6

9567

95.61

95 68

95,77

9591

95 92

95 94

95 97

96 27

9655

96 72

96 87

969

9704

97 11

97 18

97.32

97.37

97 64

97.1

913

9131

9131

9162

91.65

9S7

98.73

98.S5

99. IS

99.36

99.57

9967

100 13

100.3

100 31

102,47

103.27

103 79

104.23

10447

104.54

IO4.«6 •

104.97"

105.51 •

105.64 •

106.87

108 16

108 18

10S3S

09 95

103

104

1044

1052

1054

1056

110 51

TiSO

Ti90

Av90

Ti70

Av90

AvM

Av90

Ti90

Av90

AvTO

Av65

Ti90

AVIS

TiSO

AvIO

Ti90

T i M

Ti65

Av3O

Ti90

Ti70

TiJO

Av35

Tl tO

Ti2S

AvSO

Ay 80

Av40

TiSO

TiOS

Tito

Ti45

AvSO

AvM

Av90

Ti75

AvIO

TiSO

TITO

TITO

TiTO

TJ TO

TlMuTO

Tl30

Ti 10

Av70

Av65

Ti90

•V65*

TiOS

Av90

Ti40

Ti20

Ti40

•V25"

T i M

TI6S

TiTO

TJMuTO

AvM

Ti75

AvSO

TlMu70

3123

3071

177.3

241.2

326.7

2.7

16.2

20,7

331.2

353.7

207

70.2

70.2

882

S7.3

53.1

641

78.3

8

69.3

69.3

73.»

95.72

96.97

97 161

9I09S

9153

99.905

100 097

03 06

03.218

04.72

0109

09479

09 742

10.087

1021

10329

10.357

32

79

33

39

36

3

132

326

338

356

301

49

79

42

149

58

347

78

61

SI

S9

89

76

79

75

SO

71

17

44

46

7S

38

49

75

5

6

2

1

2

2

2

3

3

5

3

r

9

1

6

i

2

94 48

94 96

959]

97 39

9131

9S.75

99.70

100.11

100 30

102 30

10329

10J72

105.00

106 88

108.16

108 56

109 84

110.36

110.55

309

53

46

231

77

214

253

15

3

12

223

351

2

316

22

309

136

232

2

235

17.9

869

89 5

60.9

83 6

40.5

84 1

156

67.1

84 2

M.7

7S.7

98

10.6

7.3

30

88 1

46.6

94.S40

96.291

96.772

96 SOI

97.225

97.253

97 654

99 039

99 226

102.226

102.639

103 361

103 443

103 798

103 903

103 928

105 846

107.273

109.271

109 407

109 447

109 346

109 625

109635

109 675

110 021

39

31

197

200

210

201

M3

341

335

14

MS

30S

332

46

337

336

136

60

13

319

323

206

360

306

334

184

•4

896

886

884

83.7

135

849

709

73.1

88.6

111

S4.4

72.7

15.8

64.7

656

13.9

12.1

785

69.5

676

869

854

74

84

9 1

PORGR

PORGR

PORGR

FORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

83

Page 90: Comparison of 3-D geological and geophysical investigation

Appendix 1 (5/41)

251

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

26*

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

214

215

2«6

287

2!«

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

110.58

110.62

110 65

110 75

11107

111 48

112 67

112.75

112 78

112.81

112 83

11393

116.06

116.52

116.88

117.7

117.95

119.04

119.98

120.73

120 79

120 86

1209

120 96

120 99

121.01

121.26

12145

12219

123 16

123.3

12341

123 4*

12349

125 49

126 36

128 44

129 28

129 3

130.1

130.11

1304

13045

Av30

T. 80

TIMuSO

TiSO

Ti30

Ti

• v 7 5 -

T. 30

Ti30

Av30

T I K I

T|4O

Ti90

Ti85

AvSO

TlHa65

Tl8S

Ti40

Tl85

TISO

Ti85

Av60

TlMu93

Av30

Av90

Av90

T125

AvlOO

Av90

Av75

Av95

T. 90

Ti30

Ti 30

TlOO

Ti40

Av75

Av30

Tl30

T. 40

Av30

Av6O

Tl85

111. 18-131.77

131.92

13194

13263

13303

134.03

13598

13602

13647

13681

13706

1372

137.24

Ti80

Av7S

Ti30

Ti 100

Av30

Av30

T|35

Ti 100

Tl 100

T|3O

T|85

TiSO

272.7

2547

74.7

245.7

3447

2547

2O07

3177

317.7

43.2

326.7

3357

322.2

1547

110.7

387

326.7

477

198

243

78,3

24.3

603

78.3

10.8

87.3

78.3

468

87.3

73.8

78.3

I t

73.8

468

37,8

783

Rpl

110 381

110.466

110.715

110 82!

111902

112 427

112 569

113 765

114 14

116199

116,264

117,769

118 656

119.767

120 488

120.525

121085

121668

123.167

124.057

125 279

13012

2i«

41

16

266

52

331

245

230

155

306

272

55

60

294

68

253

74

73

305

74

58

298

Con loss tat «.I4 K n t b i reams)

core Iocs

core loss

core kiss

131.173

131584

132519

132966

133622

135 196

1356

177

48

240

115

242

237

61

90

86

SO

16

47

76

15

9

55

83

11

89

56

69

38

21

64

63

74

57

50

9

69

81

14

44

14

66

33

1

1

5

«

13

3

3

3

2

4

2

2

12

5

7

13

17

5

3

17

41

2

6

2

3

19

3

11

8

110.70

i n nIII 58

11271

112.90

116 58

116 73

117.03

117.55

117.81

119.14

120.30

120 87

121.09

123.30

123.58

126.70

128.70

129.40

130.20

130 50

13199

132.93

134.08

136.13

137 24

354

280

91

338

360

30

259

232

53

68

313

348

239

196

253

IS

141

307

56

270

103

37

275

234

91

330

32

3 9

668

796

137

10.4

80.9

34.8

17.6

73.6

153

117

8.6

12.7

39.5

167

20 I

70.5

25

88

333

853

84

7.4

1.8

4.3

110.507

III6II

111 763

115.462

117 968

119.122

121016

121055

121.249

121.307

121638

121918

122187

122 423

127.462

128 155

128.969

129.271

129.281

130.526

130 744

131707

135.865

136 993

23

301

167

115

224

203

277

279

277

274

278

281

275

128

323

155

154

6

217

25

15

184

273

335

53 8

656

145

7.2

162

35 5

86.3

68 1

826

816

825

839

70.9

4.2

69.5

19 1

13.2

71.6

19 1

65.6

81.1

14.1

554

63

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORCR

PORCR

PORCR

PORGR

PORCR

PORGR

PORCR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORGR

PORCR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

GR

GR

GR

GR

GR

GR

GR

GR

GR

CR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

84

Page 91: Comparison of 3-D geological and geophysical investigation

0 0

Page 92: Comparison of 3-D geological and geophysical investigation

Appendix 1 (7/41)

375

376

377

J7»

379

310

381

382

315

314

31S

386

387

388

389

390

391

392

393

394

395

3%

397

398

399

400

401

402

403

404

403

406

407

408

409

41(1

411

412

413

414

41!

416

417

418

419

420

421

422

423

42<

42S

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

156.55

156 6

15683

156 85

156 92

156 96

157 15

1S8 39

15849

15893

160

160 1

16014

160 93

160 97

160 99

16123

161 84

16185

162

162 04

162.14

162.66

163.26

1U.90-1M.

163 96

163 91

164.16

165 09

163,47

16631

166.36

166.92

167 36

167 74

168 08

168.09

168.29

16838

1684

168 41

68.63

69 0 !

169 29

169 42

169 51

169 8

17063

170.69

170.75-1709

170.75

17091

70 92

7096

71

7101

7106

17109

171.2

171.22

171.28

71.33

713*

7144

71,45

7149

17165

17174

171 88

172

T160

TiHlSO

TIHa 15

T1H»7O

Ti20

TI60

T1HJ65

Ti60

Ti60

Ti ID

T1H»7O

TJ70

TISO

T17)

Av80

TiBO

TiSO

T. 45

Ti45

Av80

Av65

Av60

Ti 15

Av30

6

T8 70

TlHiTO

T1H165

TiSO

TiSO

Tl20

T|75

Av80

Ti20

TlOO

Ti30

T I M

TI40

TiTO

TiasT8 85

Ti 15

TlMu 95

Av85

T130

Ti65

TI60

T175

T175

Tlmu75

T1MS45

TlMu 40

Tl90

Ti40

Av40

Ti75

TiSO

Iv70*

IV 70*

TlMu 90

TlMu 50

TlMu 70

Ti80

TiSO

TiJO

T170

iv 4 5 '

T145

T|45

47,7

567

207

837

657

657

2,7

317.7

2547

322.2

263.7

333.7

335.7

61.2

3537

308.7

2.7

299 7

693

78 3

648

69 3

693

64.8

73.8

42.3

558

32 4

459

81.9

81.9

59.4

864

54.9

27.9

594

Care k s a i l

Rpl

Rpl

Rpl

13 TlMu tnatt

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

Rpl

160.565

163563

163 607

la (fnctured

167854

168113

170.26

res

171.023

171.165

17

64

nek)

237

151

220

359

110

81

75

11

86

42

87

72

74

1

1

2

1

7

2

5

1

156 79

1571!

157 24

157 40

159 17

161 13

16209

162.28

16240

162.87

163 46

164 17

166 40

168 17

168 36

170.81

171 11

171.44

31

38

349

57

41

42

180

44

36

241

236

8

31

5

43

7

21

109

69.2

66 1

63 4

694

126

61 9

22.8

654

82.2

57

199

75.4

10

524

72.7

87.8

80 1

39 7

159 636

160 858

162 637

166 903

166 951

169.382

169.456

169530

169 626

170 049

170.275

170.332

170 514

171.182

171640

358

6

352

1B6

119

11

6

346

311

20

310

11

61

7

332

649

70 3

723

87.9

88.3

825

16.9

668

48 1

846

5J9

76.4

86.3

65

52,7

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

86

Page 93: Comparison of 3-D geological and geophysical investigation

Appendix 1 (8/41)

443

444

445

446

447

44>

449

430

4S1

432

433

434

433

43«

457

4)8

439

460

461

462

46]

464

463

466

467

46>

469

470

471

472

473

474

473

476

477

47t

479

410

4«l

4(2

483

414

483

4S6

4S7

4M

4t9

490

491

492

493

494

493

496

497

498

499

500

301

302

303

304

303

306

307

508

309

310

311

312

313

172 17

172.19

172.26

172 4*

172 73

172.74

17296

173 34

173 31

173.4

173 44

173.S3

174

174.22

174 54

17473

174.13

175.53

175.55

175.51

175.37

1756

175.62

175.72

175.83

175.99

Ti35

•V55"

« v 5 0 -

Ti 55

T150

T i »

Ti65

T175

T165

AvTO

TiSO

T170

Ti55

Ti«O

T130

T1H>65

TIH16S

•v 10*

• v 7 5 -

TlJO

T16O

Ti55

TitO

Ti90

T130

T185

17601-176 1

176.01

176.10-177.

176.1

176.12

176.1)

176.14

176.15

176.15

176.2

17t22

176.25

176.I9

17O5

174.45

174.5

177.11

177.14

177.2

177.24

177 32

177.36

177.5

177 63

177.81

177.83

177.84

177.14

177.86

171.13

ITS. 14

178.7

179.12

179.16

179.4

79.42

79.43

79.47

1795

79.97

ton180.22

110 35

111.07

181 11

181.73

182.83

T160

t

TIM

TltSTitoT i U

TllS

TltS

T1I0

T175

TltO

T190

TiSO

TllS

TilO

Ti70

TitoT175

TIBS

TITO

TltO

Ti85

Ti35

Ti 55

T100

T150

TllS

« » •

Av8S

TltO

•V 80"

TltS

TllS

TltO

TI83

TltO

Ti75

TI75

TIW

Ti90

TISO

TitS

Ti20

TIHa90

AvSO

Ti20

Rpl

Rpl

Rpl

Rpl

Rpl

171.898

172.327

175 129

175.613

44Tla«lTi lnaani

SO

21

46

31

Ore tea) u c 0.56 m (fraaand rack)

Ttc *ptk> arfncBni CM tc IKIEM;

176.055

177.013

177.437

177.73

178.281

179.027

17909

7

210

43

224

W

20

159

64

61

87

89

•WiM

80

90

89

89

75

19

16

2

2

3

3

10

1

2

1

1

1

1

172.58

172 98

173.63

174 10

174.97

175.78

176.25

176.73

177.43

178.10

17841

171.97

179.46

179.71

18112

18173

34

29

SO

54

58

35

7

1

31

225

220

37

107

357

222

214

603

619

162

79.3

75.8

75.1

73.2

71.1

I t l

85.9

85.1

74.4

203

153

169

22

172.309

174.540

175.059

173.120

175-5JO

175.603

175164

175.924

176 139

176 118

176JM

176113

176 911

177.180

177.479

178030

178745

17! 1H

182 649

182.709

4

3

335

4

319

315

302

300

216

331

349

324

123

2

354

3SS

328

299

8

23

77

83.3

72.6

63.2

647

613

62.2

61 1

55 4

82.1

87.7

72.7

89.2

13 1

856

74.9

74.8

638

594

57 1

PORGR

PORCH

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORCR

PORCR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORCR

FORGR

PORGR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORGR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORCR

PORCR

PORGR

PORCR

PORGR

PORCR

87

Page 94: Comparison of 3-D geological and geophysical investigation

Appendix 1 (9/41)

514

515

516

517

Sit

519

520

521

522

52)

524

525

526

527

52S

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

SSI

559

56V

561

562

565

564

565

566

567

56«

569

570

571

572

573

574

575

576

11374

183.76

1X3 78

183 84

185 91

113 98

184 SI

185 03

18)69

1S6 15

1S6.I7

187)8

187 66

18931

189 58

190.67

19188

19234

19234

192.35

192.37

192.19

192.42

19255

192 66

192.78

19291

192.96

194.3

194.33

194.64

19<J6

199 54

19968

199 82

199,85

201.25

202 1

203 26

20424

207.31

208 62

20875

208 97

209 07

209 34

209 88

210

212.29

213 12

213.71

213.7J

213.81

214.17

21495

215 15

215.22

217.31

21826

21914

221.78

222.93

223 12

TlHiJO

TJ65

TlH>50

TJ85

Ti30

TiO5

T J 3 0

T|4O

T|2O

Ti20

Ti40

T.40

T»65

T. 20

Ti35

T|25

T.60

Ti 10

TJ90

T«H»80

TlOO

Ti75

TiTO

T. 70

TiTO

TiTO

TiTO

TlHa6S

TITO

TlHaTO

TiBO

TC10

TiHlOO

T195

TJ95

T|O5

Ti 15

Ti55

T|6O

Tl60

T1H>65

Ti 15

TitO

Ti75

Ti 10

Ti75

AvSO

TllO

T|15Ti50

Tl35

Ti40

T i »

TiJO

TiJO

TiJO

T|4O

T.20

Ti20

TIH»S5

TU5

T|7O

Ti45

306

255.6

129.6

1206

1116

1116

75.6

1206

48.6

756

1836

666

165.6

212.6

57.6

27.9

846

639

639

6 8 4

6 8 4

639

41.4

6 8 4

7 7 4

5 4 9

1 4 4

5 4 9

54.9

4 5 9

183 Oi l

183.101

187.234

192515

208.526

209 622

214.461

214.657

214.714

216 941

216956

217 139

217 785

221 125

221847

222.893

64

41

91

35

118

225

49

233

65

67

9

66

56

102

21

30

37

45

64

76

78

88

45

13

46

35

21

32

41

40

II88

4

4

11

1

7

1

2

2

2

II

1

83

3

3

17

1

183.74

183.85

113.98

IIS 10

1*7.53

191.74

19221

19342

1MJ4

205 75

207.02

20805

20855

2135]

215.28

215.81

216 67

217 50

221.78

61

35

41

195

350

123

27

22

286

229

219

78

29

346

8

10

347

15

30

4 4 4

42.7

62.J

3 1 4

6,7

674

71 3

7 1 9

8 1 4

82.7

8 4 9

45.1

43.2

39

4 4 2

30,3

44,2

69.7

»»:

182.840

184.112

184.220

191.422

191968

208.754

213.659

221.7(0

351

182

317

295

354

4

144

342

58.1

41 3

1 7 2

5 4 2

70 9

87.1

17.2

78 5

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

88

Page 95: Comparison of 3-D geological and geophysical investigation
Page 96: Comparison of 3-D geological and geophysical investigation

Appendix 1 (11/41)

631

652

653

654

655

656

657

65a

659

660

661

662

663

664

665

666

667

66S

669

670

671

672

673

674

675

676

in678

679

6*0

611

6S2

683

684

6>5

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

247 38

2*7 42

247.56

247 57

247 6

247.85

249.44

24956

24961

250.06

250 09

25031

250 32

25033

250 42

230.66

250 6»

250.7

250.78

250.94

250 98

25143

251.84

251 S3

2519

253.39

253 44

253.72

25393

25456

254.67

25543

25545

253.74

255.79

2SS.W-234U

256 04

256 SS

257.21

257.55

257.71

257.83

257.89

257.91

257 98

258 14

2582

258.22

25837

238 44

259.09

259.11

259.28

260 58

26103

ui.ii.au262.12

262.73

262.81

26283

26293

263 15

263.23

26339

263 45

263 46

264%

26532

263 9

266 13

26771

267 74

267 83

269 02

TJHjTO

Av7O

T190

TJ85

T.60

Ti90

TiSO

TJSO

T I 9 0

TJ85

T185

T. 70

TiSO

T170

TiMulOO

TitO

Ti95

Ti30

Ti65

T.70

Ti80

Av80

Av75

TJ75

Ti70

Tl40

TiSO

T175

T160

Ti30

T|4O

T1H.65

TlhaTO

T195

T l «

4

T175

Ti 15

Ti25

TilOO

T175

Ti85

Ti25

TJSO

TJ60

T8 45

Ti30

Tl90

Av80

TilO

TlHjSO

T180

T175

T160

Ti40

2

T130

TlTO

TJSO

TiSO

Ti 65

Ti 15

T140

T175

TS70

Ti70

TJ30

T150

T180

TI70

Ti75

Ti30

Ti20

Ti90

CmlonioH

core lost

Conlonut.il

250.214

250.504

252.912

252976

253.473

253653

AT • (fnctor

260.198

260.658

IKaMttctoL

261699

262938

263 723

265323

267 274

267 326

268 466

21

123

97

128

139

277

«lrock)

71

233

nral77

23

93

340

SO

68

84

63

53

28

47

87

54

20

30

12

50

76

50

30

27

2

2

1

2

6

1

8

1

9

2

10

3

2

4

6

248.37

248 76

24991

25175

253.44

254,07

2S6.2O

257 12

26065

261.36

263 61

264.02

66

23

34

42

44

28

21

48

12

238

344

38

86.8

75.

81.7

855

77 1

75.6

385

855

824

38 1

73.6

60 7

261.539 350 762

PORGK

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

90

Page 97: Comparison of 3-D geological and geophysical investigation

Appendix 1 (12/41)

T23

T24

T25

726

727

721

729

730

731

732

733

734

73S

736

737

73S

739

740

741

742

743

744

745

746

747

741

749

750

751

752

753

754

755

756

757

751

759

760

761

762

763

764

765

766

767

761

769

770

771

772

773

774

TJ5

776

777

77S

779

710

711

712

713

714

713

716

717

7SS

719

790

791

792

793

794

795

796

797

269 07

269 16

270.03

271.26

271.27

271 S3

272,3

272.6

272.62

272.67

272.69

272.7

272.75

272.J

272.94

272.99

27301

273.26

273.45

2736

273.J

27391

273.95

275.13

275.16

276.25

276.32

276.34

276.45

276.52

276 71

277.01

277.94

277.94

2T1.O4

271.23

271.24

271.31

271.1

271.11

27».2t

279.36

279.75

279.9

27991

279 91

280 11

210 34

280 4

21041

280 47

2(0.5

2*0.51

210.63

2W.6S

280 67

2*067

280 73

21012

212 91

213 51

284 21

284 45

284 7

284 9

285 45

215.56

285 84

286 13

286 16

286 46

2165

216 99

288 04

288 JI

T190

TIK)

T1I0

TITO

TltO

Ti35

Ti 100

TBU70

TltO

TIHlTO

TiTO

TI65

TI60

TI55TI60

T, 00

TitO

T170

TtHl90

T. 90

Ti70

TITO

T190

T i »

T,65

Ti90

TITO

T175

Ti95

TITO

TITO

T i »

Ti40

TITO

Ti30

TiW

Ti70

TIH170

Ti 100

Ti70

TI75

TilS

TilO

Ti70

TITO

TiTO

TI20

TI70

TitsTI75TI30TI30TI30TI30TIJOT I M

TI30TI30T I W

TIH»40Tl55Ti95T|9OTI95TI90Ti50AvIOTi90TI95TltSTITSTitSTi20TIHaTO

TIKI

292.5

27

76.5

II

0

11

72

76.5

40.5

67.5

269613

270.15

272.226

273 143

273.111

275.116

275.111

276 641

27671

271.029

279.641

279 666

210 061

210 193

282 676

215.571

286 295

287 944

288 198

112

349

316

149

269

344

233

171

its

341

27

II

97

95

90

279

141

0

21

31

71

7t

74

13

77

20

61

It

72

76

28

37

31

47

26

66

47

49

10

2

1

2

2

2

3

12

1

1

1

9

4

3

3

269.1

27039

271.32

27174

273.2t

273.41

2T3.74

275.10

276.26

277.11

277.20

277.55

2T7.t5

271.40

282 7!

213.53

284 52

285 90

216.32

216 61

345

266

152

1ST

332

145

357

347

39

45

224

14

35

301

30

150

354

22

207

65

445

TT.5

19.1

134

79.2

H i

73.1

71.1

70.2

139

12

•2 1

88 1

74

•2 3

61

61.9

t5.T

111

269.397

271.446

276510

216.174

315

It

311

346

63.9

113

61

54.6

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

91

Page 98: Comparison of 3-D geological and geophysical investigation

Appendix 1 (13/41)

798

799

toi

so:103

•04

SOS

106

«07

101

S09

110

III

112

113

814

815

116

117

t i l

819

120

121

122

»23

124

825

S26

827

>2>

S29

130

131

132

S3]

134

135

836

137

131

139

S40

141

142

S43

S44

S45

S46

»47

848

149

•SO

•SI

IS2

853

S54

sssSS6

157

151

859

860

861

862

863

864

86S

866

8137

868

869

870

28838

2U.69

28197

291.22

291.23

292.14

293 17

293.31

293.43

29345

29433

29431

295.15

295.27

295.47

296.11

29641

296 46

296.87

297.47

298 08

29883

299 16

299 18

299 36

302.02

30266

302.76

302.92

303.2

303.34

304.01

3044

305 01

3052

305 23

305.73

305 78

30683

3OSI

308 26

310.02

31018

31193

311 95

312.54

31373

313.87

3139

314 26

31448

314 49

314.69

314 8

31484

31486

314.96

315 09

315 1

315 23

31545

315.54

315 63

31564

315 65

316.39

3164

316 42

31704

3! 70S

31706

31731

31792

T135

TISO

T|4O

TJ75

TJ75

T i »

Ti 80

Til5

T170

T170

Ti90

T16O

T|3O

T16O

Ti65

Ti 10

TIHaSS

TIHaSO

Ti60

TiSO

Ti 10

TlHa70

TlSS

TI80

TiTO

T160

Tl 10

Ti20

T)«0

TilO

TiTO

TISO

TI70

Ti70

T180

TiSO

TITO

TiSO

Ti90

TISO

T1HJ35

TITO

Ti95

T170

TI7J

Ti90

Ti9S

Ti90

Tl90

TiSO

TiSO

Ti60

TI7U

Ti70

T|7O

Ti65

TIH»7O

Ti70

TlHjTO

TiSO

Ti20

TiS5

TilO

TitO

T180

TISO

TltO

TltO

T170

TITO

TI65

TilO

Ti60

355!

0

351

351

40.5

40.5

112.5

495

3195

2565

324

274.5

23.4

4S

76.5

76.5

76.5

72

72

72

765

63

405

6T.5

495

76.5

291,977

294.191

296.224

296 726

298 667

299,041

306758

307 096

311.841

314 967

313.082

31S.5I2

316.275

316.979

317.207

I3S

137

222

134

134

32

0

77

35

47

138

40

i n

39

38

67

47

89

57

62

IS

•9

75

84

85

47

87

4<

78

85

2

3

2

3

2

3

I

7

2

3

3

2

3

1

1

289.20

291 47

294.55

297.27

30102

302.10

303.61

303.78

310.1

312.80

313.29

313 72

314.39

31526

315 49

224

34

225

226

39

42

10

352

32

8

SO

222

43

33

32

873

879

848

87 1

869

77.4

457

659

81.7

678

836

SO

864

85.6

89.3

290 734

291 621

297 370

301 092

310.100

313.206

313.260

315 195

315 435

190

358

353

350

357

5

II

14

1

44.2

82 3

778

78.3

78.2

83

• 3 5

853

79 9

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

92

Page 99: Comparison of 3-D geological and geophysical investigation

Appendix 1 (14/41)

171

«72

S73

S74

175

(76

S77

S7I

(79

HO

mB82

K ]

SS4

MS

886

H7

<nm(90

191

192

19]

«M

(95

(96

(97

89S

199

900

901

902

903

904

905

906

907

901

909

910

911

912

913

914

9IS

916

917

91S

919

930

921

922

923

924

925

926

927

928

929

no931

932

933

934

935

936

937

938

939

31119

320 15

32095

320 96

32191

312.3

32414

325.29

325.3

325 36

325.41

325 44

325.49

3256

325 62

325 63

325 76

325 7(

325.79

32603

326 OS

326 «

3266

326 81

326.14

327 62

327.76

321.16

32(23

329 14

330.13

33109

332.17

332.19

332.61

3343

336 21

336 S(

33614

37.(2

337,((

37.96

337 99

33101

331.29

33132

33(33

33(4

33(55

331.75

38 76

39 02

39 14

393

39 49

39 66

39 67

3391

339.92

340.91

Ml 38

342.15

342.(9

34414

344.32

47.J4

34111

34(49

48 59

Ti 10

TJ75

TS(O

TJ95

Ti70

TilO

TIW

Ti60

TiS5

TI60

TiTO

U W

U 9 0 *

Ti6O

T170

TJ6C

Ti60

TiTO

TI70

TITO

TiTO

TI90

TltS

T19J

TUUI3

T170

TiH>IO

Ti70

T i n

Ti40

TUH 75

TiOO

TITO

TI75

TI75

TiSO

TI90

TilO

Ti 15

TI75

TI30

TI25

TI90

T i nTITO

TilS

Ti20

TIHlTO

TilO

TITS

TITS

TIW

TI93

TI9S

TI90

TIIS

TII5

T i nT i nT i n

T.4O

T190

Ti60

TiSO

TiSO

Ti25

TIW

TiW

Ti35

144

144

302.4

347.4

3314

14.4

1 9

3S64

3319

494

549

774

76.5

76.5

72

62 1

66.6

75.6

80 1

736

756

7S.6

396

396

319 014

320 074

321.2(5

325.756

325.126

327.5(1

331967

332 668

336.571

337199

331453

338 SOI

33(103

341.203

62

35

222

349

209

MS

(1

21

139

36

340

31

163

42

II

15

45

TO

(1

76

64

(4

66

15

75

(3

(7

SI

1

2

5

2

1

4

4

1

1

1

2

2

2

2

318)1

319 14

323 06

323(7

32412

325 18

32593

329.14

1X.U

Ul.t9

336 24

336 44

336 73

336(1

337.11

338.31

31

316

42

38

56

234

4

36

43

30

36

44

355

359

40

38

16

71.6

12.3

( 1 9

47.7

80 5

70 1

(4.3

(5

( 3 9

(0.1

(2.3

61 1

66 1

(2.9

13.6

311265

323 630

323.729

323 991

325OK

325 751

325,770

JJ0.U

131.09

336 253

336 321

336421

336157

337.197

33(213

33(372

3

192

19

356

192

3IS

319

327

349

20

6

IS

314

4

5

9

( 0 6

S69

$6 5

( 4 1

89 2

60.6

397

66.4

77.3

12.1

793

(6.6

627

81.6

( 5 4

( 7 «

POROR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

POROR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORGR

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

93

Page 100: Comparison of 3-D geological and geophysical investigation

Appendix 1 (15/41)

9 4 0

941

942

9 4 ]

944

945

9 4 6

947

948

949

9 5 0

951

952

953

954

9 5 5

956

957

95«

959

960

961

962

963

9 6 4

965

9 6 6

9 6 7

9 6 *

9 6 9

9 7 0

9 7 !

972

973

974

975

976

977

978

979

980

981

912

9S3

<m9S5

986

9»7

9 M

9S9

9 9 0

991

992

993

994

995

996

9 9 7

9 9 1

999

1000

1001

1002

1003

1004

1005

1006

1007

IOO«

1009

1010

1011

1012

1013

34S96

34923

34924

349.26

3493

349 79

350 42

35298

353.11

353 13

354 16

354 It

354 59

354 85

354.86

355.07

355.09

355.12

35605

35606

356.33

356 46

356 51

356.62

357. \i

357.48

357.54

357.57

359.11

359 12

359.35

3598

360.45

36205

362.16

36233

362.51

362.74

364.2

365.26

366.05

366.35

366.42

366 64

367 22

367 66

3677

3685

368.6

368.65

368 BS

3689

370 9

372.01

373.51

373.54

373 79

37408

376.81

377.5

378.49

378.96

379.14

379,16

379 18

379.22

380.09

380.14

3818

382 55

382 78 •

38339

383 79

384.35

Ti30

Ti50

Ti55

Ti55

T16O

Ti40

Ti70

TI80

TiSO

TiS5

T180

TISO

T|3O

T|8O

TiSO

T, 80

TIM

Ti 1O0

T|7O

Ti70

Ti60

T180

T8 60

T i W

Ti6O

TiTO

TiTO

TISO

TI80

TiSO

TiSO

T I 6 0

TiSO

T I 6 0

TiSO

TilO

Ti20

TJ70

TiSO

TJ20

TiTO

TiTO

Ti 100

Ti70

Ti 10

TISO

TI95

T170

Ti»5

TiW

T|75TitoT i «

T185

TJ40T16O

TiSO

TJ40

Ti20

TtSO

Ti60

Ti60

Ti20

TI95

TJ90

T120

T1S5

T150

Tl60

Ti60

U '

T|6O

Ti80Av70

36.9

347 4

347 4

293 4

23 4

77,4

2934

297 9

356.4

59.4

2394

320 4

347 4

71,1

71.1

71.1

62 1

71.1

216

576

57.6

71 1

53.1

26 1

75 6

71.1

353 151

354 177

354 866

359,158

359406

364 229

368.52!

372491

374 116

374.364

378.122

381746

314

341

309

345

31

281

105

94

76

78

t9

58

58

79

73

78

60

31

76

87

63

55

47

70

2

2

20

2

7

2

2

1

2

2

3

12

352.57

353.27

357.53

3*9.45

37182

372.38

376 94

377 08

382,07

343

314

349

30

54

59

324

316

230

79.8

70.2

73.8

83.8

836

8 2 8

74.4

753

8 9 9

351 471

352575

353.282

357 330

152

310

268

310

75 9

66 1

545

6 4 4

PORGR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

POB.GR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

94

Page 101: Comparison of 3-D geological and geophysical investigation
Page 102: Comparison of 3-D geological and geophysical investigation

Appendix 1 (17/41)

1090

1091

1092

109}

1094

1095

10%

1097

109*

10»

1100

110]

1102

1103

1104

1105

1106

1107

urn1109

Illu

m i1112

nn1114

1115

1116

1117

1111

1119

1120

1121

1122

1121

1124

1125

1126

1127

i m1129

1130

11)1

U32

1133

1134

1135

1136

1137

1I3S

1139

1140

1141

1142

1143

1144

1145

1146

1147

I14<

1149

l l »

1151

1152

1153

1154

1155

1156

1157

1151

1159

1160

1161

1162

1163

1164

400 55

400 56

400.56

400 58

4005940063

400 64

400 66

400 67

400 7

400 72

40076

4O0II

400.82

4009

400.93

402.26

402.7

403 11

403.15

403 56

40357

403 66

403.67

403.12

403.95

404 13

405.2

405.39

40555

408 17

410.02

410 18

412.25

414

416.25

416.92

416 96

419 39

•419.7

421.13

422 51

411.6*

424 II

424. IS

42455

425 11

425,17

425 4

426.47

426 81

426 91

427 14

427.17

427 24

427.3

428.47

429 15

429 42

4296

429.63

429 66

430 06

430 26

430 44

430 59

430 77

430.92

430 93

431.54

43189

43194

432.1

43357

434 99

TiSO

T>30

Ti25

TiSO

Ti70

TISO

T18O

TJ50

T|4O

T|7O

Ti65

TITO

T|7O

TiSO

TiSO

T|95

Ti95TiS5

TI60TI75T»85Ti«5Ti60Ti65TiM

Ti95TI20TISOTISOAvIO

T120Ti40Tl30Ti70T135

Ti60Ti60Ti20TiSOTi40Ti40Ti30Ti20Ti70TIS5

TISO

Tl30

TiTO

T|4O

Tl60

T»65TJ80

T|6O

T. 70

T|75

Ti65

T.40TISOT»65TJ65T165T>70Ti75TiTO

TiSO

T170

Ti 100

TISOT|95T i »

TJHi»5Ti95T175TASO

TJ95

549

324

2034

275 4

2664

270 9

414

23.4

594

1 4 4

144

239.4

35 1

53 1

62.1

66.6

65.7

61.2

52.2

432

43.2

70.2

8 3 7

612

Rpl

405 218

405.3S4

406 963

408859

409 987

413.966

415.21

419.375

419709

424 192

424.59

426427

426 811

426924

427 173

46

109

318

317

31

46

69

43

87

254

295

206

25

352

104

27

76

67

68

62

51

49

65

43

87

67

44

77

70

72

10

4

3

4

2

8

3

5

1

2

4

2

1

!

3

40104

401 54

41*90

42504

429 04

430.02

434 17

119

25

31

17

317

164

36

7 4 3

692

69 7

57.7

67

65.8

6 5 6

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

96

Page 103: Comparison of 3-D geological and geophysical investigation

Appendix 1 (18/41)

1165

1166

1167

1161

1169

1170

1171

1172

1175

1174

1175

1176

1177

117$

1179

IIW

Mil

1112

1113

1IS4

us;] ISA

l i t?

nn

1119

IIW

1191

1192

1193

1194

1193

1196

1197

un1199

1200

1201

1202

1203

1204

120)

1206

1207

1201

1209

1210

1211

1212

1213

1214

121)

1216

1217

I2K

1219

1220

1221

1222

1223

1224

122S

1226

1227

43575

43601

436 09

436.23

436 72

43616

437.3!

138

438.12

43817

438)

43194

439 44

439 56

44235

442.33

443.76

444 9S

445 03

44639

4*6 t5

446 19

447.6

41109

451.29

451,74

45175

TilOO

T170

Ti20

TilOO

Ti90

Ti70

T160

Ti95

TJ50

T«55

Ti95

Ti40

T150

TIM

Ti20

TJ30

Ti»5

TISO

TIW

Ti50

TIW

Til)T135TI20

TlHllOT175Ti75

45IJfr.tS2.45

4S1.M

4S1.»

452.63

432.69

433.1

453.14

453.21

453.34

453.39

453.56

454.64

454 99

455

45533

435 42

435 52

433.36

435 99

457.26

457 49

457 49

457.74

457 «4

437.16

437.99

31

5«11

45S.2

459.U

39.46

59.5

59.51

59.77

59.(1

59 85

599

Ti75Til!

T l »

TIM

Ti7O

TiTO

T190

Ti55

Til5

T i «

TI95

TI75

T175

Ti40

TiTO

TiTO

Ti9O

T160

TiTO

TIIS

TITO

TIJ!Ti40TilO

TiTO

Ti75

Ti55

T16O

Ti60

Ti70

T16O

Ti60

Ti40

T. 100

TITO

TISO

349

549

194.4

329.4

3294

3294

324.9

639

204

2.4

111

612

70.2

117

T0.2

657

T0.2

70.2

43.2

T0.2

4T.T

47.7

436.034

439.996

446.564

447.54

451.224

29

42

20S

35

121

71

61

15

51

75

Cm >m HL t i n (Kduied r r a n )

The dcptha <T fraclBras taa be iacarrect

core Ion 452.357

1)2 7*6

434.711

453.021

453 613

436 021

456231

436 901

437.575

459 »97

310

2S9

297

22

42

30

100

11

311

92

73

74

79

16

12

69

3

27

77

67

4

12

3

IS

6

1

61

2

1

95

43546

437 41

437 72

43113

44304

44S

449.33

449.12

430.45

450.76

453 11

434.09

455.62

15)87

43601

157 63

457.95

431 IT

45936

27

275

28

57

3

359

131

346

324

31

22

41

307

11

27

17

122

331

U

74.5

13.7

15

516

67

61.7

709

70.3

696

19 1

H i

70.1

70.1

SSI

654

4 9 1

TO

53.2

13

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

97

Page 104: Comparison of 3-D geological and geophysical investigation

Appendix 1 (19/41)

1221

1229

1230

1231

1232

1233

1234

1235

1236

1237

1231

1239

1240

1241

1242

1243

1244

124S

1246

1247

I24«

1249

1250

12SI

1232

1253

1234

1255

1256

1257

1251

1259

1260

1261

126!

1263

1264

1265

1266

1267

1261

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

I2S0

1281

1282

1213

1214

12S5

1286

I2S7

1258

1289

1290

1291

1292

1293

1294

1295

12%

1297

129!

1299

1300

1301

1302

1303

1304

1305

46001

460 03

461.19

46143

461 48

461 SI

46196

462 14

462.21

462.]

462 64

462 94

463 22

463 44

463 65

46312

46384

463.S9

46391

46395

464.02

464 05

464.07

464 1!

464.21

464.26

46431

464 34

464.38

464.44

464.53

464 56

464 58

464.58

464 59

46465

464.67

464 69

464.69

465.05

465 08

465.64

466.13

46616

446 25

46629

466 36

466 37

466.4

46642

46642

46647

466 4»

46652

466.54

46655

466 59

466.72

46692

467.17

467.19

467.51

46802

468 32

468.33

46838

468.39

468 44

468 48

46852

4686

468 78

46187

468.89

469.02

469 04

469 07

469,11

TJ 80

TJ80

TlKi

Ti75

Ti80

Ti40

TJ60

TiTO

T.65

Tl65

Ti65

TUS

Ti85

Ti40

Ti35

T185

TttO

Ti45

T190

TJTO

T I 8 5

T185

TISO

TI55

TI75

T«85

Tito

TISO

T180

T16S

T140

T195

TJ90

Ti60

TIM

T130

Tl85

Tl95

T.9O

Ti95

TITO

TJ55

T. 70

T195

TI75

Tit5

T190

TJ90

T135

Ti85

Ti85

Tl80

T4 8O

TlHa75

TI65

T170

Titl)

TltO

TJ5S

TI8S

Ti20

T»50

Ti55

T|55

Ti55

TiSO

T|5O

T|9O

TiSO

Tl70

TiJO

T16S

Tl60

T|6O

Ti95

Ti60

TiSO

Ti65

864

41 4

J69

774

79.2

477

387

83 7

462083

462.852

463.275

465.062

7

85

122

318

55

42

77

63

1

15

2

2

460.11

460 79

461.55

462 16

463 10

46361

464.27

464.50

464 97

465.24

466.04

467.43

467 72

23

337

40

324

328

13

322

286

343

324

41

333

31

43.2

56.8

32 4

633

38.7

447

249

111

45 1

66.8

583

56 1

69

GRDR

CRDR

GRDR

GRDR

GRDB

GRDR

CRDR

CRDR

GRDR

CRDR

CRDR

CRDR

GRDR

GRDR

CRDR

GRDR

CRDR

GRDR

GRDR

CRDR

CRDR

CRDR

GRDR

GRDR

GRDR

GRDR

CRDR

GRDR

CRDR

GRDR

CRDR

CRDR

CRDR

GRDR

GRDR

GRDR

GRDR

CRDR

CRDR

GRDR

CRDR

CRDR

GRDR

GRDR

GRDR

GRDR

GRDR

CRDR

CRDR

GRDR

CRDR

GRDR

GRDR

GROT

GRDR

CRDR

CRDR

GRDR

GRDR

GRDR

GRDR

GRDR

CRDR

GRDR

GRDR

CRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

CRDR

98

Page 105: Comparison of 3-D geological and geophysical investigation

Appendix 1 (20/41)

1306

1307

1308

1309

1310

1311

1312

1313

1314

1)15

1316

1317

1318

1319

1320

1321

1322

1323

1324

132J

1326

1327

1321

1329

1330

1331

1332

1333

1334

133J

1336

1337

1331

1339

1340

1341

1342

1343

1344

1343

1346

1347

1341

1349

1390

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1371

1379

469 41

46967

469 72

47012

47013

470 13

470.2*

470.62

470 65

473 13

476 31

477 16

477.2

47741

47t.ll

410 12

480 18

410 27

41011

41017

410 96

4SI0>

41148

WIS4

413 66

485 14

413 32

485 49

485 54

419.7

490.3

490.37

490.41

490 5

490.61

4 9 0 U

491

492.33

493.06

494.01

494.15

494.19

494.42

494.5

494.6

494.72

497.57

497.S»

499.05

499.57

499.51

499.91

500.87

502.02

502.18

502.21

502.22

502.78

50449

504.5

504.77

504.71

504.11

504 16

504 17

504.94

505.14

5052

505.23

JO5J5

SOS32

505.37

505 38

505.39

TJ75

Ti60

Ti70

T1365

TJ70

TJ70

Ti60

TilS

Ti90

TitO

Ti60

Ti65

T165

Ti30

Ti5S

T195

T110O

Ti55

Tt63

T170

T. 60

TlHlJO

T8 60

Ti70

T8 60

T. 60

Ti45

Ti«O

Ti50

Ti30

TiSO

Ti90

Ti75

TIH.60

TI50

T155

Ti70

TiSO

TiTO

Tl90

Ti60

TiTO

AY 65

T120

Ti55

Ti50

Ti60

Ti65

T155

Ti60

Ti55

TITO

Ti60

Ti60

Ti60

Ti60

T16O

Ti30

T1H.90

T185

T150

TiSO

TI45

TI45

T. 40

TiSO

TiTO

TiSO

TitO

AvT5

T170

T8 60

Ti75

TilOO

16.4

131.4

414

1314

369

1044

311.4

19 8

312.3

9 8

333

98

32.3

32.3

9 8

5.3

5 3

71.3

7t.3

161

65.7

47 7

612

747

56.7

79.2

567

43.2

52.2

612

47.7

61.2

74.7

702

56.7

52.2

47.7

2.2

65.7

56.7

4«3.757

492 385

493 137

494 26

500.011

504 661

504.924

504.971

33

24

346

113

111

40

21

3

61

61

61

66

65

to

59

57

2

5

1

3

5

1

1

47U1

479.03

48149

48166

415 99

488 20

490.22

490.96

492.M

494 05

503 15

303.32

504.42

504.71

346

48

113

39

29

13

34

2

4]

46

11

2

29

13

603

53 8

149

54.3

71.5

7t.7

77.4

488

71.3

12.6

73.3

74.1

• 1.7

149

CRDR

GRDR

CRDR

GRDR

CRDR

GRDR

CRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

99

Page 106: Comparison of 3-D geological and geophysical investigation

Appendix 1 (21/41)

1380

1311

us:1383

1)U

1385

1386

1317

US!

1389

1390

1391

1392

1393

1394

1395

1396

1397

139S

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1411

1419

1420

1421

1422

1421

1424

1425

1426

1427

142S

1429

1430

1431

1432

1433

1434

1435

143*

1437

14)8

1439

1440

1441

1442

1443

1444

1445

1446

1447

1441

1449

1450

1451

1452

505 97

50601

T|7O

T16S

506 14-506"

506.1

30O5

M4.42

507 68

507 69

507 7

50823

50145

512 08

SIS 1

516.04

516.71

51689

517.09

517.1

51712

517.16

517.23

517.24

517.29

Ti 100

T»7!

T>90

Ti20

TiSO

Ti 40

T|4O

TISO

Ti50

Ti70

Ti55

T150

TJ30

Ti35

Ta30

T130

Tl20

Ti55

TilS

Tl40

517JO-S1LI9

S 17.31

517.19

518.24

518.32

519.67

519.79

51997

520.41

520.42

520.43

520.55

520.79

520 94

520.95

521.36

52345

523 47

523.89

524 54

524.56

524.64

524 78

524.S2

524.96

525 06

525 07

525.2

5254

525 75

526.02

526 11

52671

528.12

528.29

528.32

528 34

52835

52838

528 4

528.79

528 94

528 96

52904

529 11

529 15

529 28

52942

529 78

530.08

530 09

530 34

Ti40

TiJO

Ti60

TS60

TiSS

T|2O

Ti65

T140

T|5O

T120

Ti35

Ti70

TasoTiM

T145

Ti85

Ti50

T. 60

Tl30

T140

T. 85

Ti30

Tl40

TI60

TiSO

T145

T140

T.90

TISO

T150

T140

TJ45

Ti40

T185

TllO

Ti30

TI 10

TiO5

T10S

TSha40

TJ45

T1HJ4O

Tl30

T|4O

TlHl30

T|7O

TJH130

TlHi30

T|4O

Ti40

TJ35

2628

267.3

198

963

60.3

25.2

16.2

47.7

65.7

117

Core IMS M. 0.30 • (tccfcn. rvuoas)

Tke depths of frecttrcs e n be iacornd

50637 45

C«T loo toe. 8.11 a(lcct». l u a i )

517.396

521.497

523 6

524789

525 099

525 525

93

31

91

315

29

135

82

23

67

42

79

70

78

2

4

2

2

4

1

1

509.80

515,79

51596

516 19

516 96

518.27

51947

519.92

52047

524.30

525.05

525.37

527.84

528.21

52837

52862

528 90

!29 25

52985

214

51

38

79

41

89

27

57

43

219

37

21

63

36

39

71

19

72

27

845

43

35

275

516

71,2

615

74.5

569

859

811

77.9

216

43 6

55.2

)67

65.2

319

57.2

PORGR0R

PORGKDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGKDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

100

Page 107: Comparison of 3-D geological and geophysical investigation

Appendix 1 (22/41)

1433

1134

1433

I4K

1437

143S

1439

1460

1461

1462

14(3

1464

1463

1466

1467

I46S

1469

1470

1471

1472

1473

1474

1473

1476

1477

1478

1479

14*0

I4tl

I4t2

1413

14(4

1485

14<6

1487

I t U

1419

1490

1491

1492

1493

1494

1493

1496

1497

1498

1499

1300

1301

1302

1503

1304

1303

1306

1307

1508

1309

1310

1311

1312

131]

1314

1313

1316

1317

13K

1319

1320

1321

1322

1323

1324

1325

1326

1327

I32S

1329

1530

530 36

3304

S3IO4

53109

531.1

53121

531.39

531.3

331U

53193

332.01

332 1

33212

332 16

5322

532.23

532.24

532.32

53235

532.42

332.31

532.58

332.6

532.61

532.72

532.73

532.76

532.9

332.92

333.07

33329

533.35

533.4

33342

53394

53391

534 23

53461

534 69

534.71

53502

535 1

535.3

535.11

535 82

33591

53593

53597

535W

536 13

33662

536.12

336 99

537.17

537.19

53763

537.67

537.69

537 71

537 72

537.73

537 76

33711

537 IS

537 95

537.97

538 0]

531.03

538 14

53119

531.21

33123

T140

TISO

T130

Ti40

Ti60

TI40

Ti35

T14O

TiSO

T140

T160

T140

Ti20

Av60

TJ65

T155

TilO

AvSO

AvSO

TJ50

TJ55

Tl40

T140

TISO

T I K

TilO

TiSO

Tl40

TI45

TiSO

T1H.45

T«40

TiSO

TiSO

T160

Ti 10

TiM

TIM

TI6S

TITO

TI6S

TJ55

T160

T140

TISO

T1H»4S

T130

TISO

Ti95

TISO

Ti35

TI30

TiTO

T170

TiSO

TISO

Ti45

TI35

TilS

TilS

Ti45

T140

T1HI60

T130

TilO

TIHa30

TilS

T183

T185

TISO

TIM

Tito

538 26-53816

538 21

531.26

531.36

53837

33139

5384

TltO

TI

Tl

TIIO

Ti75

TilO

25.2

353.7

25.2

92.7

11.7

97.2

92.7

31.7

387

47.7

55.S

603

693

693

530.511

531 152

531231

332446

332.924

334 163

335434

•4fiKlunscnslKsl

84

133

IOS

27

18

99

33

60

71

61

38

60

68

60

2

2

2

4

3

4

2

330 41

33151

53172

53188

532.00

53240

532.70

533 16

53369

53396

534.41

53410

535 00

535 60

53571

53519

53694

537.32

538.29

36

74

64

88

61

19

73

72

330

295

88

103

25

16

25

20

74

5]

35

48.1

88 6

344

42.3

344

70S

68.4

81.4

582

46.7

80 5

663

73.3

65

65.8

56.4

82.7

61.2

15 2

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

101

Page 108: Comparison of 3-D geological and geophysical investigation

Appendix 1 (23/41)

1531

1532

153!

1534

1535

ISM

1537

IS3I

1539

1540

1541

IS42

1543

1544

1545

1546

1547

1548

1549

ISM

1551

1552

1553

1554

1555

1556

\S51

15SS

1559

1540

1561

1562

1563

1564

1565

1566

1567

156<

1569

1570

1571

1572

1573

1574

157S

1576

1577

157»

1579

1510

1511

1512

15S3

ISS4

I5S5

1586

1587

1588

15S9

1590

159]

1592

1593

1594

1595

1596

1597

53«48

S3S5

53859

53871

538 76

53883

S31.92-5J9.

SM.9S

531.97

531.0}

»».«

S39.M

S39.W

S3J.I1

5J9.1J

539. It

S».2I

539.13

SM.U

5».»

S39JS

S3»J*-S3».7

539 J*

539.77

539 77

539 12

53915

S19B

541

54133

54161

541.71

541.74

541.77

542.25

54246

543.09

54435

546 14

547.06

547.22

547,31

547.37

547 62

547 68

54778

547 79

5412

54125

mil

54J.33

54141

54889

548 97

549 05

549 55

55167

55195

552.31

55235

554.01-554.4

354 42

554 48

556.35

557 9

559 96

560 06

560.15

560.3

561 26

T130

T.20

TJ45

T>65

T|65

TJ15

7

TlOO

TJ55

T145

T i »

TIMu25

Tuna 75

T8 20

T180

TI45

TJOO

Ti4O

T, 40

Ti35

TJ20

7

T145

T145

T150

TJ40

Ti20

T160

Ti»>

TJ40

T. 40

T16O

T160

T15O

Ti!5

Ti50

T130

TIH16S

Ti65

Ti75

T16O

TiOO

TlHltO

TI90

Ti35

TiOO

Ti40

T.20

Ti55

TI70

T140

Tl50

T»30

TlOO

TIH135

Ti60

T i »

TI30T8 60

TJ30

0

T170

Ti30

Ti90

Ti70

Ti25

Ti65

T170

T|75

TlHi75

1062

25.2

2.7

358.2

24.3

33.3

28 S

288

Cere lots m. 0J5 • (frBctartd rock)

The depth* affractarvscu be iacorrci

2-4 fncturcs en

a n loss

Core km IM- 0

539 195

ishod

539.763

539.867

540015

547 436

547 868

24 m (lecha.

36

16

59

43

139

61

II • • • ! )

1

6!

69

SI

59

75

24

2

10

2

6

3

1

5)8 80

53955

539 8«

HUM

54154

5426S

543«O

54539

546.51

546 89

547.23

547 35

550.92

55301

SS7.J0

559 03

559.12

559.63

56

101

40

3

343

SI

104

92

141

63

103

104

64

36

121

11

140

10

76.2

39.5

666

3»3

32.9

60.9

72.7

77.5

7 6 7

47.2

28.3

26.3

22.2

74.3

77.7

854

636

892

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

102

Page 109: Comparison of 3-D geological and geophysical investigation

Appendix 1 (24/41)

an• 399

1600

1601

1602

140)

1604

1605

1606

1607

1601

1609

1610

1611

1612

161}

16U

1613

1616

1617

1611

1619

1620

1621

1622

162}

1624

1623

1626

1627

162S

1629

1630

1631

1632

1633

1634

163]

1636

1637

1631

1639

1640

1641

1642

1643

1644

1643

1646

1647

1641

1649

1630

1631

1632

1633

1634

1633

1636

1657

1631

1639

1660

1661

1662

1663

1664

1665

1666

1667

166S

36142

361.S4

36116

56189

562

562 09

562.12

363.96

565 65

366.31

56154

36155

56158

361.39

36901

369 0}

56903

56911

569.12

573 01

573.1

376.1

37135

S7«.57

571.61

31149

511.55

Si 156

511.61

51161

3117

511.77

512 03

512.13

312.2

312.23

5123

51241

51252

312.65

512.61

512.12

314 92

314.93

514 96

sun

511.11

511.14

5U.97

311.99

319.9

590.02

590.03

392.65

592.12

594.14

594.24

594.99

593.01

59513

596.44

597 1

60233

602 44

602 41

604.14

604 49

606.73

607.93

60143

6016]

T15S

TiSO

TlMulO

TI70

TIIO

T, 15

Ti70

Ti65

T130

Tl60

Ti60

Ti40

TiTO

Ti65

TiSO

TiSO

TiSO

Ti65

TITO

Ti60

T140

TIM

TlOO

TiOO

TlOO

TiSO

Ti90

Ti60

T175

Ti30

TiTO

TiSO

TiSO

TIIO

AvTO

Ti90

TI35

Ti90

TIHa40

TiSO

Ti70

Ti90

TI70

TI30

TI60

TI35

Ti«O

T150

TI60

Ti60

TJIO

T130

TI35

TITO

TiSO

TIHaSO

TilO

T16O

T160

TiTO

Ti90

Ti93

Ti35

Ti40

Ti75Tl60

TI35

Ti90

Ti40

TIIO

T16S

79.2

1062

7.2

110.7

106.2

117

74.7

124.2

106.2

124.2

124.2

432

211

551

693

19.1

73.8

693

21.1

60.3

42.3

31.3

51.3

21.1

SK

361.937

565.692

573.129

576,156

511.664

511.913

512.221

51242

$19 73

390DO9

592 715

594.506

596.362

607.19

601372

608 563

7

n

5596

31

249

16

30

95

74

132

19

90

61

SI

74

17

39

53

39

14

41

32

•6

29

40

71

17

55

45

40

69

1

11

3

IS

2

3

9

2

7

62

1

0

10

1

10

13

36313

564 01

566.35

567.55

573.93

579.37

57916

31003

51267

51*64

516.12

517 69

39213

60176

114

130

113

17

117

121

41

145

69

55

114

US

102

97

342

71.1

7t.9

73.5

41.7

57.4

•6

10.2

77.7

32.1

64 1

72.4

77.4

71.3

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORCRDR

103

Page 110: Comparison of 3-D geological and geophysical investigation

Appendix 1 (25/41)

1669

1670

1671

167!

1675

1674

1675

1676

1677

1671

1679

16S0

I6SI

I6S2

16S3

I6S4

1615

16<6

16<7

16SS

1619

1690

1691

1692

1693

1694

169!

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

170>

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

I72S

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

609.79

610 II

610 56

61058

6106

610 65

61019

61094

611 07

611 17

611 47

61536

616 16

617 38

617.11

617.92

6186

619.01

622.04

624.65

62495

625 85

626 39

62125

6288

628.92

628 99

62*43

63045

630.96

631.13

631 15

63125

63201

633,78

63725

63885

6396

640 16

640 38

640 9

640.93

641 13

641 14

641.33

64154

642.33

64237

642.81

643 86

643.96

644.21

644.62

64467

644.74

644 85

64487

644 93

645 17

645 38

645.47-446.

64547

445.57

646.07

446.M

446 26

64639

646.4

646.53

64674

646 97

646 99

647 34

647 36

64712

Ti60

T. 95

Tl40

Ti40

T|95

Tl40

Ti95

T16O

TJ70

Ti90

T|75

Ti85

T145

Ti70

TITO

Ti90

TI45

T. 00

T160

T140

Ti25

T»30

T160

Ti65

TiSO

Tl55

Ti75

Ti55

TIM

T i »

T. 85

T18O

TiTO

Ti8O

Ti90

T175

Ti6O

TlTO

Ti35

Tl20

Ti90

Ti80

TJ70

Ti«5

TiSO

T175

TiSO

T I «

TI75

Tl90

TlTO

Tl»5

Ti30

T130

T l »

Ti95

Ti90

T195

Ti 100

Ti85

3

T.85

Tl95

Tl95

T190

T i «

T|9O

T|9O

Tl90

T195

Tp95

Ti 15

T»55

Ti90

T|9!

106.2

1062

125 1

314 1

981

89 1

71.1

1106

1026M.I

936

89.1

1881

1476

278 1

278 1

551

603

73.1

64.8

73.8

648

378

10.8

73.8

693

738

614

59.4

369

549

729

610.576

616052

6 7.669

642.413

644 767

55

39

71

57

52

Can km lot #.06 • (ucta. reaaooj

The depths of fracMreseu be jacorre

core loss

60

52

T9

50

46

1

3

13

13

2

2

63509

63193

639.32

639.76

645.86

646.27

64648

64747

647.82

127

138

140

94

123

53

I6B

20

9

834

773

656

667

39.4

70

528

79

829

PORGRDR

PORCRDR

PORGRDR

PORCRDR

PORGRDR

PORCRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORCR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

104

Page 111: Comparison of 3-D geological and geophysical investigation

Appendix 1 (26/41)

174]

1744

1745

1746

1747

1741

1749

1750

1751

1752

1753

1754

1755

1756

1757

I75«

1759

1760

1761

1762

176)

1764

1765

1766

1767

1768

1769

1770

1771

1771

1773

1774

1775

1776

1777

177»

1779

17W

17<l

1712

1713

1784

1715

1786

I7«7

I7U

17»9

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1100

1101

1102

IS03

IS04

1805

1M6

1107

not1109

1(10

1SI1

1112

1«U

1114

647 95

64(17

648.25

648 44

648.48

648 56

648 6)

64865

649.21

649.25

64939

649 6

649 97

649 99

650

65O0S

650.3

650 34

65041

650.64

650 68

652.24

652.26

653 48

653.24

653.65

65373

653.75

653.86

653.89

654 03

654.04

654.26

654.31

654.31

654 41

654*6

654.49

654.93

655 03

655.69

656.62

65667

65671

659.2

660.34

660.44

660.52

660.54

660 56

660 88

66134

661.59

661.64

662.22

662.41

664.34

665.61

665.88

666.05

666.3

666.31

66653

667.05

667.14

667.3

66743

667.73

669 29

671 11

671.14

673 38

TJ50

Ti90

Tl«O

T13O

Ti80

Tl 10

TJ90

T120

T130

Ti85

T135

TJteTi90

T1»O

T i n

TIMuTO

T140

Ti40

TI90

TI70

T135

Tl70

TiSO

Ti9O

Ti20

TlMuW

Ti90

Ti90

Ti90

Tl90

T150

T130

Tit!T120Ti30T160TI60TIW

TI20T I M

TI70

Tl60Ti90Ti60

Ti75T160T135T140Ti60TiTO

TI70

Ti3O

TiTO

Ti55

TJ55

T135

T1I5

TITO

T130

Ti95

TilOC

Ti90

T195

Ti75

T135

T14O

TiSS

Ti95

Ti90

T120

T120

T»95

846

53 1

44 1

35 1

35.1

26 1

126

305.1

305.1

359 1

278.1

72.9

72.9

36.9

41.4

414

27.9

27.9

684

8.9

459

549

654 196

654 505

664.396

668.311

186

50

56

86

69

87

36

1

4

648.32

648.51

65702

658.16

658.40

660.24

662.22

66509

671.36

671.73

672.96

] U

105

103

68

54

67

6

258

206

194

199

46

57.8

69.7

39

62

53.5

88.3

8 6

82.2

85.2

81.2

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

105

Page 112: Comparison of 3-D geological and geophysical investigation

Appendix 1 (27/41)

1813

1116

1117

1818

1819

1820

1S2I

1822

1823

1824

1SIJ

1S26

1827

1828

1129

1830

1831

1832

1833

1834

1835

1136

1837

1838

1839

1840

1«41

l<42

1843

1S44

1845

1846

1B47

I M S

1S49

1830

1151

1852

1853

l>54

1855

1SS6

1S57

1858

1159

1S6U

1861

1862

1863

1864

1865

1866

1867

1868

1869

l«70

1871

1«72

1873

1874

1875

1176

1877

187S

1«79

1880

1SSI

1SS2

1883

1884

1885

673 79

67452

674,87

674.99

677 62

677 7

68021

680 31

68035

68037

68042

650 43

680,85

680.97

68101

6S1.33

681 38

68142

681.43

681 43

68146

68146

68147

681.5

681.55

681 58

68166

681 74

68184

681 89

68201

682 04

6822

682.58

683.97

686 22

6868

687.42

687.44

687.53

687.55

687 57

687 59

687 64

687 75

688.09

688.32

68849

69146

69167

691 68

69177

691.77

69193

691.95

69103

6925

692.52

6928

69292

69293

69294

693 25

693.26

69326

693 41

693 41

694.28

69527

695 93

696 11

T195

T|65

Ti90

T19U

Ti 90

TiB5

Ti80

Ti80

Ti20

T,1S

Ti SO

Ti95

T18O

Tl30

T«50

Ti20

T. 90

Ti30

Ti85

Ti30

TiSO

Ti20

Ti20

TI70

TJ20

TS20

T|7O

Ti60

TiSO

TJIO

T16O

TI 10

TI60

T|8O

TJ70

TiSO

Tl60

Ti75

Ti75

Ti65

T|95

Ti20

Ti20

T|7O

T|7O

Ti95

T. 35

T160

TllOO

Ti 100

T18O

T16O

T U 5

TiBO

TiSO

Ti75

Ti60

T|7O

T|7O

TiSO

TiSO

TiSO

T I 2 0

T|9O

TISO

T|9O

Ti90

Tl80

TJ70

TJ70

TiOO

273 6

35 1

278 1

314.1

179 1

179 1

359 1

359 1

9 3 6

228.6

107.1

57.6

71 1

89 1

59 4

6 8 4

6 3 9

68.4

54 9

5 0 4

6 8 4

7 2 9

5 9 4

5 4

54.9

72,9

5 9 4

594

673 608

674097

681.467

684 301

693.312

694.592

695.422

IS4

184

358

64

170

32

3

! 7

85

84

46

90

69

62

1

1

1

3

2

229

13

678.27

679.58

680 33

68178

6U.97

685 49

68613

690.92

69124

692 96

69524

102

67

84

106

5

10

349

355

32

118

18

27.3

73.8

56.3

74 6

70.6

60.5

52

4 9 8

754

7 0 5

4 8 5

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORCR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORCR

PORGR

PORCR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORCR

PORGR

PORCR

PORGR

PORGR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

106

Page 113: Comparison of 3-D geological and geophysical investigation

Appendix 1 (28/41)

1S86

1M7

IMS

1X9

1190

1191

1192

1893

1194

1195

1196

1191

1191

1<99

1900

1901

1902

190}

1904

1905

1906

1907

1901

1909

1910

1911

1912

1913

1914

1915

1916

1917

191t

1919

1920

1921

1922

192)

1924

1925

1926

1927

I92S

1929

1930

1931

1932

1933

1934

1935

1936

1937

1931

1939

1940

1941

1942

1943

1944

1945

1946

1947

IMS

1949

1950

1951

1952

1953

697 41

697 44

69771

69141

699.07

699 36

700 13

700 95

70103

70143

702.32

70236

703 07

703.(4

704.51

704.54

705.43

705.44

706.32

709 79

709.92

711.29

711.34

712.01

712.03

715.21

715.57

719.77

720 07

72141

725.59

725 63

725.71

725.12

725 96

726.26

726.27

726.33

727.12

727.15

727.49

727.91

731.51

7317

731.76

7326

733.97

734 1

734.38

734.47

73449

73562

735 64

737.52

737.65

737.7

739.13

73917

73991

73992

740.31

74031

7404!

741.32

4144

41.56

42.22

42.22

T1S5

T»«0

Ti75

Ti»0

T120

Ti90

T105

Ti70

Ti40

T175

TltO

T, 65

TilS

TllS

T175

Ti«5

Tl90

T1«O

TilS

Til5T130

T160TITO

TI40Ti50

Ti40Ti25T16O

Ti75

T i K

TiO5

Ti30

T|55

TinTII5

T U 5

TiOO

T1I5

Ti»O

Ti«5

Ti95

T»75

TI40

Ti 30

T»30

Ti40

TllO

Ti)O

Tl20

TlJO

Ti 15

TIM

TlJO

Ti20

TI65

TilS

Ti20

Ti 15

Ti20

TilS

T130

TiSO

Ti20

Ti90

Ti65

TiSO

Ti60

T»IO

351

441

125 1

S.l

306

134.1

233.1

1476

125 1

92.6

119

774

639

234

504

594

72.9

614

639

0.9

697.392

699 425

700 62

703947

706376

707.706

710.541

711365

711.373

712.712

719103

72009

721.477

725.596

725.935

726.335

727.324

740 411

742.2>1

347

73

322

354

142

130

lot100136

41

312

312317

91

3

353

35

0

52

M

n

36

16

75

61

55

59

72

25

57

67

71

9

40

11

21

47

46

1

0

5

1

1

2

2

2

4

12

4

5

4

4

13

3

4

20

45

700.11

70165

70231

703 25

723.45

723.W

723.91

724.34

725.64

734 99

735.21

737.20

737 93

73911

741.43

104

17

5

21

20

342

7

211

19

92

U

19

29

39

131

113

1 1 )

67.6

H 6

19

•6.2

S3 6

17.2

131

464

661

40.4

5 7 t

655

74.5

PORCR

PORCR

PORGR

POROR

PORCR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

107

Page 114: Comparison of 3-D geological and geophysical investigation

Appendix 1 (29/41)

1954

1955

1956

1957

I95S

1959

I960

1961

1962

1963

1964

1965

1966

1967

196S

1969

1970

1971

1972

197)

1974

1975

1976

1977

197S

1979

1980

19SI

19S2

1913

1984

1985

1986

19S7

i « a

1989

1990

1991

1992

1W3

1994

1995

1996

1997

199S

1999

2000

2001

2002

2003

2004

2005

2006

2007

200*

2009

2010

2011

2012

2013

2014

2019

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

74226

742.3«

742-64

742-92

743.24

743.54

743 81

744 01

744 .87

745 14

74562

746.69

74675

747 11

747 25

74837

749.13

749.14

749.26

749.3

749 98

75002

750.44

750.48

750.55

750 64

75105

751.17

751.2

751.24

751.27

751.38

75141

7S149

751.5

751.67

75174

751.79

75181

751.82

751.86

75187

75188

751,91

751.94

75195

751.97

752.04

752 06

752.1

752.15

75232

75238

752.39

752.49

752.66

752.79

752.86

753.01

753 07

753 18

753.24

753.31

753.31

753.35

753.78

753.84

754.39

75453

756.35

756 82

757.12

757.24

757.34

757 56

758.13

TlMu45

TJ15

TJ90

Tl!5

Ti70

Ti65

Taso

T195

T i W

T120

T1H1S5

Ti30

Ti55

Ti80

Taso

T«15

Ti55

TiSO

Ti85

T150

T150

TITO

TITO

T150

Ti55

TJ55

Ti70

TI60TI75

T130

T18O

Ti55

Ti65

Ti65

TJ75

TJSO

TiSO

TiTO

TI45

Ti35

T»TO

TITO

T165

TIMu 50

T»60

T170

T120

T18O

TJ90

T>15

TlHj40

T170

TiTO

T160

Ti60

T|7O

T.70

Tl90

TJ70

TI30TISO

TJ30

T130

TJ30

T|2O

TilO

T. 95

Ti35

TiO5

T.K

TUU70

T|6O

T»75

T T 6 0

T I 4 5

T. 20

107.1

93 6

143 1

8 0 1

17 1

8 1

89 1

111-6

102.6

9 3 6

44 1

120.6

89 1

93.6

1026

134 1

4 0 5

9

585

4.5

76.5

76 5

49.5

40.!

45

63

67.5

31.5

54

54

40.5

4 9 5

742 302

744 824

745.199

745.616

746.743

751.941

752.1B9

753.873

754.199

754.276

757 126

52

244

205

0

51

69

55

64

73

64

211

47

84

9

84

47

70

40

32

56

60

36

1

2

2

1

4

14

1

14

40

48

1

743 14

744 75

746.65

747.59

747 90

749 45

750.58

750.79

751.33

754.29

754 73

757 61

758 19

5

356

39

97

32

109

49

81

108

1

9

17

3

12 1

80 1

62.2

80.3

44.3

70 8

79 1

57.4

39 1

7 7 9

71

87.2

85

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

MY

MY

MY

MY

MY

M Y

M Y

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

MY

MY

MY

M Y

M Y

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

M Y

M Y

MY

MY

MY

M Y

M Y

PORCRDR

PORGRDR

108

Page 115: Comparison of 3-D geological and geophysical investigation

Appendix 1 (30/41)

2030

2011

2032

2033

2034

2035

2036

2037

2O3S

2039

2040

2W1

2042

2043

2044

2043

1046

2047

2041

2049

2050

2051

2052

2053

2034

2055

2056

2057

2O5J

2059

2050

2061

2062

2063

2064

2065

2066

2067

2O6S

2069

2070

2071

2072

2073

2074

2075

2076

2077

2071

2079

2010

2081

2012

2OS3

2014

2085

2016

2017

20M

2019

2090

2091

2092

2093

2094

2095

2096

2097

2091

2099

2100

2101

2102

2103

2104

75*24

760 16

760 23

7604

760,67

762.38

762.7

763.03

7630*

763 65

76375

764.02

765.1

765.27

765.32

765 34

7654

765.44

766 05

7662

766.29

7663

76674

76611

766 93

7669*

767.04

767.3$

767.41

767 76

767.77

7«7.94

767 96

761.33

761.42

76152

761.56

761.61

76S.I

76812

76**7

769.03

769.63

76? 68

769(1

769.92

770.45

770.65

770.75

770.75

770.8

770.M

770.91

771.05

771.2

771.24

771.91

772.1

772.23

772.62

772.7*

772.79

772.9

773 16

773.41

773.42

773.62

773.6*

773.75

773 76

773.76

773.77

773.7*

773.86

773J7

Ti05

TJ«0

Ti90

T190

T1100

T I B

T125

Ti95

T i »

Ti20

TiW

Ti90

Ti95

Ti20

T135

TI3S

Tl40

Ti30

Ti6O

Ti60

T»H>70

T8 70

Ti45

T l »

TITO

Ti60

TiTO

T140

Ti30

Tl75

TITO

Ti(O

T13S

Tito

Ti45

Ti63

T14S

TiTO

Ti40

Ti70

Ti65

TiSO

TiTO

Ti55

T155

TiTO

Ti75

TiTO

TiTO

T160

TJ75

TITO

TltO

T175

TIH16O

TIHiTO

TITO

TITO

TiTO

TiS5

Ti65

Ti65

Ti55

Ti55

TI10

Ti25

T1H160

T|4O

TI60

TI60

Ti60

TI60

Ti65

TiH.30

T190

17.1

I I

•0 1

26 1

26.1

8.1

21.6

7.1

354.6

576

30.6

3546

3.6

3.6

7.1

1.6

1.6

26.1

7.1

59 1

21.6

7.1

67.5

63

45

54

49.5

67.5

675

67.5

63

36

63

5*5

76.5

63

765

67.5

67.5

72

54

63

5*5

5*5

760.669

766.27

76**04

770.14*

770 909

771.276

352

8

355

31

352

21

S3

76

67

»7

67

88

2

3

2

759*3

763 71

764.76

765 1*

765.41

765,99

766 20

767.24

76*03

76162

76*74

76967

770.21

770.37

7T0.S*

770.77

771.06

771.21

771.44

77169

772.13

773.6*

44

34

*2

246

46

35

59

46

8

21

203

13

36

21

34

17

337

342

•5

326

239

1*2

52.1

59

63 1

88 J

63.5

7 3 *

693

*46

*43

87.7

15 1

33.6

5».7

12

62.7

6*6

61.2

65.9

56.9

31.5

356

44 8

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

109

Page 116: Comparison of 3-D geological and geophysical investigation

Appendix 1 (31/41)

2105

2106

2107

2108

2109

2110

2111

2112

211?

2114

2115

2116

2117

2I1S

2119

2120

2121

2122

2125

2124

2125

2126

2127

2121

2129

2130

2131

2132

2133

2134

2135

2136

2137

2131

2139

2140

2141

2142

2143

214J

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2I5«

2159

2160

2161

2162

2163

2164

2165

2166

2167

2I6>

2169

2170

2171

2172

2173

2174

217$

2176

21T7

773.17

773 M

773 89

TO 9

T180

T1I0

TJ85

TJ50

773 91-774.00

773 91

774

774 02

774.02

77405

77408

774 09

77424

77426

774.27

77429

774 41

774.5

774.69

775.11

775.22

775.39

775.4

775.7

775.36

776 47

77649

776 65

776.65

776 7

776.89

77715

777.47

777.57

777.5*

771.1

778.71

779.13

779.5

779.61

77971

779,72

779 72

77991

7JO.5

780 51

780.31

780 67

780 7

780 78

7808

781.26

78119

782.38

782.39

782.39

7S3.13

783.47

783.63

713 79

784.03

784.05

786.81

787 06

787 0«

787.08

7*7.11

7»7 4

787 51

787 77

787 97

787 99

784.25

788 36

T145

T145

TI95

TJ95

Tl 10

T175

T135

TitO

T105

Tl»O

Ti90

T|75

Ti90

T16O

TJ50

T130

Ti70

Ti65

Ti95

Ti70

TiSO

T170

Tl»5T i M

TiSO

T190

TiSO

T I 8 0

T16O

T.95

TI95

T120

TJ85

Tl90

TISO

T170

T170

Ti 100

T1B0

TltO

T I W

Tito

TiSO

TIHaSO

TiSO

Ti45

T|7O

Ti30

TiSO

TI80

TI75

T180

T185

Ti95

TISO

T|95

TiSO

Ti60

T170

TISO

TISO

TIHa55

TiSS

Ti60

Ti55

TiSO

Tl»O

Tl90

T145

2 1 6

224.1

251.1

17.1

S I

350 1

340.2

97.2

331.2

16.2

71.1

S7.6

53.1

71.1

75.6

75.6

S3 1

62.1

71.1

57.6

2-6 T l fnaurcs crushed

773.914

773.942

776.554

778,733

779553

779 682

780.641

782.355

783.512

788301

27

15

242

115

51

65

208

35

209

61

46

65

86

32

90

85

87

89

61

56

2

1

8

4

4

14

13

5

7

7

777 30

778 30

779 70

781.27

783 69

784 11

7S4.38

7«5.3l

785.70

785.99

786.38

787 90

172

225

232

154

49

336

16

131

68

36

26

23

5 4 2

363

7S.2

7 0 6

89

72.1

89

51.7

7S

5 8 5

66.2

63 1

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

MY

M Y

MY

MY

M Y

M Y

M Y

M Y

M Y

M Y

M Y

M Y

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

PORGRDR

PORGRDR

PORGKDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

110

Page 117: Comparison of 3-D geological and geophysical investigation

Appendix 1 (32/41)

2I7<

2179

21S0

2111

21S2

21S3

2IW

2I>5

2186

21S7

21SS

2IS9

2190

2191

2192

2193

2194

2195

2196

2197

2191

2199

2200

2201

2202

2203

2204

2205

2206

2207

220>

2209

2210

2211

2212

2213

2214

2213

2216

2217

221>

2219

2220

2221

2222

2223

2224

2223

2226

2227

2221

2229

2230

2231

2232

2233

2234

2235

2236

2237

223S

2239

2240

2241

2242

2243

78S.S6

7SI6

T D M

789.05

789.19

7894

7S9.S5

790.02

790.53

791.35

791.36

791.51

791.67

792.16

792.37

793.27

79361

794.22

7*4.28

794.51

7*5 04

797.12

797.27

7*7.28

797.29

797.31

797.32

7*7.33

797.34

797.31

797.43

797.67

797.74

7*7 89

797.91

7*7.96

791.01

7»«.0«

791.35

•0301

8O3S1

803.85

803.86

803.87

803.97

803.98

804.15

805.23

805 64

•03.9

•05 95

•08 2

tor4S808.47

808.68

81356

13.72

814.26

813.15

81536

81545

16.38

16.65

16.91

16.98

17.12

Ti 15

T150

T1H160

T1HJ65

Ti90

T8 80

Ti35

T130

TI60

T165

TiK>

Ti40

T165

Ti30

Ti75

Tl65

Ti65

TI20

TI20

TiSO

T170

TI10

T»60

T175

TI95

TI50

T»90

T»63

T155

T125

T»40

T135

TilO

TBU25

T8Hl23

Ti 15

TiSO

Ti60

T16O

TllO

TilJ

TITO

T165

T140

TI55

T»70

TiHi65

Ti55

TllO

TllO

T125

T16O

Ti*5

Ti70

TlHitO

Ti95

Ti85

TIM

Ti55Ti75'i 70

Ti95

T170

T165

T170

T»50

7.2

11.7

2.7

3402

25.2

20.7

35 1

261

30.6

17.1

35.1

359.1

3321

7.1

33.1

48.6

416

53 1

44 1

62.1

666

666

621

621

S3 1

35 1

396

53.1

57.6

7.6

791659

794.23

797.286

797.903

•02.551

•03 009

•03.825

103.951

804336

804.83

807.301

•08 182

814.176

815.249

816.894

117019

62

33

8

31

281

311

24

23

33

1

7

2

40

33

344

3

73

43

79

42

21

5

76

70

75

71

54

55

76

73

71

64

12

5

3

6

IS

2

4

7

20

788.72

792.33

794.53

796 86

800 68

801.08

801.24

•02.08

805 73

805.90

807.05

807.97

•09 38

81270

813.38

8I3SO

81*01

814 13

814.23

815.56

8I6OS

116 50

81673

81761

30

46

47

14

358

30

39

36

136

114

2

57

26

290

38

350

353

344

16

29

8

348

45

60

85 1

836

35.3

73.6

59.7

73.8

59

62.9

76.2

836

66 6

48

56.2

18.6

62.9

46.5

SO

568

69 1

486

457

663

56

61 1

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

MYMYMYMYMY

MYMYMYMYMY

MYMY

111

Page 118: Comparison of 3-D geological and geophysical investigation

Appendix 1 (33/41)

2 2 U

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2261

2269

2270

2271

227J

2273

2274

1275

2276

2277

227«

2279

2210

2211

2212

22S3

22S4

2215

2286

2287

2288

2289

2290

2291

2292

2293

2294

22»5

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

23OS

2309

J310

• 1775

(17 91

81834

11142

818.84

81896

> I 9

819.3

11932

81935

• 1957

820.51

•20.55

820 59

82061

820 65

82069

820.71

820.73

82075

820.S

820.86

82163

82173

82174

82175

82193

82261

822.62

823.22

•23.27

•23 29

123.3

823.31

82339

82343

823.43

823 44

823.47

821.30424.1

813.il

tU.<2

821.7

8U.72

123.74

8U.7S

•23.74

82J.79

•13.12

• U K

•24.9I-S25.2

824.91

•25.25

825.29

825 14

825 38

825.47

82549

825 52

825 54

82555

825 56

825.7

82574

82574

825 78

825 82

825 83

TiSO

T[90

Ti90

Ti!5

Ti40

Tl35

Ti45

T.70

TJ30

Ti40

TJ75

TJ20

TJ50

TI45

T190

Ti40

TJI5

TI90

TISO

T1I0

TI90

TI70

TJ90

Ti«5

Tl«6

Ti30

T160

T145

Ti<5

Ti55

TiSO

T145

TITO

TJ75

T155

TI45

Ti85

TI60

T160

T170

T170

TiSO

Ti40

T155

T180

T12O

TI80T145

TI80

TlM»30

5

T»45

T145

TI55

T180

TiTO

Ti IS

TiSU

TiSO

TJ85

TISU

TiSO

T. «0

Ti60

T140

Ti»5

TI60

T175

53.1

53 1

3321

6 6 6

3042

34.2

53 1

3 5 1

5 7 6

4 8 6

612

43.2

817772

119.273

120 413

•20.523

•20 788

123 261

345

331

53

13

317

34

Core Ion lot. 8.99 • (fractared rack)

The acpths of fractara c w ac iacom*

core loss

OKClOU

core loss

care loss

core loss

core loss

C a n las 0.26

•23.633

823 789

824.216

82447

824715

824 766

82483

824871

• (fiacmtii

824.944

825.154

825.645

825 731

12

41

323

344

12

74

2

326

nek)

41

164

11

15

86

61

57

55

80

62

•t

53

66

79

86

41

27

52

41

59

72

SO

1

1

2

3

1

4

2

8

4

4

1

5

2

2

4

3

2

1

817 64

817 7S

817.93

81912

•2043

S20J1

820 68

•21.24

822.20

823.12

823.94

•24 01

82449

825.03

825.2!

56

350

99

51

61

59

55

14

35

99

60

49

43

62

49

49.7

6 5 6

87,8

543

32.7

5 0 9

51.3

65.5

78.2

5 6 9

53.7

71.9

659

22.3

6 4 4

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

M Y

M Y

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

M Y

M Y

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

M Y

M Y

112

Page 119: Comparison of 3-D geological and geophysical investigation

Appendix 1 (34/41)

2311

2312

2313

2314

23IS

2316

2317

231S

2319

2320

2321

2322

2323

2321

2325

2316

2327

232S

2329

2330

2331

2332

2333

2334

233S

2336

2J37

2331

2339

2340

2341

2342

2343

2344

234]

2346

2347

2341

2349

2350

2351

2352

2353

2354

2355

2356

2357

235>

2359

2360

2361

2562

2363

23*1

2365

2366

2367

2361

2369

2370

2371

2372

2373

2374

2375

2376

2377

237»

2379

23(0

2361

23S2

23<3

2384

2315

23S6

2317

23U

825 S6

825.17

•25 88

825 89

825 93

•25 97

12601

826 05

•26 13

826 17

12621

126 31

826 33

826 39

•2642

12643

12645

126.5

126.51

12665

12668

826 76

826 8

826 82

826 84

126 86

126 88

12691

126 92

126 94

126 91

127

827 0]

127 05

827.09

127.13

•27.15

127.21

127.24

127.21

127 31

827.33

127.35

127.42

127 45

127.51

127.62

82769

827.72

827 82

827 83

27.14

27.85

27 92

27.94

27.95

27.98

28.02

28 08

2812

2815

8282

28.24

828.37

828 41

828.62

828.72

828 78

28.96

29.03

2924

2991

29 99

3169

31.74

31.82

32.11

3213

T150

T170

TJ70

TI65

TJ30

T»S5

Ti65

T170

Ti70

T17S

T17S

T180

T170

TilO

T i M

TI90

TJ40

T140

T150

T i M

U30

T130

TJ70

TI40

T130

TiMoM

Ti55

TI60

T1S0

TilO

1120

T U J

T195

T145

TJ45

Ti9S

T i M

TIKI

TIMuTO

T1S0

T185

TI90

T120

TI6O

T130

T160

Ti70

Ti30

Ti90

T1S0

T150

T160

Ti 55

T125

T170

T19S

T140

TI4S

TIMuSO

T8 45

TS80

TI95

TI60

TI75

TITO

T1MU65

TS30

TI80

T140

Ti20

TiSO

T I M

TJ3B

T I M

TIMu20

Ti85

T i M

T»70

825 96

826.001

826288

(26 429

827.068

827.259

827.658

•27.765

827.78

827.92

82801

821.313

829.155

829.194

831619

831.667

832.055

132063

79

62

21

47

21

35

35

14

52

23

45

33

313

32

7

21

30

52

47

80

78

62

S3

45

52

55

53

74

67

72

54

53

43

40

84

$7

5

1

2

2

8

7

I

2

2

8

17

2

6

826 11

•27.14

828.97

829.33

831.08

83152

52

39

0

41

50

207

555

594

56 1

789

42.1

891

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

MY

113

Page 120: Comparison of 3-D geological and geophysical investigation

Appendix 1 (35/41)

2389

2390

2391

J392

2393

2394

2395

23%

2397

2398

2399

2400

2401

2402

2401

2404

240S

2406

2407

2408

2409

24)0

2411

2412

2413

2414

241S

2416

2417

2418

2419

2420

2421

2422

2423

2424

242S

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

243«

2439

2440

2441

2442

2443

2444

244S

2446

2447

2448

2449

2 4 »

24S1

24S2

2433

2454

24S5

2436

24J7

2458

2459

2460

2461

2462

832 16

8323

83235

83293

833.16

833 86

834 31

834 92

83556

83701

837 02

83923

83925

139.63

850 04

850 67

85106

852 97

85354

85633

860 06

(60 44

861 39

861 57

86184

K2.M

863 I!

863 13

863.47

864.34

16435

86452

864 69

865 02

865 11

865 34

865 36

8654

865 15

165 87

863 88

866.19

866 31

866.71

866 87

86829

868.34

869.99

87061

870 79

870 93

S7IO2

871 13

873 07

873 09

873.29

873 43

873 48

873.63

873.94

874.08

87418

87452

87466

874.72

874 75

874 79

875.28

87695

878.01

878.08

878.23

878.29

878 31

T13O

T»50

T170

T»30

Tl70

Ti30

TJ8O

Ti95

Ti70

TJ90

Av40

T125

TJ3O

TIW

TI3O

Ti05

TI 10

Ti20

Tl50

Tl 10

Ti20

Ti20

TJ2O

TJ35

Ti30

Ti3J

T16O

Ti60

T110

T130

T120

T|75

TiTO

Tl35

Tl 10

Ti70

Ti70

TiW

Ti75

T135

T16O

TJ30

T.55

Ti20

Ti25

Tl2O

TilO

T J 3 0

T I 2 0

TlHi55

Ti80

Tl 10

Ti20

TilO

Ti30

Ti20

Ti40

TI20

TI20

T110

Tl IS

Tl 10

Ti25

T145

Tl 15

T165

TI50

T1H165

Ti95

Ti20

Tl 15

Ti50

Til l )

Ti85

62 1

53 1

215 1

62 1

62.1

57.6

8 1

53.1

53 1

8 1

17.1

359 1

29 7

70.2

702

34 2

29.7

162

7.2

43.2

387

7.2

297

297

832.265

833092

833.784

834 174

835 474

853666

860 203

878262

64

64

44

12

1

114

345

18

75

81

33

79

67

49

33

43

1

2

43

1

4

2

2

3

833 15

834 36

835 08

83663

U7.O2

847.33

861 91

863 41

B7I.39

87199

87565

877.52

87832

46

68

268

57

117

62

308

15

36

324

88

24

28

40.1

542

483

77.3

74.8

23

31.4

53 1

24

512

358

77.8

743

MY

MY

MY

MY

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGKDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

GRDR

GRDR

CRDR

GRDR

GRDR

GRDR

CRDR

GRDR

GRDR

GRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

114

Page 121: Comparison of 3-D geological and geophysical investigation

Appendix 1 (36/41)

2463

2464

24(5

2466

2467

2461

2469

2470

2471

2472

2473

2474

2475

2476

2477

247S

2479

2410

2411

24(2

24S3

24>4

24>S

2416

2417

24M

241?

2490

2491

2492

2493

2494

2495

2496

2497

24M

2499

2500

2501

2502

2503

2504

2505

2506

2507

2501

2509

2310

2511

2312

2513

2514

2515

2516

2517

251*

2519

2520

2321

2522

2523

2524

2525

2526

2527

252t

2529

2530

2331

2532

2533

2534

2535

25)6

2537

253S

2539

2340

U O l t

WO 82

Ml

HI 38

U 2 25

M2.33

U 273

U 2 9 6

U299

U301

K30I

X3O3

U3.O7

U343

183 44

K3 66

•S3 69

H371

U3.73

IS) 76

M3.77

O3.9

B391

i n 95

1*3 95

1*3 96

U3.97

U3.97

O3 9t

1*3 99

1*4 04

U4 0S

1*4.11

SW.15

U4.I6

U4.19

U4.2

U4.33

U4.37

U4.37

U4.3I

1*4.4

tU.42

O4.43

U4.46

H4.52

1*4.33

U4.S4

1*4.53

U4 64

1*4.65

ut.a1*4.69

K4.7I

8*4 7»

U4.I2

U4.9

SS4.92

SS4.96

U4.9I

tl4.99

K5.O3

U3.03

U5.07

U5.I

US 13

US. 17

tl)2l

115.23

U5 2I

U3.32

US 3)

US 35

MS 42

US 45

US 48

US 49

US 52

TJ70

Ti85

T1S5

Ti20

T120

Ti30

TlHaTO

Ti85

T130

Ti50

Ti20

Ti20

Ti20

TI3O

TiS5

T130

T115

T»23

T15O

T16O

T|4O

TlMu30

TIMulO

T1MU20

TI50

T120

TlTO

TJ20

T » »

Ti65

Ti60

TIMu45

T145

Ti70

Ti70

TITO

T1MU60

T155

TII3

TI50

TiS5

TJ70

TI40

Ti«O

T»10

TJ45

T160

TIMuSO

T155

Ti20

T190

TIMuSO

TI30

TIMnTO

TI30

TIMu90

TlMuW

TIMuSS

TI70

TITO

TlMuTO

TIMnTO

TlMuTO

TIMuSO

TlMulO

T I M

TIMuSS

TIS5

TI90

TI55

TlMuTO

TlMuTO

TlMuTO

TIMuSS

TlMu60

TI30

TI95

TI20

S8O.2I

til.037

SS2.74S

X2.927

S>3 432

8J3M

SI4 062

•84 192

U 4 406

•S4.43I

« 4 56I

U 4 72I

114.76

U4IS2

U4.93

US. 124

U5.244

US.363

US 437

US 454

11

23

16

321

31

100

1

44

5

128

133

13

24

139

61

70

161

47

162

74

«7

77

76

33

11

50

61

40

72

69

69

46

56

47

42

45

64

53

30

2

1

2

1

1

4

3

2

4

2

4

5

4

7

4

4

3

3

U0.06

IS0.79

U1.32

JJ1.73

882 12

U 2 93

U3 29

U 4 04

IS4.21

1*4.92

US49

16

31

n331

17

31

334

356

6

234

74

«7.3

64>

74.2

40

696

62 1

23

7«.3

55.5

7.1

354

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

115

Page 122: Comparison of 3-D geological and geophysical investigation

Appendix 1 (37/41)

2541

2542

254)

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2S56

2557

2SS<

2559

2 560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

258J

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

885 56

88557

885 62

885 64

885 81

SS5.97

8861

88649

88653

886 61

889 39

190 06

890.28

890 3

89033

890.34

89035

890.59

8907

890 79

190.89

890 98

891 1

891.15

89164

89188

89229

89255

892 68

894.04

894.37

896.36

8979

899 11

900.35

TI20

T120

T i »

Ti90

Ti90

TJ55

T190

Tl 80

T180

TISO

TiHa90

T115

T125

Ti60

T|75

T165

T1H170

T11CI

T1H»65

TJ70

TI65

T175

TI70

T l 10

TI90

TI60

Ti 100

Tl 10

T120

TiHiSO

TIHjSO

T180

T8 70

TilO

TJ70

901J3-MUU

90333

904.52

90639

90651

907 38

907.92

907 97

90801

90S I !

908 56

908.57

908.77

908.91

909.07

909.14

9092

909 26

909.46

909 94

909.95

91003

91004

910.07

910.25

910.28

91126

91127

91164

91167

Ti95

Ti 15

TITO

Ti20

Ti25

TiSO

Ti20

Ti20

TlHaSO

T I M

TiTO

TI4S

Ti55

TI30

T16O

TiSO

T16O

T16O

T160

T125

T16O

TITO

TJ50

Ti90

Ti70

TIH»65

T|7O

T16S

T»65

885 554

885 598

886 137

886515

88653

889 347

890.341

890.368

890.702

890.989

891799

892.509

896 305

21

13

3

278

21

272

85

76

76

80

91

10

20

Con Ion lot. 1J1 • (tecfca. rcajow)

cordon

core los

901806

902.504

906.385

909 055

910.029

34

275

5

78

95

28

32

42

62

89

70

89

72

75

S3

81

18

83

82

87

80

40

73

3

8

5

2

1

1

1

1

1

2

1

4

2

1

2

2

3

2

S86.S1

887.32

887 73

SSS-07

88833

889 12

889 85

891.32

89165

89363

897 66

899 10

899 82

900.15

900.34

903.67

90520

90541

905.86

906 07

907.21

90865

908 99

90983

910.15

910.71

91091

91153

37

58

81

262

260

96

37

267

264

37

30

38

267

217

209

6

11

115

89

SI

69

94

119

85

125

262

10

339

563

50

87.3

89 7

86.7

8 9 2

22.8

8 4 2

81 4

85

7 0 S

8 6 6

7 4 7

SOI

81.3

89 1

75

80.2

66

63

593

7 3 7

7 0 7

79 7

79

81 1

8 7 8

7 8 9

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

GRDR

GRDR

CRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

116

Page 123: Comparison of 3-D geological and geophysical investigation

Appendix 1 (38/41)

2605

2606

2607

26OS

2609

2610

2611

2612

2613

2614

2613

2616

2617

2611

1619

2620

2621

2622

2623

2624

2623

2626

2627

2621

2629

2630

2631

2632

2633

2634

2635

2636

2637

263!

2639

2640

2641

2642

2643

2644

264S

2646

2647

2641

2649

2690

2651

2652

2693

2694

2695

2696

2657

265S

2659

2660

2661

2662

2663

2664

2665

2666

2667

266>

2669

2670

2671

2672

2673

2674

91112

91216

912.27

912.55

91256

912.71

9I1U

91211

912.92

91295

913 13

91352

91361

913.71

914.27

TltO

Ti40

T|4O

T1H>75

T1H175

Tito

T160

Til5

T160

T160

Ti95

TltO

T3 7O

Tl75

T190

914.21-914.7«

914 S3

914 92

915.2

915.75

916.23

91619

916.95

917 73

918 16

911.22

911.14

91901

920.31

920.33

9204

920 58

920.7

921 19

92149

92168

922.41

9251

925 95

92601

927.27

92114

92903

929.52

93001

93043

930 77

930 79

930.19

930 94

93101

931 11

93125

93143

932.02

932.1

932.23

932.25

93246

932.66

932.67

932.79

932.14

93213

932.11

932.93

93291

933 11

93346

93345

93657

Ti2O

Ti7O

ri75

T175

T163

T170

T175

T I M

Ti40

T143

TI63

Ti95

T16S

T16O

TlH>70

Tilo

T160

T I M

Ti95

Ti95

TITO

Ti70

TI85

TITO

TI45

Tit5

TiTO

T165

Ti20

T163

T175

Ti35

TiMuK

T4M.90

T1100

Ti70

TiTO

TilOO

TlHl90

T170

T195

TI75

T160

TitO

TITD

T190

TltO

T17O

T1I5

T195

T195

TIMuSO

T185

Ti70

TiSO

314 1

41.6

17 1

62 1

48 6

35 1

231.1

SOI

219.6

416

17 1

271.1

56.7

612

207

70.2

61.2

34.2

79.2

657

657

65.7

47.7

43.2

912.141

912.556

913394

913666

331

13

96

97

C « n km m . • J2 m (tecka. reagn)

914101

916993

920455

921.296

922.417

922.366

926.036

926.104

921.173

929.057

930.137

930.93

932.197

932.916

94

40

114

351

88

179

21

17

351

19

121

211

120

124

52

11

89

31

74

13

67

90

76

31

12

14

14

IS

79

19

13

14

5

2

2

6

2

t

6

912.12

91241

91355

914.22

915.04

91547

916.16

917.63

91132

919.73

923.01

923.36

924.34

926 17

92674

927.65

92109

9JO42

932.64

93375

936 25

936 91

92

261

79

23

102

125

103

107

i n

272

206

195

291

175

96

134

305

261

113

230

219

275

166

569

13.7

14 1

73.3

39 1

145

72.1

166

16.7

159

17

31.5

52.3

77.1

707

16.6

135

134

30.7

16.7

30.7

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

CRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

GRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

117

Page 124: Comparison of 3-D geological and geophysical investigation

Appendix 1 (39/41)

2675

2676

2677

267«

2679

2680

26SI

26S2

2613

2684

26*5

2686

2687

2688

2689

2690

2691

2692

2693

2694

269S

2696

2697

269S

2699

2700

2701

2702

2703

2704

2705

2706

2707

2701

2709

2710

2711

2712

2713

27H

2715

2716

2717

2711

2719

2720

2721

2722

272)

2724

2725

2726

2727

272S

2729

2730

2731

2732

2733

2734

2735

2736

2737

273»

2739

2740

2741

2742

2743

2744

2745

2746

939 1

93931

939.45

93964

93916

940

940.26

940 29

940 36

94032

94063

940 89

941 47

941.86

942.21

94325

943.57

94388

944 36

945.7

945.71

94627

946.7

9469

94695

946.97

947.07

947.0>

947 13

947.16

947.17

947.2

947.21

947.24

94725

947.26

947.33

947 4

947 41

947 42

947 49

947 65

9477

947.7

947.75

947.93

947.97

94122

948 24

948 3!

941.51

948 5!

94165

94875

948 78

948 81

94S.9I

94192

949 41

94956

949 62

949 79

949 84

949.87

95005

950 13

950 15

95032

95033

9504

95043

950 44

Ti65

T. 50

T|75

Ti95

Ti40

Ti40

TI50

TiSO

Ti20

TI20

T|25

T120

T i »

T I H J W

Tl60

T125

TI15

T120

T150

Ti25

Ti40

T140

Ti55

TJ35

T8 30

Ti2J

TJ40

T150

Ti50

T16O

T16O

Ti65

T100

TJ30

TI70

T|75

T140

Ti 100

T130

T3 60

TI45

T.60

T150

Tl65

T155

T120

TI15

TI40

TtMu4O

T160

T160

TI60

Ti20

Ti20

Ti20

Ti20

TlHa75

Ti75

Ti45

TiSO

Ti30

Ti30

Tt 50

TJ20

T130

TJ60

TJ30

TJ30

TJ30

Ti25

T130

Tl20

945.126

947.437

947.515

948 208

948918

949 839

61

34

46

78

10

15

57

74

42

64

85

49

2

2

2

2

2

2

937 14

937.70

937 82

939.07

93945

943.42

943.87

944.43

944.71

944.84

945.07

945.40

947 04

28

1

27

94

107

307

37

93

SI

SO

7270

69

55.9

16 1

45

84.9

86

506

74.1

599

60.5

683

43.7

41.2

468

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORCRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

PORGRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

MCN

MGN

MGN

MGN

MGN

MGN

MGN

MCN

MGN

MGN

MCN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

MCN

MGN

MGN

MGN

MGN

MGN

MGN

MGN

PORGRDR

PORGRDR

PORCRDR

PORCRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORCRDR

118

Page 125: Comparison of 3-D geological and geophysical investigation

Appendix 1 (40/41)

2147

2741

2749

27SO

2751

2752

2753

2754

2755

2756

2757

2751

2759

2760

2761

2762

2763

2764

2765

2766

2767

2761

2769

2770

2771

2772

2773

2774

2775

2776

2777

2771

2779

27«0

2711

27(2

27*3

27*4

27»5

27*6

27*7

27U

27»9

2790

2791

2792

2793

2794

2795

2796

2797

279»

2799

2(00

2(01

2*02

2 » ]

2*04

2*05

2*06

2*07

2*0t

2*09

2*10

2*11

2*12

2*11

2114

2115

2116

2117

2111

2119

2120

2S21

2S22

95101

935.91

9559*

956 54

956.7

956.71

957.39

957.5

957.56

959 19

95969

964.07

964.17

964.57

964 69

966*

96*44

96*55

96*5*

96*77

96*77

9617*

969.31

969.(3

970 14

971.17

971.32

971.54

972.36

973.33

977.3

9*1 1

9*1.77

9(4 14

9*4 38

9(503

9M.7

991.29

991.33

991.55

991.12

991.92

99203

992 1

99235

993 19

994.46

994 59

994 62

994.72

994 94

995.19

995.2*

995 36

995.37

995.54

995.61

995.63

995 71

995.79

996.16

996.K

996.99

991.34

000.41

002 08

002.27

00243

003.21

004.29

004.32

004.34

004.53

004 U

00! 11

OOS32

Ti95

TiTO

TJ70

TilOO

Ti«O

Ti75

Tl*5

T1«O

T 1 U

TiSO

TITO

Ti40

Ti30

TJM

Ti70

Ti60

Ti90

Ti40

Ti95

Ti*5

TiTO

T i «

TiSO

T160

TL55

TilOO

T»65

T i «

TiSO

Ti75

T i «

TilO

TITO

TITO

TITO

TITO

T. 80

T195

T«90

Ti40

T1I5

TI90

TIM

Ti90

T16O

T1*O

TiJO

Ti90

T190

Tl90

TI65

Ti55

TI75

T165

T1I5

T, 10

"i SO

Ti75T i K

T.tO

Tl*5

T i K

T15S

Ti20

TilO

TI20

TilO

Ti73O

T1IS

T19O

TilOO

T195

Ti20

Ti90

TIW

T165

957.591

959.235

959.755

964.11

971*05

973 232

991514

994 417

995 154

995.694

1000.29

1001901

I t

76

88

69

54

29

321

336

324

336

64

347

12

60

(6

43

12

to

IS

(1

76

75

11

39

3

3

2

2

2

2

2

2

95307

974.31

971(6

9*2.16

90 .70

991.707

992.321

992966

(4

63

212

219

332

34(

340

354

171

77

( 5 9

*6I

16 5

M l

77.4

165

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGRDR

PORGR

PORGR

PORGR

PORCH

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

GR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

119

Page 126: Comparison of 3-D geological and geophysical investigation

Appendix 1 (41/41)

:*23

2824

2S25

2826

2827

2121

2129

2130

2X31

2832

2133

ISM

2S33

2S»

2137

2131

2839

2140

2141

2142

2843

2144

2845

2846

2$47

2S48

2849

2 t»

1005 39

1005 65

1005 89

lot*

1006 04

1006 09

1006 21

100631

100661

1006.64

1006 65

1007 57

1008.02

1008 04

1008 94

1009 69

100971

1010

1012 6 !

1012 69

10137

1013 71

101449

1014.63

1016 11

1016.78

1017.37

1018.46

T150

TIKI

T|65

T190

Ti 75

TJIO

Tl80

T195

TJ50

T195

T U 5

T170

TJ65

T165

Ti20

TI90

T190

T.7S

T185

T145

T»90

TI95

Ti90

TITO

T. 60

Ti 100

Ti25

TiSO

1005.852

1009 522

1012.573

1013577

281

331

304

339

74

12

74

89

2

2

2

1

PORGR

POROR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

PORGR

120

Page 127: Comparison of 3-D geological and geophysical investigation

Appendix 2 (1/17)

Core

fncorc

Khal no:

1

2

3

4

5

6

7

«

9

10

11

12

nuIS

16

17

11

19

20

21

22

23

24

23

26

27

2t

29

30

31

32

33

34

35

36

37

3S

39

40

41

42

43

44

45

46

47

48

49

50

SI

52

53

54

55

56

57

SI

59

60

61

62

Core

depth

(oi)

4361

46.22

47.22

47.61

47.79

41

48.16

48.82

S4.SS

55.69

56 44

58.03

51.26

3S.6S

58.69

60.41

61.63

6513

68 01

6123

71.15

72.81

73.27

73.2«

74.22

74.S4 - 74.9

75 01

7551

76.97

7691

77.25

79.67

79.73

•0.27

106

10.74

1013

11.23

1166

81.7J

1194

12.03

12.21

12.93

12.96

13.02

S3.14

13.16

13.26

83 49

13.71

83.98

S4.4

S4.7S

1413

I 4 U

15 11

8317

M I S

1X49

n )

90.15

Core

fact.

rype(jon)

A v 2 0 "

T l "

TiHa30

TilO

Av30

AvC)

AvSS

Av40"

Ti30

Ti45

T i «

Tl30

T l "

TilS

TilS

Av"

T l "

TI45

Ti35

Ti35

Ti35

Av"

AvO

AvO

AvIS

TIMaiO

Av20

AvIS

AvIS

Ti95

AvSS

AvSS

T1H.J0

TIMa65

Av23

TiW

Av95

Ti25

Av93

Av9S

Av9S

AvSS

TH5

Ti75

Ti«5

TiW

Ti40

Tl40

AV70

Av60

AvSO

Av60

Ti45

Ti4S

Av95

Av65

Ti45

Av30

TiSO

Til5

AvIS

Core

dir oT

dipO

1S3

Core

Sip

o

495

Core

specui

inibrm

4paoffna

TV

depth

(mi

47.122

48394

49.075

49195

50.533

52.871

73.362

74.187

74 704

HKXIVO

76.875

80.31

80.644

81.881

82.442

83.206

TV

dir of

dipf)

331

321

63

186

91

177

317

266

267

211

106

74

342

344

31

TV

dip

C)

24

85

14

62

55

72

11

31

22

2

16

43

73

75

21

TV

•ten

(nun)

4

1

3

3

1

4

17

2

1

1

4

13

]

1

1

Dipm

depth

(ml

45 139

45.693

45.997

47 085

49043

31.527

53.406

33.88

55.71

56 46

58.289

38.918

60.114

61.722

45.13

61.337

72.043

73.134

73.940

74.457

74.648

75.113

79.930

MU7

82 091

82 859

83 215

S4.816

87.910

89 544

Dipm.

dirof

dipO

293

311

84

282

36

277

297

341

277

315

288

262

2

250

171

206

238

269

267

290

360

295

127

84

342

218

279

3S4

235

Dipm

dip

o

21.7

50

9

354

195

216

31.1

241

354

20.3

23 1

309

15.2

17.3

366

43 6

18 1

127

28 1

20

24.2

107

312

368

75.5

143

606

862

76

63 1

TW

depth

(m)

TW

dir or

dipt*)

TW

dip

o

Rock type

LTONCN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

121

Page 128: Comparison of 3-D geological and geophysical investigation

Appendix 2 (2/17)

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

10

SI

<2

<3

S4

85

S6

17

n

! 9

90

91

»2

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

10*

109

no111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

121

129

130

131

90.16

90.26

90 81

90 98

90 99

91.17

91.39

91 79

91.12

92.07

9239

9 3 «

93,98

943

94 56

94,73

95,43

95,51

9602

96 54

97 35

97 92

99.06

99 16

100 76

lot oi

101.S7

1019

102.87

103 25

103 26

103.42

10406

104 16

104.23

Av 15

Av45

Ti35

Ti 15

Av85

A v M

Av 30

Av25

Av80

Av70

Av20

Av90

TJ40

Av90

Av8S

Av85

Ti95T i U

Av20

Av30

Av 10

Ti40

Av30

Av 10

Av90

Av95

Av40

AvTO

Av40

Ti40

Ti40

Av70

Av75

Av45

AvSU

HU.26-1UJ1

104 41

104 55

105 05

11071

114 42

114 68

114 89

115.01

115 07

118.5

118 78

120.02

122.03

122.4

123 53

124 93

125.29

12602

126.14

127 45

127.79

127.82

128.27

12948

130 69

130.76

131.26

131.37

AvM

TWJ7U

Av90

TlHa30

AvSO

Av45

Av 30

Av2U

Av JO

Av95

Av40

TIH>85

Av20

Ti70

T J -

T140 -

Ta 20"

Av 50

Ti90

TIHJSO

TIHJSO

TiSO

TIHa

T125-

TI 30-

T I 6 0 -

T120-

Ti30

13I.5S-1J1.I]

13167

13173

131.74

131 8

13192

131 98

Ti60

T|6O

Ti95TllO

Ti60

T|6O

103.5

135

162

135

2205

90

18

81

36

81

91.136

93.564

100.852

101.05

101554

103.57

103.761

104.005

•raktacorc

104.69]

113.209

114.315

114.514

117.913

117.916

118 125

119.955

125.059

125 848

127 445

Brekcncort

131.862

173

138

313

308

267

82

270

248

255

341

IS

257

11

257

14

192

342

261

247

256

87

79

S6

ss34

85

74

79

82

56

86

65

90

54

89

90

15

65

80

67

2

3

2

2

2

1

2

11

2

10

2

4

2

5

1

3

1

4

9

2

90718

91023

93 968

94 721

94853

95 696

97.323

99 0O2

100766

101.070

IOIS27

102 869

103 981

104356

104 638

105759

110.710

113506

114.320

114 634

115 033

1IS.7M

120 067

122.030

I24.89U

125 208

125 987

127.512

I27.8S4

131,635

132 020

295

284

307

182

301

273

166

3

301

322

57

32S

228

237

204

356

82

358

199

237

293

106

181

292

295

11

260

228

244

264

246

5 5 5

89 S

3 8 9

6 6 6

35

37.9

15.4

5 8

85.3

74.7

23.7

17.7

70, J

84

84 1

3 1 6

5.3

167

8 1 7

60

9.1

13.1

8 6 6

12.1

126

6 3

47,5

»0 7

7 0 9

65.5

5 1 6

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

122

Page 129: Comparison of 3-D geological and geophysical investigation

Appendix 2 (3/17)

132

133

134

133

136

137

131

139

140

141

142

143

144

145

146

147

141

149

13(1

131

152

IS]

154

135

136

137

131

139

160

161

162

163

164

165

166

167

161

169

170

171

172

173

174

175

176

177

171

179

110

181

IS2

IS3

114

115

IS6

117

its

119

1%

191

192

193

194

195

196

197

191

199

200

201

202

203

204

205

13231

13235

13244

11253

132-57

13251

1331

1343

13534

13562

135 8)

136.21

136.24

13641

136.49

136.73

136 88

137.22

1379

137.97

13104

131.12

13129

1317

13919

139.57

139 «

140 72

140.94

141.63

14176

Ml 15

141.9

142.12

142.3

142.49

142.73

14314

143 81

144 81

144 94

14504

145.23

14533

145 46

14516

14512

146 36

46.7

46 79

47

47.09

4146

48 6

49 13

495

496

5029

50 98

51.62

51.63

5175

52.02

52.07

52.24

52.31

52 88

53.13

53.26

53.29

53.35

534

Ti60

Tl60

Tl60

TI60

TiAO

Ti90

Ti60

T|4O

Ti4S

Ti30

TilO

TlHiM

TlHlSO

Ti60

TlHlW

Ti30

TiHlTO

TiO

TIHli!

TlHaW

TlS«60

T1S.7S

TlHa63

TlHatO

T1S.50

T1SJ30

Ti3S

Ti30

T1H.65

TIH16C

TIHI43

TiHlTO

T16O

TIH16O

TlHlSS

Ti45

TlHalS

TtHaSO

TlHlSO

TIH165

TIH16S

TIH150

TlHlSO

TiHlTO

T1H16O

TiHl40

TiHi30

Ti40

TIH16O

TlHa20

T1HI90

TlHiSS

TiSO

T1H16O

TiHa20

TlHlSO

T. 40

TiHl75

T I 4 0

Ti40

TlHa60

TI60

TUta70

TSHlTO

T1H165

TiH.65

TIHaSS

TUfaSO

TlHi63

TIHl65

TIH16O

TIH16O

5J.43-1SJ.38

53 45

535

T16O

TIHa75

136.631

136.97

137.735

137.121

137.953

138.345

131.991

140.714

141453

141391

141939

142.107

142521

143.32

144.61

144.716

144.UI

144 913

143.013

145.13

143.239

146.444

146 791

146.173

146.921

147.204

149.577

149.721

130.369

15161

151.711

152.341

152.613

152.946

152.912

153.056

153.214

133334

Macn

133441

264

177

326

247

321

197

356

241

16

311

322

309

330

246

19

90

331

64

24

88

93

324

97

217

214

283

211

265

261

70

72

303

193

307

61

73

13

264

16

79

12

72

76

70

88

40

10

45

36

35

31

76

23

46

41

51

63

51

71

66

56

11

73

77

75

66

73

72

64

63

59

66

60

52

50

34

11

61

1

1

2

1

1

]

4

1

2

2

1

1

2

4

3

1

2

3

7

21

IM.2I0

136.349

137.139

131.077

139144

139 306

139955

140.174

141.627

141754

142043

142.223

142611

143415

143.755

144.765

145.610

146336

146 882

147.217

149.224

149.590

I5OO3I

130.377

131.114

152.326

132.662

132.936

53 467

220

269

163

104

345

79

334

196

116

271

214

211

309

239

239

3

231

303

321

262

30

237

160

243

149

204

270

290

290

616

40.9

709

40 1

396

6.2

1.1

S I.I

609

517

595

549

11.7

266

434

45

11.3

464

53.2

669

7.3

44.2

52.2

652

34

419

62.3

49.9

51

LTONGN

LTONON

LTONCN

LTONGN

LTONCN

LTONCN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

123

Page 130: Comparison of 3-D geological and geophysical investigation

Appendix 2 (4/17)

206

207

208

209

210

211

212

213

214

213

216

217

21B

219

220

221

222

22J

224

225

226

227

228

229

2J0

2)1

212

2 ] 3

2J4

2J5

236

237

2JI

239

240

241

242

24J

244

245

246

247

248

249

250

251

252

253

254

2S5

256

257

258

259

260

261

262

263

264

265

266

267

2 6 !

269

270

271

272

273

274

275

276

277

278

279

280

153 55

153 6

153 71

I5J8I

154 15

IS4 38

1546

154 88

154 94

15504

155 1

155.24

155 31

15547

155 5

TlHa75

T1U65

TiSO

T I 75

T|45

Ti55

Ti55

T I H J 5 5

T I 2 5

T|65

T. 45

Ti65

T|75

T«50

Ti90

I5S.62-USW

IK05IK 12IK 1915624

156 29

156 32

19641

1565

13651

TiSO

TiSO

TISO

TI JO

TiJO

Av65

TiSO

Av40

T180

1K.(1-137.1O

136 62

156.7

lK7t

157.03

157.07

157.4

157 44

157.54

157.63

157.76

157 98

158.02

15838

158.43

158.36

138.74

138 9

138 96

15198

159.1

159.26

159.35

1595

159.89

16<l.)

160.45

160.57

1607

16107

16125

16178

162 14

16271

1634

163 51

164 36

163.05

16525

163 9

16599

16635

167 37

167 46

1676

1677

16(06

168 28

168 36

168 46

16852

168 84

T I 30

TlHiTO

Ti20

T1HI40

TiHa30

Ti40

Av40

TIHa4O

TiSO

AvtO

Av30

Ti35

T i M

AvS3

Av 75

Ti45

Ti20

T I 10

T115

TJ20

Ti65

T180

TlHa90

TiH>33

TiHa3O

Av95

Av75

TiHa40

T»ia70

TiH>60

TJH»70

TlHiW

TitO

Ti45

T i M

TiSO

Ti75

T i M

Tit5TJ70-

Tl JO

Ti85

Tl25

Av60

Av65

Av60

Ti40

Av5O

Av30

Av55

Av90

21 IS

119

76.5

153

166.5

19*

234

175.3

231.5

385

238 5

36

220.5

351

81

216

207

198

207

234

216

279

216

202.5

6J

54

58.3

4.5

13.3

4 9 5

81

585

US

85.5

45

4 9 5

81

9

8 5 5

45

72

72

72

585

76.5

58 5

85.5

8 5 5

153 635

154352

154 87

155.022

55.057

Broken c«rc

br oorc 155.665

1K.09

136.206

IK.333

136 487

>raka«rc

I K 806

157 048

157 396

158 852

158.187

159 466

160216

160 428

160.729

161 191

161.605

355

219

221

149

304

231

247

230

298

276

316

24]

96

210

223

192

188

191

79

248

its

47

69

72

53

49

76

42

78

68

50

77

33

22

45

79

72

89

49

81

79

2

1

2

1

1

1

1

1

2

4

4

2

S

5

4

6

4

2

3

3

153 654

154 099

154313

155.005

156 426

137 823

158 757

158.945

159398

160.149

161.092

162438

163078

164 784

165 625

168.230

341

166

220

139

264

209

238

223

178

179

230

174

219

225

337

197

4 9 8

41.4

68.3

58

385

2.8

182

4 3 9

75.2

73

89.8

75.6

538

87.5

6 1 4

78 7

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

MDB

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

124

Page 131: Comparison of 3-D geological and geophysical investigation

Appendix 2 (5/17)

2>1

2S2

2t3

2t4

213

2S6

2»7

2»8

2S9

290

291

292

293

294

295

296

297

29S

299

300

301

302

303

304

305

306

307

30>

309

310

311

312

313

314

315

316

317

3 IS

319

320

321

322

323

324

325

326

327

32a

329

330

331

332

333

334

335

336

337

331

339

340

341

342

343

344

345

346

347

168 89

170.23

17165

171.97

172.6

172.73

172.16

1729

173.17

176.21

177.73

177.77

171.23

171.41

I7t3

1799

ISO 17

1*0 ItISO 8

I I I 13i s m11141182 27

18251

113 07

113 78

IS4.52

1S4 62

1S4 7S

11413

115 41

1S6

116.27

186 36

186 36

186 72

IS6.SI

186 99

its

IB 16

IK 58119 76

119.11

11916

IS9I9

18991

119 94

190 07 •

190.23

190 26

190 6t

19178

191 t l

192 02

194 99

195.22

19547

195 81

195.16

195 92

95 97

96 05

196 13

9649

9649

19143

19169

Ti30

Ti40

Av20»

Ti20

TlH>40

Ti45

TiSO

TiO

Av40

TJ40

Av30

Av30

TIHI30

T i »

Av40

TiSO

T«35

Ti9S

T. 40

Ti40

T145

Ti20

T140

Ti40

TiSO

T«H»70

TiO

AvtS

Ti40

TiH.30

Av95

Ti90

Ti30

TiSO

AvW

Ti30

T|4O

TiO

T1W

Ti40

Tl40

TiSO

TiS5

Ti40

Ti4S

Ti20

Ti45

A»95"

T. 40

Ti40

TilO

Ti20

Ti30

TISaW

TiH»30

AvSO

Av20

TiHa40

TiHaSO

Ti40

T130

Tit5

Ti30

TilO

TilS

Ti40

Ti30

2SJ

297

2tt

225

279

243

274.5

270

279

22.3

It

274.5

297

27

27

27

54

76.5

31.5

90

49.5

49.3

t l

t l

495

54

16981

170439

170.572

170.723

174491

175.216

176.4

I7t IS6

171539

179 915

110.245

112.377

IS646I

187 068

ltt.251

119 392

190.009

190.411

191304

191524

191.539

193.439

193123

194

273

303

172

19

32

97

S3

109

210

105

65

70

186

295

203

20

2SS

277

202

210

169

176

41

74

47

71

61

60

14

21

61

It

17

27

27

31

19

t9

27

42

31

t l

90

90

3

2

12

2

2

2

2

4

2

3

6

7

1

6

3

3

2

4

6

s2

7

4

171600

172.922

173.927

176 203

177.321

177.613

177.996

17I.3U

111.201

112.452

1S3 757

184112

116.355

111 001

119 Oil

194192

195 330

195.694

195.1S7

196 384

231

273

15

93

137

32

200

134

43

40

59

6

64

212

250

342

217

55

146

31

44 1

40 1

124

22.2

23 1

17.2

0.5

24 1

9.9

364

44.3

59.1

32.5

17.7

26.1

9.9

30 4

263

15.7

9 1

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

125

Page 132: Comparison of 3-D geological and geophysical investigation

Appendix 2 (6/17)

34S

349

330

351

352

353

354

355 ,

356

357

358

359

360

361

362

363

364

365

366

367

36<

369

370

371

372

373

374

375

376

377

37«

379

310

3SI

3S2

3(3

314

385

3S6

3»7

358

389

390

391

392

393

394

395

396

397

398

399

400

401

403

403

404

405

406

4U7

408

409

410

411

412

413

< U

415

416

417

418

199 55

200.13

20015

20041

200 46

200 67

200.91

201.43

20345

20355

20365

203 69

204 16

2043

204 36

204 36

2044

204 72

204 99

205.3

20595

207.61

208.35

209 07

2093

21077

212.34

2124

21215

213.17

213.17

213.3

21359

21475

21516

21575

215.97

21607

2163

21616

217.29

217 V)

21799

219

220 13

220. IS

220.78

220S

22149

222.31

222.35

222.99

222.99

223 OS

223 62

223,65

223 71

224.05

224.32

22435

22442

2265

226 91

22S65

228 66

229 14

229 19

230.67

230 82

231.15

232.94

TiSO

Ti30

Ti30

TJ40

TiH»60

TiH>60

Av«0

Av50

Av>0

Ti90

Ti20

Av20

T i «

Ti30

AV60

T|15

Av25

AV40

TiH«70

T»45*

Tl60

TiO

Ti20

Ti20

Ti 15

Ti55

Ti30

Tl20

Ti20

TilO

T16O

Av<-)

TiO

Ti 10

Ti 5

Ti 15

Ti30

Ti 10

Ti20

Av4O

TlHlSO

Av95

Ti30

Av<->

Ti 15

AvTO

Av2O

Av20

Av50B

Ti50

Ti50

TilO

Ti50

Ti 10

Ti65

Ti75

TiSO

T|45

Ti20

TlSa30

T1I5

TiSO

Ti20

Ti40

AvSO*

AvSO-

Ti<5

Ti4S

Av40

Av35

Av65

515

5 « 5

7 6 5

SI

211.5

3465

7 6 5

1145

171

175.5

1665

2385

238.5

238.5

216

72

1935

IS

945

23S5

45

155

•5.5

252

252

63

54

63

279

54

63

54

90

27

49.5

243

328.5

49.5

36

SI

63

45

54

45

72

72

10>

126

9

9

IS

40.5

31.5

5S5

3 1 5

81

855

31.5

3 1 5

IS

IS

IS

765

IS

7 6 5

315

36

27

135

315

3 1 5

9

9

31.5

31.5

31.5

315

315

27

27

45

45

IS

40.5

27

9

27

36

27

27

31 5

IS

18

18

27

585

200439

200 707

203 577

203 766

203 898

204 113

204 232

205.371

20(922

209 893

212.324

212916

213057

2158

217 149

2199S

221. «»5

222.822

223.745

224.382

226529

229.201

231387

232.157

232971

72

193

1S4

143

310

52»

317

193

345

204

34

271

82

78

63

79

256

79

68

320

41

48

60

219

55

24

29

SI

33

S5

74

73

61

S8

90

2

68

83

IS

34

46

34

55

51

26

28

37

85

87

38

2

3

2

3

1

2

5

2

4

3

3

6

1

5

1

6

5

1

3

2

2

2

4

1

2

200.115

200.307

200619

201451

203459

2O3.61S

212.247

212.755

214 905

215.740

217 135

217990

21S777

219 978

220 779

222.324

222.914

223.660

224.331

22649S

228 656

229224

230.113

231 163

232956

126

57

212

36

IS3

159

IS4

219

239

51

46

250

254

57

257

66

44

76

279

15

5

45

232

333

34

2 1 8

30 2

17

157

75.5

49

17 4

9.6

283

12.3

31.1

44 1

26.3

50.7

32.4

37S

184

38 7

24.2

40

35

2 6 8

44.7

17.2

26.2

LTONCN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

126

Page 133: Comparison of 3-D geological and geophysical investigation

Appendix 2 (7/17)

419

420

421

422

42]

424

42S

426

427

421

429

43<l

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

441

449

450

451

452

453

454

455

436

457

451

459

460

461

462

463

464

465

466

467

461

469

470

471

472

473

474

475

476

477

471

479

4W

M l

4»2

4S3

4S4

4<5

416

487

4SS

419

490

491

492

493

494

233.78

234.57

234 72

235.25

23574

236.47

216 65

236 79

236 84

236.98

237 03

237.32

231.24

238.39

238.9

239.19

240.13

240.23

24067

240.17

24151

241.59

24175

241.«7

242.5

242.S6

243.24

243.36

24342

243.4C

24382

244.3

244.37

245.11

245 25

24535

247.07

247.21

247.34

247.59

247.67

247.19

24S.22

24163

241 S3

248 98

249 12

249 16

249 23

2493

2493

249.37

249 47

249 95

5043

3053

250.56

250.71

251.14

51.76

252.09

253 51

253.66

254.3

54.39

54 59

254.7

255.27

56 09

256 36

256.9

257

57.25

257.46

57.49

257.62

Av6S

AvS5

TiSO

Ti90

TiSO

TiHlSO

Av(")

Ti40

TiSO

AvIO

AV

Ti3O

TilO

Ti20

T16O

TiOS

AvOO

TiOO

Til5

TilO

AvW

Av30

Ti25

Ti20

TiJO

TiSO

Ti20

TilO

Ti20

TiH»2O

TilO

Av35

TilO

TI20

Ti20

Ti30

T|4O

AvIO

TiH»2O

Ti30

TiSO

TilO

Ti7S

Ti75

Ti75

Ti45

Av6S

TiHaTO

Ti60

TiO

TiSO

TITO

T195

Tl20

TiJO

TilO

TilO

AvTO

Tito

TIIO

Av2O

TilO

Ti 15

T. 30

Ti30

TtH»30

Ti45

Ti25

Ti35

T1S.25

Ti60

TiSO

Av20

Ti40

Ti60

T140

112 5

126

1305

360

139.5

2S3.5

45

40.5

315

72

36

63

233 451

233.793

235.216

235.5

235.91*

236.479

236 54

2361*2

239.316

240 064

240 787

241 4*4

24S.9S9

249.267

250437

123

35

212

176

209

239

229

232

117

94

206

65

124

201

275

52

42

13

22

54

5

13

6

5

70

«7

52

77

34

3

2

7

3

2

1

2

2

3

5

1

2

4

233.787

234.567

236.470

237.270

24I. IM

241.649

243 367

243.517

245 094

247.249

247 549

247 562

249.104

249.255

249.430

250.422

2SO576

250.752

251.786

252.066

255.247

256.319

9

352

234

262

266

192

239

239

23<

246

237

209

101

30

250

218

2«7

2S9

240

251

274

210

29 1

36 1

419

39.7

15.6

64.8

194

19 1

19.1

29

484

30 1

44.4

46

11 . !

43.8

31.3

74.8

19.3

3.5

606

29.7

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONCN

LTONGN

LTONCN

LTONGN

LTONGN

LTONCN

LTONGN

LTONCN

LTONCN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONON

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

127

Page 134: Comparison of 3-D geological and geophysical investigation

Appendix 2 (8/17)

495

496

497

49S

499

500

501

502

503

504

505

506

507

501

509

510

511

512

513

514

515

S16

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

5J5

536

537

53>

539

MO

541

342

543

544

545

546

547

541

549

550

SSI

552

55!

S54

555

556

357

351

559

360

561

362

36!

364

25829

238 55

25S7

2S9S!

2596!

259 84

259 98

26032

260 45

260 51

2606

2606

260 78

261 23

261.7

26193

262.2

26247

263

263 06

263 52

26401

264.62

264.84

26533

265.77

266 08

266.46

267.01

267.14

267.72

261 17

26135

268.57

26889

269 25

269 36

26942

269.5

269 74

269 76

269 98

270 16

270.36

270 46

27134

27252

272 64

273 25

273 23

273 71

274.3

274.67

274.78

27SJ»-27S5

276.87

277 33

277 54

278.79

278.M

279.11

279.19

279.24

279.73

279.84

279.87

280.14

280.1S

280.26

280.89

2SO93

T16O

Av45

T|4O

Ti20

T|4O

Ti30

T i «

Tl30

Ti20

Av40

T iO

T.60

Ti40

T i O

TiHa35

T.30

Ti25

TiHjtO

Ti 90

T. 10

Ti55

TiSO

TiSO

Ti85

Ti20

Ti«O

Ti 30

Ti40

TiSO

TilO

T iO

TilO

TilO

Ti20

Ti20

TJ 20

T, 10

Ti20

Ti25

TiHa 30

Ti70

Tl30

Ti20

Ti 15

TiSO

Ti30TiTO

AV90

T iO

Ti 90

Ti30

Ti80

Ti35

Ti30

7

T 1 2 0 -

Ti20

Ti20

Ti90

Ti20

TiHj35

Ti25

Av90

Ti20

T i M

T i M

T i M

Ti30

Tl JO

TiSO

TiSO

112 3

90

234

19»

252

225

2315

216

216

252

243

234

180

2385

279

274.5

270

252

288

236.5

297

583

297

270

270

72

103.5

171

324

243

351

243

171

360

JI95

36

9

5 8 5

31 5

63

58.5

63

45

4 0 5

49.5

27

72

40.5

18

3 1 5

27

3 1 5

27

3 1 5

31.5

4 0 3

40.5

4 0 3

3 1 5

18

3 1 5

135

81

81

27

8 5 5

49 5

90

18

18

CortlouUC

core tost

core toss

core loss

262 933

263 755

264 091

264.287

272.798

273.475

273.59

0.20 m (ted

275.774

277 123

279,047

1

271

263

268

189

279

233

M. reaji

268

199

295

65

81

73

80

44

48

86

MJ)

14

36

44

1

2

4

2

4

4

4

1

3

6

260.497

260.755

261.226

261.701

263.023

263.127

265679

267.001

267.527

268874

269757

272.396

274798

275.577

275.955

276.449

278.151

280 111

99

297

2(3

259

359

315

284

103

272

244

275

99

270

247

220

190

233

1

17.2

31 1

42.2

5 3 9

6 3 2

6 0 2

584

157

29 7

193

40

67

199

M

156

13 9

34 1

189

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONCN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONON

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

LTONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

TONGN

128

Page 135: Comparison of 3-D geological and geophysical investigation

Appendix 2 (9/17)

Page 136: Comparison of 3-D geological and geophysical investigation

Appendix 2 (10/17)

Page 137: Comparison of 3-D geological and geophysical investigation

Appendix 2 (11/17)

Page 138: Comparison of 3-D geological and geophysical investigation

Appendix 2 (12/17)

Page 139: Comparison of 3-D geological and geophysical investigation

Appendix 2 (13/17)

Page 140: Comparison of 3-D geological and geophysical investigation

Appendix 2 (14/17)

Page 141: Comparison of 3-D geological and geophysical investigation

Appendix 2 (15/17)

Page 142: Comparison of 3-D geological and geophysical investigation

Appendix 2 (16/17)

Page 143: Comparison of 3-D geological and geophysical investigation

Appendix 2 (17/17)

Page 144: Comparison of 3-D geological and geophysical investigation

Appendix 3 (1/7)

Page 145: Comparison of 3-D geological and geophysical investigation

Appendix 3 (2/7)

Page 146: Comparison of 3-D geological and geophysical investigation

Appendix 3 (3/7)

Page 147: Comparison of 3-D geological and geophysical investigation

Appendix 3 (4/7)

Page 148: Comparison of 3-D geological and geophysical investigation

Appendix 3 (5/7)

Page 149: Comparison of 3-D geological and geophysical investigation

Appendix 3 (6/7)

Page 150: Comparison of 3-D geological and geophysical investigation

Appendix 3 (7/7)

Page 151: Comparison of 3-D geological and geophysical investigation

Appendix 4 (1/3)

Page 152: Comparison of 3-D geological and geophysical investigation

Appendix 4 (2/3)

Page 153: Comparison of 3-D geological and geophysical investigation

Appendix 4 (3/3)

Page 154: Comparison of 3-D geological and geophysical investigation

Locality :ROMUVAAR Start Depth :339.000mB-No .-RO-KR3 End depth :426.134mB"Dia :5*m? e P a n x „ n :n°o. Appendix 5 (1/1)B-Dir Azmt :61.5 Scan Intvl :0.25

Inc :-70.1 Aspect Ratio :200 %Date :95/06/12 Scale :1/10Time :14:21:00

Range:346.500 - 350.500 m

Page 155: Comparison of 3-D geological and geophysical investigation

Appendix 6 (1 /2)

3-ARM DIPMETER DATA PROCESSING

RGLDIP vsn 3.0 8 Mar 1995

DIPMETER AND CALIPER LOG

T.V.O.

ROMUVAARATOP OF WELL Long

LatAlt

North ref is magneticDepth units are metersVert scale is 1/100

Zone from 474.00 to 44.00Correlation interval 1.000Step distance .500Search angle 75.000 relative to well-axis

option complete automatic

interval correlation

• quality = A.B* quality = CD° quality = *

individual feotures

** quality = *

DOWN

HOLEDEPTH ARROW PLOT

20 60 90

overoging/decimotion = 4

WICRORESISTIVITY

CALIPER

mm

13C

50 -

/ •

V

149

Page 156: Comparison of 3-D geological and geophysical investigation

Appendix 6 (2/2)

Page 157: Comparison of 3-D geological and geophysical investigation

Appendix 7 (1/4)

Page 158: Comparison of 3-D geological and geophysical investigation

Appendix 7 (2/4)

Page 159: Comparison of 3-D geological and geophysical investigation

Appendix 7 (3/4)

Page 160: Comparison of 3-D geological and geophysical investigation
Page 161: Comparison of 3-D geological and geophysical investigation

Appendix 8 (1/3)

BHTV DATA INTERPRETATIONRGLDIP vsn 3.0INTERPRETED BHTV LOG

7 Mar 1995

ROMUVAARATOP OF WELL Long

LotAll

Zone from 379.00 to 299.00Format BHTV

North ref is magneticDepth units ore metersVert scole is 1/10Horiz scale = Vert scale

Core diameter 5.60crnVertical = well axis

BEDDING

FRACTURE/Identified units, with true thickness onthe well axis and mean strike and dip

N E S W NARROW PLOT

:orrected for deviotion

0 20 60 90• • ! .

DEVIATION

0 30

155

Page 162: Comparison of 3-D geological and geophysical investigation

Appendix 8 (2/3)

Page 163: Comparison of 3-D geological and geophysical investigation

Appendix 8 (3/3)

Page 164: Comparison of 3-D geological and geophysical investigation

Locality :ROMUVAAR Start Depth :239.000mB-No :RO-KR3 End depth :341.053m Appendix 9 (1/I)B-Dia :56mm Span :004B-Dir Azmt :61.5 Scan Intvl : 0.25

Inc :-70.1 Aspect Ratio :200 \Date :95/06/12 Scale : 1/25Time :13:13:00

Ranae:310.000 - 320.000 m

Page 165: Comparison of 3-D geological and geophysical investigation

LIST OF REPORTS KD

LIST OF POSIVA REPORTS PUBLISHED IN 1997

POSIVA-97-01 Model for diffusion and porewater chemistry in compacted bentoniteTheoretical basis and the solution methodology for the transport modelJarmo LehikoinenVTT Chemical TechnologyJanuary 1997ISBN951-652-026-X

POSIVA-97-02

POSIVA-97-03

Model for diffusion and porewater chemistry in compacted bentoniteExperimental arrangements and preliminary results of the porewaterchemistry studiesArto Muurinen, Jarmo LehikoinenVTT Chemical TechnologyJanuary 1997ISBN 951-652-027-8

Comparison of 3-D geological and geophysical investigation methodsin boreholes KI-KR1 at Aanekoski Kivetty site and RO-KR3 at KuhmoRomuvaara siteKatriina LabbasHelsinki University of TechnologyMaterial Science and Rock EngineeringJanuary 1997ISBN-951-652-028-6