comparison of useful temperature range seminar... · green process, igcw-2017, mumbai process...

6
Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Process Intensification for Sustainable Industrial Activities Sunil S. Bhagwat Department of Chemical Engineering, ICT-Mumbai Green Process, IGCW-2017, Mumbai Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Outline 1 Process Intensification 2 NanoStructured Reaction Media 3 Kinetics 4 Selectivity 5 Summary Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Principles of Intensification Chemical and other processes - need for intensification Principles of intensification: Time Space/ steps/ equipment Materials/ yield Utilities Means: Ulrasound, novel media, novel processes Intensification of chemical reactions through nano-structured aqueous media Intensification of processes through utilisation of waste heat Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Center of Excellence in Process Intensification World bank supported program for three years Multiple aspects of Chemical and Allied Industry covered by over fifteen projects Solar energy assisted synthesis of zinc oxide nanoflowers. Indian Patent Application: 1624/MUM/2015, 2015 Microwave Assisted Halogenation Reactions using Flow Reactor Microwave assisted synthesis of bioactive colorants indigoid / azulene / C-C bond formation Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Center of Excellence in Process Intensification Sorption Enhanced Hydrogen Production Process intensification using Cavitational reactors Extraction of Turmeric and Pepper Oleoresin by Enzyme-Assisted Supercritical Carbon Dioxide Microwave assisted bifunctional catalysis for tandem reactions Extraction Of Natural Ingredients Using Novel Extraction Techniques : Glycyrrhizic acid from Glycyrrhiza glabra, Marmelosin from Aegle Marmelos and Corosolic acid from Lagerstroemia Speciosa - ultrasound assisted extraction Water Disinfection by Hydrodynamic Cavitation in India Mark II Hand Pump Process Intensification ICT/CE/SSB Process Intensification NanoStructured Reaction Media Kinetics Selectivity Summary Comparison of Useful Temperature Range Tracking Method Collector Type Absorbtion Method Temp Range o C Stationary Flat Plate Flat 30–80 Evacuated Tube Flat 50–200 Compound Parabolic Tubular 60–240 Single axis tracking Linear Frensel Reflector Tubular 60–300 Parabolic Trough Tubular 60–250 Cylindrical Trough Tubular 60–300 Two axes tracking Parabolic Dish Reflector Point 150-200 Heliostat field Point 100-500

Upload: vuongtu

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Process Intensification for SustainableIndustrial Activities

Sunil S. BhagwatDepartment of Chemical Engineering, ICT-Mumbai

Green Process, IGCW-2017, Mumbai

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Outline

1 Process Intensification

2 NanoStructured Reaction Media

3 Kinetics

4 Selectivity

5 Summary

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Principles of Intensification

Chemical and other processes - need for intensificationPrinciples of intensification:

TimeSpace/ steps/ equipmentMaterials/ yieldUtilities

Means: Ulrasound, novel media, novel processesIntensification of chemical reactions throughnano-structured aqueous mediaIntensification of processes through utilisation of wasteheat

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Center of Excellence in Process Intensification

World bank supported program for three yearsMultiple aspects of Chemical and Allied Industrycovered by over fifteen projectsSolar energy assisted synthesis of zinc oxidenanoflowers. Indian Patent Application:1624/MUM/2015, 2015Microwave Assisted Halogenation Reactions usingFlow ReactorMicrowave assisted synthesis of bioactive colorantsindigoid / azulene / C-C bond formation

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Center of Excellence in Process Intensification

Sorption Enhanced Hydrogen ProductionProcess intensification using Cavitational reactorsExtraction of Turmeric and Pepper Oleoresin byEnzyme-Assisted Supercritical Carbon DioxideMicrowave assisted bifunctional catalysis for tandemreactionsExtraction Of Natural Ingredients Using NovelExtraction Techniques : Glycyrrhizic acid fromGlycyrrhiza glabra, Marmelosin from Aegle Marmelosand Corosolic acid from Lagerstroemia Speciosa -ultrasound assisted extractionWater Disinfection by Hydrodynamic Cavitation in IndiaMark II Hand Pump

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Comparison of Useful Temperature Range

TrackingMethod

Collector Type AbsorbtionMethod

TempRangeoC

Stationary Flat Plate Flat 30–80Evacuated Tube Flat 50–200

Compound Parabolic Tubular 60–240Singleaxis

tracking

Linear FrenselReflector

Tubular 60–300

Parabolic Trough Tubular 60–250Cylindrical Trough Tubular 60–300

Twoaxes

tracking

Parabolic DishReflector

Point 150-200

Heliostat field Point 100-500

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Concept of Energy Ladder

Electricity Most usefulFuel

Hot oil40 bar steam10 bar steam3 bar steam1 bar steam

Hot water/gas Least useful

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Mixing Fluids & Exergy Loss

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Solar based absorption refrigeration system

COOLING

WATER

Flue Gas

PLANT

(10 TR)

REFRIGERATION

TOWER

Oils CE Computational Lab

CHILLED WATER RETURN

COOLING

WATER

SUPPLY

15 TR

COOLING

10 m3/h

CWP− 1

CHILLED WATER SUPPLY

2 m3

CHILLED

WATER

TANK

II

9 C

2 m3

CHILLED

WATER

TANK

I

12 C

ABSORPTION

SOLAR COLLECTOR

31 kg/hr

PIPE NATURAL GAS

7 kg/h

6.5 m3/hr

SUNLIGHT

( 60 kW)

CWP−2

10 m3/h

HOT

WATER

TANK

II

90 C

2 m3

HWP 1

6.5 m3/h

HWP2

2 m3

HOT

WATER

TANK

I

83 C

Steam generation

RETURN

35 C

25 m3/h

32 C

2 TR Indoor Unit (5 NOs)

HOT WATER GENERATOR

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Refrigeration System Comparison

The input of energy should be corrected to its value for truecomparison of the coefficient of performance.

System Sink Duty Source Conventional

COP

Corrected

COP

Mechanical 40oC 0oC Electricity 2.2 2.2

Thermal 40oC 0oC 110oC Heat 0.62 3.4

Mechanical 40oC 15oC Electricity 4.1 4.1

Thermal 40oC 15oC 110oC Heat 0.76 4.1

Thermal 40oC 15oC 70oC Heat 0.45 5.1

Heat based refrigeration is a lucrative option, especially for largeinstallations

Two lakh lit/day milk chilling center saving 3/4th of electricityconsumption implemented

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

NanoStructured Reaction Media: Adsorptionand Self Assembly

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������

������������

������������������������������

������������������������������

� � � � � � � � � � � �

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

SCHEMATIC OF A NORMAL MICELLE

The first choice amphiphilic molecules have is to go to the’wall’ or the interface. Second choice makes themaggregate in different shapes.

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Relative Thickness of Interfacial area

Diameter Interphase Volume(nm) (nm) (%)

Macroemulsions ~ > 1000 2.5 1.5Microemulsions 10-100 2.5 15-85

Micelles ~ 2.5 2.5 ~ 100

Interfacial area(cm2/cm3)

L/L dispersions (5 mm size) ~ 1Emulsion (50 µm size) ~ 10

Microemulsions (10 nm size) ~ 106

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Applications of surfactants and microemulsions

Formulations where there is a need for mixing hydrophobicand hydrophillic substrates

Paints Food additivesPharmaceuticals Pesticides

Dyeing SeparationsFuel additives Reactions

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Advantages of Surfactant media for reactions

Enhancement in overall reaction rateFavorable orientation of moleculesManipulation of Regio- and Stereo selectivityLocalised concentration of reagentChange in locale of reactionMicellar solubilization of phenols is greatly affected byposition of the substituent group in aromatic ringDifference in solubilities can be explained in terms ofthe orientation of molecule adsorbed on the micelleThe solubilization with specific orientation is useful inmicellar regioselective synthesis

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Alkaline Hydrolysis

2,4-dinitrochlorobenzene – by cationic micelles – sp.rate increase 10-100 foldp-nitrophenyl diphenyl phosphate – hexadecane inwater microemulsion stabilized by CTAB & 1-butanol.p-nitrophenylbenzoate – CTAB & sodium dodecylsulphate microemulsions.2,4 dichlorophenyl benzoate – sp. rate increases by 45fold

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Oxidation

Half mustard oxidation by tert-butyl hydroperoxide &hypochlorite

OHHO

R S2

HO OH

OCl

R SO2

HOCl

water

cyclo−

hexane

ClCH CH −S−CH CH Cl2 2 2 2

CH CH −S−CH CH Cl23 2 2

MUSTARD

Half MUSTARD

Destruction is very rapid in microemulsion

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Oxidation - prevention

Oxidation of fats - rancidity. Most antioxidants - oil insolubleProcess

Intensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Oximation of cyclododecanone

ONOH

(NH OH)2 2

+ 2H O2+ H SO

2 4

42 H SO

600 fold enhancement in the specific rate of the reaction inmicroemulsions of SLS/n-butanol

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Phenol Chlorination

Excess chlorination –> Trichlorophenol

O HCl

O H

Cl

O HCl Cl

O H

Cl

Cl

O HCl Cl

Cl

O H

455 K 492 K

483 K493 K

448 K

30%

70%

Close boiling points –> Isolation difficult

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Phenol Chlorination

HCl-H2O2 as chlorinating agentenvironmentally safeCompatible with surfactant additivesH2O is the only byproductReaction is well controlled by manipulating the molarratio of HCl and H2O2

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Selectivity with substituted phenols

o-/p- ratioCompound Conventional Our work SurfactantO-Cresol ∼ 0.5 5-10 10mM BKC3,5-Xylenol < 0.3 10-20 10mM LAOAcetanilide ∼ 0.35 2.6 10mM SDSo-chlorophenol 0.22 1.0 10mM SDSBenzoic acid (o-/p-)< 0.1 2-4 10mM SDSChlorobenzene ∼ 0.5 ∼ 3 25mM CTABChlorobenzene ∼ 0.5 ∼ 7 25mM SDSIodobenzene ∼ 0.5 ∼ 5 25mM SDS

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Location and orientation of phenol

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Reduction

Regioselective reduction of isophorone in micelles &microemulsions

O

CH3

CH3

C3

H

H

O

CH3

CH3

C3

H

O

CH3

CH3

C3

H

H

O

CH3

CH3

C3

H

+

NaBH4

1,2 reduction

1,4 reduction

Cis + Trans

1,2-/1,4- product ratio 58/42→ 75/25

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Non micellar effects

Micelles are short livedEmulsion droplets and solid dispersions: more“permanent” surfactant layerOther reaction successfully catalysed by micellization :Reimer Tiemann reaction (o-/p- decrease from 70/30 to40/60) and Halogenation of substituted phenol(selectivity and rate improvement)Surfactant catalysis of solid catalysed reactions

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Heck reaction

Generation of new carbon-carbon bondHomogenous solutions: palladiun catalyst, phosphineligands and an inorganic baseRate ~ 0.003 min−1

Drawbacks: Product contamination with catalyst,Phosphine ligand and catalyst air sensitivity, Catalystrecycling, Usage of polar aprotic solvents

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Heck reaction: Pd/C with Cationic

Surfactant loading less than 20% of earlier

Anionic surfactants are not so effective

Reactivity:K2CO3 > Na2CO3 TEA � NaOH� CH3COONa0.17M BKC, k = 0.063min−1

K2CO3 catalysed heck reaction of iodobenzene/styrene at800C

Catalyst loading: 0.01mol/mol

Similar observation for most cationic surfactants as BKC,CTAB and CPC

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Possible mechanism

P

Catalyst Surface

Micelle

emulsified droplet

P P

Catalyst Surface

Micelle

emulsified droplet

PP

Micelle

R R

emulsified droplet

Catalyst Surface

Micelle

Catalyst Surface

emulsified droplet

R R

step2= reaction of reactants on the catalyst surface to form products

step3=transfer of products from catalyst surface to emulsion droplet/micelle

step1=transfer of reactants from emulsion droplet/micelle to catyst surface

R=reactants P=products

step3

step1

Micelle

step2

Adsorbed surfactant layer provides a preferred location

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Growth of ultrafine particles in microemulsions

��������������������� ����� ������������������ ����� ����������

����������

��� !!�""##�$$%%�&&''�((

+

+

+

+

Step 1

Step 2

Reactants A

Reactants B

Step 1 Step 2Step 3

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Droplet exchange

0 20 40 60 80 100 120

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

Abso

rban

ce

experimental values

model fitting

kex

= 5.6 x 104 (lit/mol.s)

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Fuels

Gasoline, diesel, fuel oils microemulsionsReduced peak temperature leading to lower NOxemissionHigher flash pointcontrolled pool burningSafety in storage and transport without affectingatomised burning in engineCan water help fuel burn? Yes! Better fuel atomization

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

Summary

Process Intensification leads to greener processesType of energy equally important as amountSurfactant based media are greener aqueous solventsNano-structured solvents can alter kinetics andselectivity of reactionsSolubilization leads to enhanced rates of reaction - timeintensificationOrientation of molecules is responsible for theselectivity - material intensification

ProcessIntensification

ICT/CE/SSB

ProcessIntensification

NanoStructuredReactionMedia

Kinetics

Selectivity

Summary

THANK YOU ([email protected])

Non-micellar

effects