comparitive design study bs8110 vs ec2

Upload: dagoose81

Post on 03-Apr-2018

257 views

Category:

Documents


6 download

TRANSCRIPT

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    1/127

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    2/127

    BRE material is also published quarterly on CD

    Each CD contains BRE material published in the

    current year, including reports, specialist reports, and

    the Professional Development publications: Digests,

    Good Building Guides, Good Repair Guides and

    Information Papers.

    The CD collection gives you the opportunity to build a

    comprehensive library of BRE material at a fraction of

    the cost of printed copies.

    As a subscriber you also benefit from a 25% discounton other BRE titles.

    For more information contact:

    BRE Bookshop on 020 7505 6622

    BRE Bookshop

    BRE Bookshop supplies a wide range of building and

    construction related information products from BRE

    and other highly respected organisations.

    Contact:

    post: BRE Bookshop

    151 Rosebery Avenue

    London, EC1R 4GB

    fax: 020 7505 6606

    phone: 020 7505 6622email: [email protected]

    website: www.brebookshop.com

    Prices for all available BRE

    publications can be obtained from:

    BRE Bookshop

    151 RoseberyAvenue

    London, EC1R 4GB

    Tel: 020 7505 6622

    Fax: 020 7505 6606

    e-mail: [email protected]

    BR455

    ISBN 1 86081 611 8

    Copyright BRE 2003

    First published 2003

    Currentlyavailable only in electronic

    format.

    On CD-ROM ISSN 1471-2032.

    Produced from authors material as

    supplied.

    BRE is committed to providing

    impartial and authoritative

    information on all aspects of the

    built environment for clients,

    designers, contractors, engineers,

    manufacturers, occupants, etc. We

    make every effort to ensure the

    accuracy and quality of information

    and guidance when it is first

    published. However, we can take no

    responsibility for the subsequent

    use of this information, nor for any

    errors or omissions it may contain.

    Publishedby

    BRE Bookshop

    by permission of

    Building Research Establishment Ltd

    Requests to copy any part of this

    publication should be made to:

    BRE Bookshop

    Building Research Establishment

    Bucknalls Lane

    Watford, WD25 9XX

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    3/127

    iii

    Summary report

    Design calculations to Eurocode 2

    Design calculations to BS 8110

    Reinforcement drawings for a typical floor

    Material quantities and construction costs

    Contents

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    4/127

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    5/127

    5HLQIRUFHGFRQFUHWHIUDPHGVWUXFWXUH

    FRPSDUDWLYHGHVLJQVWXG\WR(&DQG%6

    6XPPDU\UHSRUW

    6FRSH

    7KLVGHVNVWXG\ZDVFRPPLVVLRQHGE\%XLOGLQJ5HVHDUFK(VWDEOLVKPHQW/WG%5(DVSDUWRI7DVNRIWKH'7/5QRZ2'30)UDPHZRUN3URMHFWIRUWKHLPSOHPHQWDWLRQRI(XURFRGHIRUWKHGHVLJQRIFRQFUHWHVWUXFWXUHVLQWKH8.,WVSXUSRVHZDVWRSUHSDUHDQGFRPSDUHSDUDOOHOGHVLJQVRIDW\SLFDOUHLQIRUFHGFRQFUHWHIUDPHGVWUXFWXUHWR(&DQG%6LQRUGHUWRDVVHVVWKHLUGLIIHUHQFHVLQWHUPVRIHFRQRP\RIFRQVWUXFWLRQDQGGHVLJQSURFHVV7KLVVWXG\ZLOOKRSHIXOO\SURYLGHSDUWRIWKHFDOLEUDWLRQGDWDUHTXLUHGWRDVVLVWWKHFRPPLWWHHSUHSDULQJWKH8.1DWLRQDO$QQH[WR(&

    7KHIROORZLQJVHFWLRQVDUHLQFOXGHGLQWKHPDLQUHSRUW

    'HVLJQFDOFXODWLRQVWR(XURFRGH'HVLJQFDOFXODWLRQVWR%65HLQIRUFHPHQWGUDZLQJVIRUDW\SLFDOIORRU0DWHULDOTXDQWLWLHVDQGFRQVWUXFWLRQFRVWV

    ,ZRXOGOLNHWRWKDQN'U7RQ\-RQHVRI$UXS5HVHDUFKDQG'HYHORSPHQWIRUSURYLGLQJWKHJHQHUDODUUDQJHPHQWGHWDLOVIRUDVHFWLRQRIDW\SLFDOWHQVWRUH\IUDPHGVWUXFWXUH

    'HVLJQVROXWLRQ

    7KHSODQFKRVHQIRUWKHVWXG\ZDVVHOHFWHGEHFDXVHLWKDVDVOLJKWO\LUUHJXODUOD\RXWZLWKIDLUO\W\SLFDOVSDQVRIDQGP$VZHOODVFRQWDLQLQJDOORIWKHHOHPHQWVQHFHVVDU\IRUWKHVWXG\WKHUHLVDSUREOHPDWLFORQJIUHHHGJHVSDQRQWKHZHVWVLGH7KLVLVWKHW\SHRIOD\RXWUHJXODUO\IRXQGLQHYHU\GD\SUDFWLFHDQGZDVWKRXJKWWREHPRUHUHSUHVHQWDWLYHWKDQDPRUHUHJXODUDUUDQJHPHQW

    )ODWVODEFRQVWUXFWLRQKDVEHHQVHOHFWHGIRUWKHIORRUVDVWKLVLVFRPPRQO\WKHSUHIHUUHGDQGPRVWHFRQRPLFVWUXFWXUDOVROXWLRQ+RZHYHUWZREHDPVKDYHEHHQLQWURGXFHGZLWKLQWKHFDQWLOHYHUHGDUHDDWWKHVRXWKHDVWFRUQHULQRUGHUWROLPLWGHIOHFWLRQV

    ,QRUGHUWRSURYLGHDEHWWHUFRPSDULVRQEHWZHHQWKHWZRGHVLJQFRGHVFRQYHQWLRQDOEDVHPHQWUHWDLQLQJZDOOVKDYHEHHQHPSOR\HGLQSUHIHUHQFHWRDFRQWLJXRXVSLOHGZDOOVROXWLRQDQGSDGIRRWLQJVDWDQXQUHDOLVWLFN1PJURXQGEHDULQJSUHVVXUHKDYHEHHQVHOHFWHGLQSUHIHUHQFHWRSLOHFDSV

    'HVLJQSDUDPHWHUV

    7KHIROORZLQJJHQHUDOEULHILWHPVZHUHDJUHHGIURPGLVFXVVLRQZLWK'U5LFKDUG0RVVRI%5(DQGPHPEHUVRIWKH&,(*&RQFUHWH,QGXVWU\(XURFRGH*URXS

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    6/127

    'HVLJQ&RGHV (XURFRGHUHYLVHGILQDOGUDIWRISU(1%63DUWDQG3DUW$VVRFLDWHGORDGLQJFRGHV

    1DWLRQDO$QQH[ $VVXPH8.YDOXHIRUFFLV

    /RDGLQJ $SSOLHGGHDGORDGN1P

    )ORRULPSRVHGORDGLQJN1PSOXVN1PIRUSDUWLWLRQV5RRILPSRVHGORDGLQJN1P

    3HULPHWHUFODGGLQJN1P

    'HIOHFWLRQOLPLWV (&TXDVLSHUPDQHQWGHIOHFWLRQ/%6ORQJWHUPWRWDOGHIOHFWLRQ/$IIHFWLQJSHULPHWHUFODGGLQJ/

    &RQFUHWH &ROXPQVDQGVKHDUZDOOVEHORZOHYHOJUDGH&

    (OVHZKHUHJUDGH&IFNYDOXHVRIDQG1PP

    DUHDQH[DFWPDWFKIRU%6JUDGHV&DQG&DQGKDYHEHHQXVHG

    LQSUHIHUHQFHWRURXQGHGGRZQFRGHPL[HVLQRUGHUWRSURYLGHDWUXHFRPSDULVRQ

    5HLQIRUFHPHQW +LJK\LHOGGHIRUPHG(&I\N1PP%6I\1PP

    ([SRVXUH 0RGHUDWH )LUHSHULRG 2QHKRXU

    6ODEVDQGFROXPQVVKRXOGKDYHPLQLPXPVL]HVWRUHOHYDQWFRGHUHTXLUHPHQWV

    $Q\DGYDQWDJHWREHJDLQHGIURPHTXDWLRQVDDQGELQSU(1VKRXOGEH

    XWLOLVHG

    6RIWZDUH

    7KHIROORZLQJGHVLJQVRIWZDUHKDVEHHQXVHGLQWKHSUHSDUDWLRQRIWKHDWWDFKHGFDOFXODWLRQVDQGTXDQWLWLHV

    )ORRUVODEV )(03ODWH6NDQVND,76ROXWLRQV6KHDUZDOOV )(06XSHU6WUXFWXUH$OORWKHUPHPEHUV 5&&6SUHDGVKHHWVIRU&RQFUHWH'HVLJQ

    EHWDYHUVLRQVXVHGIRU(&ODWHVWGUDIW

    %DU6FKHGXOLQJ %DU6FKHG[OW&%XN]NRZVNL

    /RDGLQJ

    7KHJDPPDIDFWRUVIRUGHVLJQDW8/6GLIIHUVXEVWDQWLDOO\EHWZHHQWKHWZRFRGHV7KHIDPLOLDU*N4NLVXVHGIRU%6EXWIRUWKH(&GHVLJQ*N4NHTXDWLRQELQSU(1LVSHUPLWWHGWKLVEHLQJPRUHRQHURXVLQWKLVFDVHWKDQWKH*N4NGHULYHGIURPHTXDWLRQD7KLVUHGXFWLRQLQXOWLPDWHORDGLQJFRPSDUHGZLWK%6FDQUHGXFHUHLQIRUFHPHQWQHHGHGDW8/6WKXVLQFUHDVLQJWKHLPSRUWDQFHRIFKHFNVDW6/6ZKHUHGHIOHFWLRQUHTXLUHPHQWVFDQFRQWURO

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    7/127

    7KHSDWWHUQRIORDGLQJLVDOVRGLIIHUHQWLQ(&%6UHTXLUHVWKDWWKHDOOVSDQVORDGHGDQGDOWHUQDWHVSDQVORDGHGFDVHVEHFRQVLGHUHGZKHUHDV(&UHTXLUHVWKDWDGMDFHQWVSDQVDQGDOWHUQDWHVSDQVORDGHGVLWXDWLRQVEHFKHFNHG7KLVKDVWKHHIIHFWRIVLJQLILFDQWO\LQFUHDVLQJSHDNVXSSRUWPRPHQWVDQGKHQFHVKHDUVDOWKRXJKWKHGHVLJQPRPHQWVDWFROXPQIDFHVDUHPDUJLQDOO\OHVVDIIHFWHG&RQYHUVHO\EHFDXVH(&GRHVQRW

    UHTXLUHGHDGORDGWREHSDWWHUQHGSRVLWLYHVSDQPRPHQWVDUHPDUJLQDOO\UHGXFHG

    ,WVKRXOGEHQRWHGWKDWERWKGHVLJQVDUHIRUDQLPSRVHGORDGLQJRIN1PZKHUHDVWKH%6ORDGLQJFRGHFDOOVIRUN1PDQG(XURFRGHVIRUN1P

    6ODEV

    0DLQO\EHFDXVHRIWKHLUUHJXODUFROXPQOD\RXWILQLWHHOHPHQWDQDO\VLVKDVEHHQXVHG$PRGLILHGVXEIUDPHDSSURDFKFRXOGKDYHEHHQDGRSWHGEXWWKLVZRXOGKDYHEHHQOHVVWLPHHIILFLHQWDQGZRXOGQRWSUHGLFWFULWLFDOSHULPHWHUGHIOHFWLRQV7KHSODWHGHVLJQVRIWZDUHHPSOR\HGXWLOLVHVLWHUDWLYHFUDFNHGVHFWLRQDQDO\VLVWRDUULYHDWVHSDUDWHVWLIIQHVVPDWULFHVIRU8/6DQG6/67KLVPHWKRGDVZHOODVJLYLQJUHDVRQDEOHSUHGLFWLRQVRIGHIOHFWLRQVHIIHFWLYHO\PRGHOVFUDFNLQJSDWWHUQVDURXQGVXSSRUWVWKHUHE\UHGXFLQJHGJHDQGFRUQHUFROXPQPRPHQWVDQGHOLPLQDWLQJWKHQHHGWRPDQXDOO\DGMXVWIRU0WPD[

    0RGHOOLQJ 7KHDUHDVRFFXSLHGE\FROXPQVKDYHEHHQPRGHOOHGDVGHHSHUUHJLRQVDVRSSRVHGWRSRLQWVXSSRUWVWRJLYHDEHWWHUHVWLPDWHRIGHIOHFWLRQV)RUWKHVDPHUHDVRQDIWHUGHWHUPLQLQJUHLQIRUFHPHQWUHTXLUHGWKHPRGHOVZHUHUHUXQZLWKDSSOLHGUHLQIRUFHPHQW

    $VWKHGHIOHFWLRQVDIIHFWLQJWKHZHVWHUQSHULPHWHUFODGGLQJSURYHGWREHFULWLFDOLQ

    GHWHUPLQLQJVODEWKLFNQHVVLWZDVQHFHVVDU\WRFDUU\RXWWKUHHUXQVIRUHDFKFRGHZLWKYDU\LQJFUHHSIDFWRUVD XQGHUTXDVLSHUPDQHQWORDGLQJWRFRPSDUHZLWKWKH/OLPLWE XQGHUVHOIZHLJKWDWWKHDSSOLFDWLRQRIFODGGLQJDQGF XQGHUWRWDOORDGORQJWHUPFEWREHFRPSDUHGZLWK/

    )RUHDFKRIWKHDERYHFRQGLWLRQVDFRPSRVLWHFUHHSIDFWRUZDVGHWHUPLQHGIURPWKHPDJQLWXGHDQGDJHDWDSSOLFDWLRQRIHDFKUHOHYDQWORDGFRPSRQHQW

    6L]LQJ 7KHILQDOVODEGHSWKVUHTXLUHGWRVDWLVI\WKHSHULPHWHUGHIOHFWLRQOLPLWZHUHPPIRU(&DQGPPIRU%67KHUHDUHVHYHUDOUHDVRQVIRUWKLVGLIIHUHQFH

    WKHSULQFLSDOUHDVRQVEHLQJ

    7KHLQVWDQWDQHRXV(&IRUJUDGH&LV1PPWR(&EXWRQO\1PPWR%6

    7KHFUDFNLQJVWUHVVLV1PPWR(&EXWRQO\1PP

    WR%6

    7R(&WHQVLRQVWLIIHQLQJLQFUHDVHVZLWKDJHEXWWR%6LWUHGXFHV

    $OORIWKHVHWHQGWRSURGXFHVPDOOHUGLVSODFHPHQWVWR(&DOWKRXJKWKHVHHIIHFWVDUHSDUWLDOO\RIIVHWE\DJUHDWHUGHQVLW\IRUFRQFUHWHN1PDVRSSRVHGWRPPPRUHERWWRPFRYHUDQGWKHVOLJKWO\GLIIHUHQWUHODWLRQVKLSEHWZHHQVXSSRUWDQGVSDQVWHHO

    ,QHYHU\GD\SUDFWLFHWKHDERYHVHOHFWHGVODEGHSWKVPD\KDYHEHHQURXQGHGXSWRWKH

    QHDUHVWPPJLYLQJPPDQGPPUHVSHFWLYHO\

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    8/127

    'HWDLOLQJ)URPWKHDWWDFKHGGUDZLQJVLWFDQEHVHHQWKDWVLPLODUEDUOD\RXWVKDYHEHHQDGRSWHGIRUERWKFRGHV$OWKRXJK(&ODSVDUHVOLJKWO\JUHDWHUPDLQWRSVWHHOFXUWDLOPHQWSRLQWVKDYHEHHQPDLQWDLQHGDWDVWDQGDUG/WKHDPRXQWRIVSDQWRSVWHHOSURYLGHGEHLQJGHWHUPLQHGIURPWKDWUHTXLUHGDW/7KHSULQFLSOHRISURYLGLQJWZRWKLUGVRIFROXPQKHDGVWHHOZLWKLQWKHFHQWUDOKDOIRIFROXPQVWULSVKDVDOVREHHQPDLQWDLQHG

    1HLWKHUFRGHVKRZVDUHTXLUHPHQWIRUDJUHDWPDQ\OLQNVDWFROXPQKHDGVDVSXQFKLQJVKHDULVQRWUHDOO\FULWLFDODWWKHVHOHFWHGVODEGHSWKV7KHDUUDQJHPHQWVRIOLQNVDUHKRZHYHUYHU\GLIIHUHQWZLWKUHFWDQJXODUSHULPHWHUVWR%6DQGZLWKUDGLDORUEHDPW\SHVSXUVWR(&

    0DWHULDOTXDQWLWLHV

    &RQFUHWH 6RIILW 9HUWLFDO 5HEDU &RVW6/$%6

    P IRUPVP IRUPVP 7RQQHV

    (&

    %6

    7KLVLVDQH[WUHPHO\GLVDSSRLQWLQJRXWFRPHDVLWVKRZVDUHGXFWLRQLQVODEFRQVWUXFWLRQFRVWIRUWKHQHZFRGHRIRQO\,IHTXDWLRQZHUHWRKDYHEHHQXVHGLQVWHDGRIHTXDWLRQVDDQGEWKH(&GHVLJQZRXOGEHWKHPRUHH[SHQVLYHVHHEHORZ7KHUHTXLUHPHQWWRLQFOXGHWKHDGMDFHQWVSDQVORDGLQJSDWWHUQDQGWKHWKLQQHUVODEDUHWKHSULQFLSDOUHDVRQVIRUWKH(&UHLQIRUFHPHQWTXDQWLWLHVEHLQJKLJKHU

    7KHWDEOHEHORZJLYHVDQLQGLFDWLRQRIWKHGLIIHUHQWUHODWLRQVKLSEHWZHHQWRSDQGERWWRP

    UHLQIRUFHPHQW%WPVWHHO 7RSVWHHO

    7

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    9/127

    %HDPV

    7KHWZREHDPVGRQRWKDYHWRZRUNYHU\KDUG7KH\GROLWWOHPRUHWKDQSURYLGHH[WUDVWLIIQHVVZKHUHUHTXLUHG$VDUHVXOWUHLQIRUFHPHQWLVPRUHRUOHVVQRPLQDOWRERWKFRGHV

    &ROXPQV/RDGWDNHGRZQ $OWKRXJKWKH(&VHUYLFHORDGLQJIRUDVLQJOHIORRULVDURXQGOHVVWKDQIRU%6UHIHUHQFHFROXPQ'WKHDFFXPXODWHGVHUYLFHORDGDWEDVHOHYHOLVPRUHEHFDXVHWKH%6LPSRVHGORDGUHGXFWLRQVDUHIDUJUHDWHU$OVRWKH(&DFFXPXODWHG8/6ORDGZKLFKREYLRXVO\JRYHUQVUHLQIRUFHPHQWOHYHOVLVRQO\OHVVWKDQ%6LQVSLWHRIWKHVLQJOHIORRUWRWDOEHLQJQHDUO\OHVV,QDQXWVKHOOWKHUHVWULFWLYH(XURFRGHLPSRVHGORDGUHGXFWLRQPHWKRGKDVHDWHQXSQHDUO\KDOIRIWKHDGYDQWDJHREWDLQHGIURPORZHUIDFWRUVDQGFDQDFWXDOO\JLYHPRUH6/6ORDGWRIRXQGDWLRQV

    6L]LQJ ,QWKLVEXLOGLQJFROXPQVL]HVDUHJRYHUQHGE\WKHPD[LPXPDPRXQWRI

    YHUWLFDOUHLQIRUFHPHQWSHUPLWWHGE\HDFKFRGH7KH%6XSSHUOLPLWRIDWODSVKDVVHHPHGWRZRUNZHOOIRUPDQ\\HDUVEXWWR(&WKHJHQHUDOOLPLWRIRQO\KDVEHHQWDNHQ7KLVVHHPVXQIDLUO\UHVWULFWLYHDQGDVDUHVXOWFROXPQVL]HVDUHH[WUHPHO\VLPLODULQERWKVROXWLRQV7KHFRGHGRHVSHUPLWWKHOLPLWWREHH[FHHGHGLQFHUWDLQFLUFXPVWDQFHVEXWLWLVOLNHO\WKDWGHVLJQHUVZLOOEHYHU\UHOXFWDQWWRH[FHHGWKLVOLPLWXQOHVVVSHFLILFJXLGDQFHLVJLYHQLQUHFRJQLVHGSXEOLFDWLRQV

    'HWDLOLQJ (&FROXPQODSVDUHDURXQGORQJHUWKDQLQ%67KHUHLVDOVRDUHTXLUHPHQWWRUHGXFHOLQNVSDFLQJDWODSVDQGFORVHWRMRLQWV2WKHUZLVHPHWKRGVDUHYHU\VLPLODU

    0DWHULDOTXDQWLWLHV

    &RQFUHWH 9HUWLFDO 5HEDU &RVW&2/8016

    P IRUPVP 7RQQHV

    (&

    %6

    7KLVDJDLQLVDGLVDSSRLQWLQJRXWFRPHDVWKHGLIIHUHQFHLQFRVWLVRQO\

    6KHDUZDOOV$QDO\VLV 7KHUHDUHTXLWHVWULNLQJGLIIHUHQFHVKHUH7R%6KRUL]RQWDOIRUFHVDUHWDNHQDVWKHPD[LPXPRIZLQGORDGDQGRIGHDGORDG+RZHYHUZLWK(&KRUL]RQWDOORDGVWRDOORZIRULPSHUIHFWLRQVDUHDGGHGWRZLQGORDGVERWKEHLQJPRGLILHGE\DIDFWRU:DOOVDUHPPWKLFNIRUERWKVROXWLRQVEXWEHFDXVHRIWKLVVOLJKWO\LQFUHDVHGKRUL]RQWDOORDGLQJDQGDOVREHFDXVHRIVOLJKWO\OHVVGHDGORDGIURPWKHVODEVJUHDWHUWHQVLRQVGHYHORSUHTXLULQJPRUHUHLQIRUFHPHQWDWORZHUOHYHOV

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    10/127

    0DWHULDOTXDQWLWLHV

    &RQFUHWH 6RIILW 9HUWLFDO 5HEDU &RVW6+($5:$//6

    P IRUPVP IRUPVP 7RQQHV

    (& %6

    +HUHWKH%6VROXWLRQLVFKHDSHU

    5HWDLQLQJZDOOV

    +HUHPHWKRGVDUHYHU\VLPLODUGLIIHUHQFHVEHLQJGXHPDLQO\WRLQWHQVLW\RIYHUWLFDOORDGLQJ(&UHTXLUHVVOLJKWO\OHVVORQJLWXGLQDOVWHHOEXWWKLVLVPRUHWKDQRIIVHWE\WKHLQFUHDVHLQEDVHVL]H

    &RQFUHWH 9HUWLFDO 5HEDU ([FDYDWH &RVW5(7$,1,1*:$//6

    P IRUPVP 7RQQHV P

    (&

    %6

    )RXQGDWLRQEDVHV

    $OWKRXJKWKH(&YHUWLFDOORDGVDW8/6DUHDOLWWOHOHVVWKDQIRU%6SDGVWHQGHGWR

    EHPDUJLQDOO\PRUHKHDYLO\UHLQIRUFHG7KHUHDVRQVIRUWKLVDUHTXLWHFRPSOH[DQGZLOOUHTXLUHIXUWKHUFRQVLGHUDWLRQ

    &RQFUHWH 5HEDU ([FDYDWH &RVW3$'%$6(6

    P 7RQQHV P

    (&

    %6

    2YHUDOOFRQVWUXFWLRQFRVWV

    6RIILW 9HUWLFDO29(5$//

    &RQFUHWHIRUPZRUN IRUPZRUN

    5HEDU ([FDYDWH 7RWDO

    (&

    %6

    7KLVVKRZVDQRYHUDOO(&VDYLQJRIRQO\

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    11/127

    &RQFOXVLRQV

    7KHIDFWWKDWRYHUDOOFRQVWUXFWLRQFRVWVDUHDOPRVWLGHQWLFDOLVIHOWWREHYHU\GLVWXUELQJSDUWLFXODUO\DVWKHDGYDQWDJHVRIXVLQJHTXDWLRQVDDQGEKDYHEHHQWDNHQ)RUWKLVVWUXFWXUHWKHXVHRI(XURFRGHZRXOGKDYHEHHQXSWR

    PRUHH[SHQVLYHLIHTXDWLRQKDGEHHQHPSOR\HG7KHDGRSWLRQRIDQHZGHVLJQFRGHVKRXOGVKRZDVWHSIRUZDUGLQWHUPVRIHFRQRP\

    ,WLVIHOWWREHLPSHUDWLYHWKDWWKH1DWLRQDO$QQH[WR(1VKRXOGSHUPLWWKHXVHRIHTXDWLRQVDDQGE7KHVHHTXDWLRQVZHUHVXUHO\FRPSLOHGDVDUHVXOWRIH[WHQVLYHVWDWLVWLFDOUHVHDUFKVRGHVLJQHUVVKRXOGEHJLYHQWKHRSSRUWXQLW\WRWDNHDGYDQWDJHRIWKHP

    $QRWKHUUHDVRQIRUWKHKLJKFRVWRIWKH(&VODEVLQWKLVGHVLJQVWXG\LVWKHLQFUHDVHGDPRXQWRIFROXPQKHDGUHLQIRUFHPHQWJHQHUDWHGE\WKHLQFOXVLRQRIWKHDGMDFHQWVSDQVORDGFDVH1RWZLWKVWDQGLQJP\HDUOLHUYLHZVUHJDUGLQJSDWWHUQ

    ORDGLQJWKLVVWXG\KDVQRZOHDGPHWRXQGHUVWDQGWKHLPSRUWDQFHRIRPLWWLQJWKHUHTXLUHPHQWWRLQFOXGHWKLVORDGFDVHH[FHSWLQXQXVXDOFLUFXPVWDQFHVHJYHU\KLJKSRLQWRUOLQHORDGVZKHUHDPRUHGHWDLOHGH[DPLQDWLRQRIUHOHYDQWORDGFRPELQDWLRQVPD\EHUHTXLUHG

    7KH1DWLRQDO$QQH[WR(&DQGWHFKQLFDOJXLGDQFHOLWHUDWXUHVKRXOGLGHDOO\GHILQHWKHFLUFXPVWDQFHVLQZKLFKWKHPDLQVWHHOOLPLWLQFROXPQVPD\EHH[FHHGHGDQGE\KRZPXFK

    5RG:HEVWHU&(QJ),6WUXFW(

    $XJXVW

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    12/127

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    13/127

    Calculations

    toEurocode 2

    July 2002

    Comparative Design Study

    toEC2 & BS8110

    of aTypical RC Framed Structure

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    14/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    1Typical Floor GA

    1 hour fire period external exposure = severe internal exposure = moderate.

    Slabs, beams and walls - C32/40 concrete. All reinforcement f = 500 N/mm (high bond).yk

    Imposed dead load = 1.0 kN/m on floors and roof (h same as floors).

    Perimeter cladding = 1.0 kN/m on external elevation.

    Superimposed load = (4+1) kN/m on floors, 1.5 kN/m on roof.

    A

    2 64

    1 53

    B

    C

    D

    E

    F

    1668

    985

    625

    325

    3600

    Lineofzerorotat

    ion

    400 sq

    500 sq

    500 sq

    500 sq 400 sq450 sq

    500 sq 400 sq

    400 sq 350 f

    350 f

    350 f350 f

    260 Solid slab

    Allow for one 150 sq holeat centre of face ofinternal columns

    In Ec2 FE analysis, assumefctm = value at10 days.

    Composite f values fromAnnex B of EC2.

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    15/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    2Basement GA

    Pilecaps and ground bearing slab not included in design.

    Ground bearing slab assumed to be 225 thick with 2.5 kN/m imposed load.

    Max ground bearing pressure taken as 600 kN/m

    .

    Foundations & retaining walls - C32/40 concrete - 40mm cover.

    Columns and core walls - C48/60 concrete (reducing to 32/40) - 1 hour fire period.

    72003600 5050

    230063508400

    1450

    4750

    2125

    8400

    8400

    4370

    A

    2 64

    1 53

    B

    C

    D

    E

    F

    Retaining walls resistinggranular backfill with 10

    kN/m surcharge andwater pressure to 1mabove basement level.

    3200 sq x 900base

    3600 sq x 1100base

    2400 x 4200x 600 base

    3050 sq x 800base

    1800 x 350 base300 wall

    2400 x 500 base300 wall

    1800x350base

    300wall

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    16/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    3Typical Floor

    Typical Floor Loading260 Slab = 6.50 at 25 kN/m to EN 1991

    Applied Dead = 1.00

    7.50 = Gk

    Partitions = 1.00

    Imposed = 4.00 Qk = 5.00 kN/m

    Total = 12.50 kN/m characteristic

    Quasi permant loading y2 = 0.3 from EN 1990 (office loading)

    QP UD load = 7.5 + 0.3 x 5 = 9.00 kN/m

    Perimeter line load from cladding = 3.6 kN/m

    CLAUSES 6.10a & 6.10b of EN 1990 y0 = 0.7 x = 0.85

    to 6.10a, ultimate UDL = 15.38

    to 6.10b, ultimate UDL = 16.11

    Therefore, Clause 6.10b will control at ULS

    IE 1.15 Gk + 1.5Qk

    Parameters for FE Analysisfck = 32 N/mm 40 N/mm

    Ecm28 = 1.05 x 9.5 x 401/3

    = 34.114 kN/mm

    from Table 3.1, fctm = 0.3 fck2/3

    = 3.0238 N/mm

    Assuming first cracking at 10 days,

    fctm7= Exp{0.25[1-(28/10)]} x fctm = 2.5553 N/mm (3.4)

    LOADING SEQUENCE kN/m at days

    Self weight 6.50 10

    Applied dead 2.00 60

    Permanent imposed 1.20 60

    Variable load 2.80 COMPOSITE E and f VALUES

    Annex B.1

    0 Et 0 EtSelf weight 2.63 9.39 2.63 9.39

    Applied dead 1.87 11.88 1.87 11.88Permanent imposed 1.87 11.88 1.87 11.88

    Variable load 0 36.02 (t,t0) Et

    Composite 2.38 10.09 1.84 12.03 1.21 15.47

    SW + applied deadTo 60 days

    1.35 x 7.5 + 0.7 x 1.5 x 5 =

    1.35 x 0.85 x 7.5 + 1.5 x 5 =

    fcm28 = fck + 8 =

    Longterm QP Longterm Total

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    17/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    4Typical Floor

    IMPOSED LOADSShowing pattern loading regions FEM-Design

    1 2 3 4

    56 7

    8

    9 10 11

    12 1314

    Regions for

    pattern loading

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    18/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    5Typical Floor

    DEAD LOADS2

    Perimeter line loading = 3.6 kN/m FEM-Design

    ULS LOADING PATTERNS1.15Gk on all spansplus 1.5Qk on alternate, adjacent spans

    in both directions.

    SLS LOADINGS1.0 Gk on all spans

    QP run with 0.3Qk, & f = 2.38 (for check against L/250)Full run with 1.0Qk & f = 1.84 (total long-term)

    Final run with Qk = 0 & f = 1.21 (at erection of cladding)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    19/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    6Typical Floor

    FINITE ELEMENT MESH FEM-Design

    Lineofzero

    rotation

    Areas over all columnsmodelled as deep regions

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    20/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    7Typical Floor

    As REQUIRED BTM X FEM-Design

    400800120016002000240028003200

    0

    SecionA

    Se

    cionB

    WHITE = nominal steel(T12 @ 275)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    21/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    8Typical Floor

    FEM-DesignAs REQUIRED BTM Y

    SectionC

    Section D

    WHITE = nominal steel(T12 @ 275)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    22/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    9Typical Floor

    FEM-DesignAs REQUIRED TOP X

    SectionE

    SectionG

    Section

    H

    SectionF

    WHITE = nominal steel

    (T12 @ 275)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    23/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    10Typical Floor

    FEM-DesignAs REQUIRED TOP Y

    WHITE = nominal steel(T12 @ 275)

    Section J

    Section K

    Section L

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    24/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    11Typical Floor

    T20 @ 150

    = 2094

    T12 @ 200

    = 565

    T12 @ 200

    = 565

    T12 @ 225

    = 503

    T12 @ 225

    = 503

    T16 @ 250

    = 1084

    Section A

    Section C

    Bottom steel X direction

    Bottom steel Y direction

    Section B

    Section D

    T16 @ 150

    = 1340

    T16 @ 225

    = 894

    T12 @ 175

    = 646

    T12 @ 175

    = 646

    T12 @ 250

    = 452

    T12 @ 200

    = 565

    T12 @ 250

    = 452

    T12 @ 275

    = 411

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    25/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    12Typical Floor

    Top steel X direction

    Section F Section E

    Section G

    T20 @ 70

    = 4488

    T20 @ 125

    = 2513 T20 @ 225

    = 1396T16 @ 250

    = 804

    T16 @ 125

    = 1608

    T20 @ 100

    = 3142

    T12 @ 250

    = 452

    T12 @ 225

    = 503

    9 T20

    in 800

    =3534

    10 T20

    in 925

    =3396

    T12 @275

    = 411

    T16@125= 1608

    T16@250

    = 804

    T20@90

    = 3491

    T20@175

    = 1795

    T20@110

    = 2856

    T20@225

    = 1396

    T20@80

    = 3927

    T20@150

    = 2094

    T12@175

    = 646

    T16@250

    = 804

    T20@200

    = 1571

    T20@125

    = 2513

    T12@275

    = 411

    T12@275

    = 411

    T12@275

    = 411

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    26/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    13Typical Floor

    Top steel Y direction

    Top steel X direction

    Section J

    Section H

    T16@150

    = 1340

    T16@150

    = 1340

    T12@150

    = 754

    T12@275

    = 411

    T12@275

    = 411

    T20@100

    = 3142

    T20@100

    = 3142

    T20@200

    = 1571

    T20@200

    = 1571

    T16@200

    = 1005

    T12@275

    = 411

    T12@275

    = 411

    T12@275

    = 411

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    27/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    14Typical Floor

    5178

    6049

    Top steel Y direction

    Section L

    Section K

    T12@200

    = 565

    T12@275

    = 411

    T12@175

    = 646

    T12@250

    = 452

    T20@80

    = 3927

    T20@150

    = 2094

    T16@150= 1340

    T20@150

    = 2094

    T20@125

    = 2513

    T20@250

    = 1257

    T20@75

    = 4189

    T20@150

    = 2094

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    28/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    15Typical Floor

    Quasi Permanent Defelectionswith Applied Reinforcement

    -21.9

    -27.1

    -0.3

    All QP deflections are

    within L/250 limit

    2 x 4900/250 = 39.2

    > 27.1 - 0.3 = 26.8 mm

    -6.1

    400

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    29/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    16Typical Floor

    Dead Only Defelectionswith Applied Reinforcement

    Max = 15.5 - 0.2 = 15.3 mm

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    30/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    17Typical Floor

    Total Load Defelectionswith Applied Reinforcement

    Max = 35.1 - 0.2 = 34.9 mm

    Max D affecting cladding

    = 34.9 - 15.3 = 19.6 mm

    = L / 500 OK

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    31/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    18Typical Floor

    Full ULS Column Momentswith Applied Reinforcement

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    32/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    19Typical Floor

    Column Reactions

    132.2 116.6 79.1

    385.7 346.1 205.2

    502.4

    151.8

    162.5

    124.9

    25.4

    20.8

    11.8

    17.6

    250.7 358.0211.3

    79.5137.2

    Full ULSDead onlyFull ULSDead only

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    33/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    20Typical Floor

    Project EC2 Comparative Design REINFORCED CONCRETE COUNCIL

    Client BRE Made by Date Page

    Location Column D2 RMW 01-Jun-2002

    PUNCHING SHEAR to prEN 1992-1 : 2001 Checked Revision Job No

    Originated fromRCCen13.xls on CD 2002 BCA for RCC COLUMN - 2156

    MATERIALS fck N/mm2 32 STATUS LEGEND

    fyk N/mm2

    500 VALID DESIGN

    DIMENSIONS A mm 500 E mm 250

    B mm 500 F mm -75

    G mm 150 H mm 150

    LOADING VEd kN 1066.8 0 1364.0

    ult UDL kN/m2 16.13

    SLAB h mm 260 dx mm 225 Asx mm2/m 4189 in B + 6d

    dy mm 205 Asy mm2/m 3927 in A + 6d

    d mm 215 100rL % 1.888

    RESULTS bVEd = 1226.8 kN vRd,c = 0.9251 N/mm2

    Equation (6.48)

    At col. face, vEd = 3.073 N/mm2 At 2d perimeter, vED,red = 1.3239 N/mm2

    Uout required = 5364 mm Equation (6.55)

    SOLUTION 6.22 (B)

    12 link spurs of 3 T10 @ 155 36 links

    .

    St = 250 mm Sr = 155 mm

    Asw/Sr req = 5.938 (6.53) & (9.11)Asw/Sr prov = 6.081 mm

    First link perimeter 105 mm from column face

    Uout = 5440.7 mm > 5,364 mm

    See GEOMETRY page for link locations. Plan

    Some links shown may need to be re-located to avoid holes.

    INTERNAL

    Punching at Column D2B2 and B4 similar

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    34/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    May 2002

    21Typical Floor

    Punching at Column A2A4 similar - No links required at Column B6

    Project EC2 Comparative Design REINFORCED CONCRETE COUNCIL

    Client BRE Made by Date Page

    Location Column A2 RMW 01-Jun-2002 1

    PUNCHING SHEAR to prEN 1992-1 : 2001 EDGE Checked Revision Job No

    Originated from RCCen13.xls on CD 2002 BCA for RCC COLUMN 0 - 2156

    MATERIALS fck N/mm2 32 STATUS LEGEND

    fyk N/mm2 500 VALID DESIGN

    DIMENSIONS A mm 400 E mm 0

    B mm 400 F mm -200

    G mm 0

    D mm 0 H mm 0

    LOADING VEd kN 258.8 0 980

    ult UDL kN/m2 16.13

    SLAB h mm 260 dx mm 225 Asx mm2/m 804 in B + 3d+D

    dy mm 205 Asy mm2/m 1156 in A + 6d

    d mm 215 100rL % 0.449

    RESULTS bVEd = 362.3 kN vRd,c = 0.5731 N/mm2

    Equation (6.48)

    At col. face, vEd = 1.390 N/mm2 At 2d perimeter, vED,red = 0.6541 N/mm2

    Uout required = 2101 mm Equation (6.55)

    SOLUTION 6.22 (B)

    9 link spurs of 3 T6 @ 160 36 links

    #NUM!

    St = 190 mm Sr = 160 mm

    Asw/Sr req = 1.256 (6.53) & (9.11)

    Asw/Sr prov = 1.590 mm

    First link perimeter 105 mm from column face

    Uout = 3161.7 mm > 2,101 mm

    See GEOMETRY page for link locations. PlanSome links shown may need to be re-located to avoid holes.

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    35/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    22

    Column Design SummaryH B

    COLUMN D2 500 500 SW = 20.9

    Dead Imposed Service Ultimate M M - Rebar523.3 97.8

    reduction 0.0

    523.3 97.8

    523.3 326.0

    reduction 0.0

    1046.6 423.8

    523.3 326.0

    reduction 0.0

    1569.8 749.9

    523.3 326.0

    reduction 107.6

    2093.1 968.3

    523.3 326.0reduction 102.7

    2616.4 1191.6

    523.3 326.0

    reduction 100.7

    3139.7 1416.9

    523.3 326.0

    reduction 99.8

    3662.9 1643.2

    523.3 326.0reduction 99.2

    4186.2 1870.0

    523.3 326.0

    reduction 98.9

    4709.5 2097.2

    523.3 326.0

    reduction 98.6

    5232.8 2324.6

    179.2 10 T32

    Ground floor

    C48/607557.3 9504.5 20.7 135.8 12 T32

    1st

    floor

    C48/606806.6 8561.6 27.5

    179.2 10 T20

    2nd floorC48/60

    6056.2 7619.1 27.5 179.2 10 T25

    3rd floor

    C48/605306.1 6677.1 27.5

    179.2 6 T32

    4th

    floor

    C32/404556.6 5736.0 27.5 179.2 6 T40

    5th

    floor

    C32/403808.0 4796.3 27.5

    179.2 6 T12

    6th

    floor

    C32/403061.4 3859.5 27.5 179.2 6 T16

    7th

    floor

    C32/402319.7 2930.1 27.5

    6 T12

    8th floor

    C32/401470.4 1839.3 27.5 179.2 6 T12

    Axial Force Moments

    Roof

    C32/40621.1 748.5 19.0 126.0

    See reinforcement calculations on following sheets

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    36/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    23

    Project EC2 Comparative Design Concrete Innovation & Design

    Client BRE Made by Date Page

    Location 500 x 500 Basement Columns RMW 6-Jun-02

    Checked Revision Job No

    Originated from RCCen53.xls on CD 2002 BCA for RCC - 2156

    MATERIALSfck 48 N/mm gs 1.15 Cover to link 30 mmfyk 500 N/mm gc 1.5 dg 20 mm

    f 2.0 fef 1.0 Dc = 5 mmSECTION

    h 500 mm .b 500 mm

    with 3 bars per 500 face X Xand 5 bars per 500 face

    ie. 500 x 500 columns with 12 bars

    RESTRAINTS Storey Top Btm CONNECTING BEAMS/SLABS for slendernessheight(mm) Condition Condition Braced ? b (mm) h (mm) L (m)

    X-AXIS 3600 F P Y Top West 8400 260 7.2

    Y-AXIS 3600 F P Y Top East 8400 260 5.875

    Top North 7200 260 8.4

    Top South 5335 260 8.4

    L (mm) L0 (mm) h0 (mm) Bottom West

    X-AXIS 3340 2509 250 Bottom East

    Y-AXIS 3340 2637 Bottom North

    Bottom South

    BAR ARRANGEMENTS BAR CENTRES (mm)Bar Asc % Link 500 Face 500 Face Nuz (kN) Checks

    T 32 3.86 8 196 98 9915 ok

    T 25 2.36 8 200 100 8701 ok

    T 20 1.51 6 204 102 8017 ok

    T 16 0.97 6 206 103 7579 ok

    T 12 0.54 6 208 104 7238 ok

    T 10 0.38 6 209 105 7104 ok

    LOADCASES AXIAL TOP MOMENTS (kNm) BTM MOMENTS (kNm)N (kN) M0x M0y M0x M0y

    D2 9504.5 20.7 135.8

    DESIGN MOMENTS (kNm) X AXIS Y AXIS Biaxial CheckMEd x MRd x MEd y MRd y REBAR

    52.2 191.8 190.1 216.112 T32

    #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A

    SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWOAXES TO prEN 1992-1 : 2001

    Equation (5.39)

    0.915#N/A

    #N/A

    #N/A

    #N/A

    #N/A

    D2

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    37/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    24

    Project EC2 Comparative Design Concrete Innovation & Design

    Client BRE Made by Date Page

    Location Column D2 RMW 6-Jun-02

    Checked Revision Job No

    Originated from RCCen53.xls on CD 2002 BCA for RCC - 2156

    MATERIALSfck 48 N/mm gs 1.15 Cover to link 30 mmfyk 500 N/mm gc 1.5 dg 20 mm

    f 2.0 fef 1.0 Dc = 5 mmSECTION

    h 500 mm .b 500 mm

    with 3 bars per 500 face X Xand 4 bars per 500 face

    ie. 500 x 500 columns with 10 bars

    RESTRAINTS Storey Top Btm CONNECTING BEAMS/SLABS for slendernessheight(mm) Condition Condition Braced ? b (mm) h (mm) L (m)

    X-AXIS 3600 F F Y Top West 8400 260 7.2

    Y-AXIS 3600 F F Y Top East 8400 260 5.875

    Top North 7200 260 8.4

    Top South 5335 260 8.4

    L (mm) L0 (mm) h0 (mm) Bottom West 8400 260 7.2

    X-AXIS 3340 2375 250 Bottom East 8400 260 5.875

    Y-AXIS 3340 2534 Bottom North 7200 260 8.4

    Bottom South 5335 260 8.4

    BAR ARRANGEMENTS BAR CENTRES (mm)Bar Asc % Link 500 Face 500 Face Nuz (kN) Checks

    T 32 3.22 8 196 131 9396 ok

    T 25 1.96 8 200 133 8385 ok

    T 20 1.26 6 204 136 7814 ok

    T 16 0.80 6 206 137 7449 ok

    T 12 0.45 6 208 139 7165 ok

    T 10 0.31 6 209 139 7054 ok

    LOADCASES AXIAL TOP MOMENTS (kNm) BTM MOMENTS (kNm)N (kN) M0x M0y M0x M0y

    8561.6 27.5 179.2 27.5 179.2

    7619.1 27.5 179.2 27.5 179.2

    6677.1 27.5 179.2 27.5 179.2

    DESIGN MOMENTS (kNm) X AXIS Y AXIS Biaxial CheckMEd x MRd x MEd y MRd y REBAR

    61.4 276.3 215.4 286.7 10 T32

    57.7 227.7 211.4 234.8 10 T2553.9 279.1 207.4 284.5 10 T20#N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A

    SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWOAXES TO prEN 1992-1 : 2001

    1st - 2nd

    2nd - 3rd

    Grnd - 1st

    1st - 2nd

    2nd - 3rd

    Equation (5.39)

    0.7070.875

    0.576

    #N/A

    #N/A

    #N/A

    Grnd - 1st

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    38/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    25

    Project EC2 Comparative Design Concrete Innovation & Design

    Client BRE Made by Date Page

    Location Column D2 RMW 6-Jun-02

    Checked Revision Job No

    Originated from RCCen53.xls on CD 2002 BCA for RCC - 2156

    MATERIALSfck 32 N/mm gs 1.15 Cover to link 30 mmfyk 500 N/mm gc 1.5 dg 20 mm

    f 2.0 fef 1.0 Dc = 5 mmSECTION

    h 500 mm .b 500 mm

    with 2 bars per 500 face X Xand 3 bars per 500 face

    ie. 500 x 500 columns with 6 bars

    RESTRAINTS Storey Top Btm CONNECTING BEAMS/SLABS for slendernessheight(mm) Condition Condition Braced ? b (mm) h (mm) L (m)

    X-AXIS 3600 F F Y Top West 8400 260 7.2

    Y-AXIS 3600 F F Y Top East 8400 260 5.875

    Top North 7200 260 8.4

    Top South 5335 260 8.4

    L (mm) L0 (mm) h0 (mm) Bottom West 8400 260 7.2

    X-AXIS 3340 2375 250 Bottom East 8400 260 5.875

    Y-AXIS 3340 2534 Bottom North 7200 260 8.4

    Bottom South 5335 260 8.4

    BAR ARRANGEMENTS BAR CENTRES (mm)Bar Asc % Link 500 Face 500 Face Nuz (kN) Checks

    T 40 3.02 10 380 190 7036 ok

    T 32 1.93 8 392 196 6135 ok

    T 25 1.18 8 399 200 5511 ok

    T 20 0.75 6 408 204 5159 ok

    T 16 0.48 6 412 206 4934 ok

    T 12 0.27 6 416 208 4759 ok

    LOADCASES AXIAL TOP MOMENTS (kNm) BTM MOMENTS (kNm)N (kN) M0x M0y M0x M0y5736 27.5 179.2 27.5 179.2

    4796.3 27.5 179.2 27.5 179.2

    3859.5 27.5 179.2 27.5 179.2

    2390.1 27.5 179.2 27.5 179.2

    1839.3 27.5 179.2 27.5 179.2

    748.5 19.0 126.0 27.5 179.2

    DESIGN MOMENTS (kNm) X AXIS Y AXIS Biaxial CheckMEd x MRd x MEd y MRd y REBAR

    50.2 337.4 203.4 381.16 T40

    46.5 309.1 199.5 345.1 6 T3242.8 223.0 195.5 233.0 6 T1637.0 316.6 189.3 332.6 6 T1234.8 313.4 187.0 333.6 6 T1227.5 212.8 179.2 217.1 6 T12

    SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWOAXES TO prEN 1992-1 : 2001

    4th - 5th

    5th - 6th

    6th - 7th

    3rd - 4th

    4th - 5th

    5th - 6th

    6th - 7th

    7th - 8th

    8th - roof

    7th - 8th

    8th - roof

    Equation (5.39)

    0.4500.357

    0.830

    0.520

    0.547

    0.933

    3rd - 4th

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    39/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    26

    Column Design SummaryH B

    COLUMN A2 & A4 400 400 SW = 13.4

    Dead Imposed Service Ultimate M M - Rebar145.6 21.4

    reduction 0.0

    145.6 21.4

    145.6 71.2

    reduction 0.0

    291.1 92.5

    145.6 71.2

    reduction 0.0

    436.7 163.7

    145.6 71.2

    reduction 23.5

    582.2 211.4

    145.6 71.2reduction 22.4

    727.8 260.2

    145.6 71.2

    reduction 22.0

    873.4 309.3

    145.6 71.2

    reduction 21.8

    1018.9 358.7

    145.6 71.2reduction 21.7

    1164.5 408.3

    145.6 71.2

    reduction 21.6

    1310.0 457.9

    145.6 71.2

    reduction 21.5

    1455.6 507.5

    82.4 4 T12

    Ground floor 1963.1 2435.2

    1st

    floor

    C48/601767.9 2193.3 4.2

    82.4 4 T12

    2nd floorC48/60

    1572.7 1951.6 4.2 82.4 4 T12

    3rd floor

    C48/601377.7 1709.9 4.2

    82.4 4 T12

    4th

    floor

    C32/401182.7 1468.4 4.2 82.4 4 T12

    5th

    floor

    C32/40988.0 1227.2 4.2

    82.4 4 T12

    6th

    floor

    C32/40793.6 986.7 4.2 82.4 4 T12

    7th

    floor

    C32/40600.4 747.8 4.2

    4 T16

    8th floor

    C32/40383.7 473.6 4.2 82.4 4 T12

    Axial Force Moments

    Roof

    C32/40166.9 199.4 2.9 56.5

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    40/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    27

    Column Design SummaryH B

    COLUMN B2 500 500 SW = 20.9

    Dead Imposed Service Ultimate M M - Rebar406.6 77.0

    reduction 0.0

    406.6 77.0

    406.6 256.6

    reduction 0.0

    813.2 333.5

    406.6 256.6

    reduction 0.0

    1219.7 590.1

    406.6 256.6

    reduction 84.7

    1626.3 762.0

    406.6 256.6reduction 80.8

    2032.9 937.7

    406.6 256.6

    reduction 79.3

    2439.5 1115.0

    406.6 256.6

    reduction 78.5

    2846.0 1293.1

    406.6 256.6reduction 78.1

    3252.6 1471.6

    406.6 256.6

    reduction 77.8

    3659.2 1650.3

    406.6 256.6

    reduction 77.6

    4065.8 1829.3

    Axial Force Moments

    483.5 583.0

    1146.7 1435.4

    12.2 156.7

    17.4 226.3

    1809.8 2287.8 17.4 226.3

    2388.3 3013.2 17.4 226.3

    2970.6 3744.4 17.4 226.3

    3554.5 4477.9 17.4 226.3

    4139.1 5212.5 17.4 226.3

    17.4 226.3

    4724.2 5947.9 17.4 226.3

    6 T20

    6 T12

    6 T12

    6 T12

    6 T16

    6 T25

    6 T12

    6 T16

    5th

    floor

    C32/40

    4th

    floor

    C32/40

    3rd floor

    C48/60

    2nd floorC48/60

    Roof

    C32/40

    8th floor

    C32/40

    7th

    floor

    C32/40

    6th

    floor

    C32/40

    1st

    floor

    C48/60

    Ground floor

    C48/60

    6 T25

    6 T325895.0 7419.6 13.2 170.8

    5309.5 6683.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    41/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    28

    Column Design SummaryH B

    COLUMN B4 500 500 SW = 20.9

    Dead Imposed Service Ultimate M M - Rebar367.0 69.6

    reduction 0.0

    367.0 69.6

    367.0 231.9

    reduction 0.0

    734.0 301.5

    367.0 231.9

    reduction 0.0

    1100.9 533.4

    367.0 231.9

    reduction 76.5

    1467.9 688.8

    367.0 231.9reduction 73.1

    1834.9 847.7

    367.0 231.9

    reduction 71.7

    2201.9 1007.9

    367.0 231.9

    reduction 71.0

    2568.8 1168.9

    367.0 231.9reduction 70.6

    2935.8 1330.2

    367.0 231.9

    reduction 70.3

    3302.8 1491.8

    367.0 231.9

    reduction 70.2

    3669.8 1653.6

    Axial Force Moments

    Roof

    C32/40436.6 526.4 77.6 150.2 4 T32

    8th floor

    C32/401035.5 1296.3 111.7 216.0 4 T20

    7th

    floor

    C32/401634.3 2066.2 111.7

    6th

    floor

    C32/402156.7 2721.3 111.7

    3381.6 111.7

    216.0 4 T16

    216.0 4 T16

    216.0 4 T20

    4th

    floor

    C32/403209.8 4044.0 111.7 216.0 4 T32

    5th

    floor

    C32/402682.6

    3rd floor

    C48/603737.7 4707.5 111.7

    2nd floorC48/60

    4266.0 5371.5 111.7

    6036.0 111.7

    216.0 4 T16

    216.0 4 T16

    216.0 4 T25

    Ground floor

    C48/605323.4 6700.6 84.4 163.2 4 T25

    1st

    floor

    C48/604794.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    42/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    29

    Column Design SummaryH B

    COLUMN B6 400 400 SW = 13.4

    Dead Imposed Service Ultimate M M - Rebar218.6 33.8

    reduction 0.0

    218.6 33.8

    218.6 112.6

    reduction 0.0

    437.1 146.4

    218.6 112.6

    reduction 0.0

    655.7 259.0

    218.6 112.6

    reduction 37.2

    874.2 334.5

    218.6 112.6reduction 35.5

    1092.8 411.6

    218.6 112.6

    reduction 34.8

    1311.4 489.4

    218.6 112.6

    reduction 34.5

    1529.9 567.6

    218.6 112.6reduction 34.3

    1748.5 645.9

    218.6 112.6

    reduction 34.1

    1967.0 724.4

    218.6 112.6

    reduction 34.1

    2185.6 802.9

    Axial Force Moments

    Roof

    C32/40252.3 302.0 24.8 45.7 4 T16

    8th floor

    C32/40583.5 722.3 35.8 66.6 4 T12

    7th

    floor

    C32/40914.7 1142.5 35.8

    6th

    floor

    C32/401208.7 1507.1 35.8

    1874.1 35.8

    66.6 4 T12

    66.6 4 T12

    66.6 4 T12

    4th

    floor

    C32/401800.8 2242.2 35.8 66.6 4 T12

    5th

    floor

    C32/401504.4

    3rd floor

    C48/602097.5 2610.8 35.8

    2nd floorC48/60

    2394.4 2979.6 35.8

    3348.7 35.8

    66.6 4 T12

    66.6 4 T12

    66.6 4 T16

    Ground floor 2988.5 3717.8

    1st

    floor

    C48/602691.4

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    43/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    30

    Column Design SummaryH B

    COLUMN E1 450 450 SW = 16.9

    Dead Imposed Service Ultimate M M - Rebar267.6 45.9

    reduction 0.0

    267.6 45.9

    267.6 152.9

    reduction 0.0

    535.2 198.8

    267.6 152.9

    reduction 0.0

    802.8 351.7

    267.6 152.9

    reduction 50.5

    1070.4 454.2

    267.6 152.9reduction 48.2

    1338.0 559.0

    267.6 152.9

    reduction 47.3

    1605.7 664.6

    267.6 152.9

    reduction 46.8

    1873.3 770.8

    267.6 152.9reduction 46.5

    2140.9 877.2

    267.6 152.9

    reduction 46.4

    2408.5 983.7

    267.6 152.9

    reduction 46.3

    2676.1 1090.4

    Axial Force Moments

    Roof

    C32/40313.5 376.6 117.8 274.7 6 T40

    8th floor

    C32/40734.0 913.7 165.6 390.1 6 T40

    7th

    floor

    C32/401154.6 1450.9 165.6

    6th

    floor

    C32/401524.6 1912.3 165.6

    2377.2 165.6

    390.1 6 T32

    390.1 6 T40

    390.1 6 T40

    4th

    floor

    C32/402270.3 2843.5 165.6 390.1 6 T40

    5th

    floor

    C32/401897.0

    3rd floor

    C48/602644.0 3310.4 165.6

    2nd floorC48/60

    3018.0 3777.7 165.6

    4245.3 165.6

    390.1 6 T32

    390.1 6 T32

    390.1 6 T32

    Ground floor 3766.5 4713.1

    1st

    floor

    C48/603392.2

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    44/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    31

    Column Design SummaryH B

    COLUMN E3 500 500 SW = 20.9

    Dead Imposed Service Ultimate M M - Rebar378.9 68.7

    reduction 0.0

    378.9 68.7

    378.9 229.0

    reduction 0.0

    757.8 297.7

    378.9 229.0

    reduction 0.0

    1136.6 526.7

    378.9 229.0

    reduction 75.6

    1515.5 680.1

    378.9 229.0reduction 72.1

    1894.4 837.0

    378.9 229.0

    reduction 70.8

    2273.3 995.2

    378.9 229.0

    reduction 70.1

    2652.1 1154.2

    378.9 229.0reduction 69.7

    3031.0 1313.5

    378.9 229.0

    reduction 69.4

    3409.9 1473.0

    378.9 229.0

    reduction 69.3

    3788.8 1632.8

    Axial Force Moments

    Roof

    C32/40447.6 538.8 83.5 123.6 4 T32

    8th floor

    C32/401055.5 1318.0 120.4 179.0 4 T16

    7th

    floor

    C32/401663.3 2097.2 120.4

    6th

    floor

    C32/402195.6 2763.0 120.4

    3434.0 120.4

    179.0 4 T16

    179.0 4 T16

    179.0 4 T20

    4th

    floor

    C32/403268.5 4107.1 120.4 179.0 4 T25

    5th

    floor

    C32/402731.4

    3rd floor

    C48/603806.3 4781.2 120.4

    2nd floorC48/60

    4344.5 5455.9 120.4

    6130.9 120.4

    179.0 4 T16

    179.0 4 T16

    179.0 4 T25

    Ground floor 5421.5 6806.2

    1st

    floor

    C48/604882.9

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    45/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    32

    Column Design SummaryH B

    COLUMN E5 400 400 SW = 13.4

    Dead Imposed Service Ultimate M M - Rebar224.7 30.4

    reduction 0.0

    224.7 30.4

    224.7 101.5

    reduction 0.0

    449.3 131.9

    224.7 101.5

    reduction 0.0

    674.0 233.4

    224.7 101.5

    reduction 33.5

    898.6 301.4

    224.7 101.5reduction 32.0

    1123.3 370.9

    224.7 101.5

    reduction 31.4

    1348.0 441.0

    224.7 101.5

    reduction 31.0

    1572.6 511.4

    224.7 101.5reduction 30.9

    1797.3 582.0

    224.7 101.5

    reduction 30.8

    2021.9 652.7

    224.7 101.5

    reduction 30.7

    2246.6 723.5

    Axial Force Moments

    Roof

    C32/40255.1 304.0 1.2 32.6 4 T12

    8th floor

    C32/40581.2 714.6 1.8 47.4 4 T12

    7th

    floor

    C32/40907.4 1125.1 1.8

    6th

    floor

    C32/401200.0 1485.5 1.8

    1848.1 1.8

    47.4 4 T12

    47.4 4 T12

    47.4 4 T12

    4th

    floor

    C32/401788.9 2211.6 1.8 47.4 4 T12

    5th

    floor

    C32/401494.2

    3rd floor

    C48/602084.0 2575.6 1.8

    2nd floorC48/60

    2379.3 2939.9 1.8

    3304.3 1.8

    47.4 4 T12

    47.4 4 T12

    47.4 4 T12

    Ground floor 2970.1 3668.8

    1st

    floor

    C48/602674.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    46/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    33

    Column Design SummaryDiameter

    COLUMN A6 350 SW = 8.0

    Moment

    Dead Imposed Service Ultimate M Rebar

    87.1 12.5

    reduction 0.0

    87.1 12.5

    87.1 41.8

    reduction 0.0

    174.3 54.3

    87.1 41.8

    reduction 0.0

    261.4 96.0

    87.1 41.8

    reduction 13.8

    348.5 124.0

    87.1 41.8reduction 13.2

    435.7 152.6

    87.1 41.8

    reduction 12.9

    522.8 181.5

    87.1 41.8

    reduction 12.8

    609.9 210.5

    87.1 41.8reduction 12.7

    697.1 239.5

    87.1 41.8

    reduction 12.7

    784.2 268.6

    87.1 41.8

    reduction 12.6

    871.3 297.7

    Axial Force

    Roof

    C32/4099.7 119.0 6 T12

    8th floor

    C32/40228.6 281.8 34.8 6 T12

    23.8

    6 T12

    6th

    floor

    C32/40472.6 586.8 34.8 6 T12

    7th

    floor

    C32/40357.4 444.7 34.8

    6 T12

    4th

    floor

    C32/40704.3 873.4 34.8 6 T12

    5th

    floor

    C32/40588.3 729.9 34.8

    6 T12

    2nd floorC48/60

    936.6 1160.9 34.8 6 T12

    3rd floor

    C48/60820.4 1017.1 34.8

    1st

    floor

    C48/601052.8 1304.7 34.8 6 T12

    Ground floor 1169.1 1448.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    47/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    34

    Column Design SummaryDiameter

    COLUMN C6 350 SW = 8.0

    Moment

    Dead Imposed Service Ultimate M Rebar

    159.8 26.4

    reduction 0.0

    159.8 26.4

    159.8 87.9

    reduction 0.0

    319.7 114.3

    159.8 87.9

    reduction 0.0

    479.5 202.1

    159.8 87.9

    reduction 29.0

    639.3 261.0

    159.8 87.9reduction 27.7

    799.2 321.2

    159.8 87.9

    reduction 27.2

    959.0 382.0

    159.8 87.9

    reduction 26.9

    1118.8 442.9

    159.8 87.9reduction 26.7

    1278.7 504.1

    159.8 87.9

    reduction 26.6

    1438.5 565.3

    159.8 87.9

    reduction 26.6

    1598.3 626.6

    Axial Force

    Roof

    C32/40186.2 223.4 93.9 6 T20

    8th floor

    C32/40433.9 539.0 116.6 6 T20

    6 T20

    6th

    floor

    C32/40900.4 1126.8 116.6 6 T25

    7th

    floor

    C32/40681.6 854.6 116.6

    6 T25

    4th

    floor

    C32/401341.0 1675.8 116.6 6 T32

    5th

    floor

    C32/401120.4 1400.9 116.6

    6 T20

    2nd floorC48/60

    1782.8 2226.6 116.6 6 T25

    3rd floor

    C48/601561.8 1951.1 116.6

    6 T25

    Ground floor 2225.0 2778.0

    1st

    floor

    C48/602003.8 2502.3 116.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    48/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    35

    Column Design SummaryDiameter

    COLUMN F1 350 SW = 8.0

    Moment

    Dead Imposed Service Ultimate M Rebar

    87.5 11.9

    reduction 0.0

    87.5 11.9

    87.5 39.6

    reduction 0.0

    175.1 51.5

    87.5 39.6

    reduction 0.0

    262.6 91.0

    87.5 39.6

    reduction 13.1

    350.1 117.6

    87.5 39.6reduction 12.5

    437.7 144.7

    87.5 39.6

    reduction 12.2

    525.2 172.0

    87.5 39.6

    reduction 12.1

    612.7 199.5

    87.5 39.6reduction 12.0

    700.3 227.0

    87.5 39.6

    reduction 12.0

    787.8 254.6

    87.5 39.6

    reduction 12.0

    875.3 282.2

    Roof

    C32/4099.4 118.5 105.9

    278.5 153.2

    Axial Force

    6 T25

    579.0 153.2

    6 T32

    7th

    floor

    C32/40353.6 438.6 153.2 6 T32

    8th floor

    C32/40226.5

    862.0 153.2

    6 T32

    5th

    floor

    C32/40582.3 720.3 153.2 6 T32

    6th

    floor

    C32/40467.7

    1145.9 153.2

    6 T32

    3rd floor

    C48/60812.2 1003.9 153.2 6 T25

    4th

    floor

    C32/40697.2

    1430.0

    6 T20

    1st

    floor

    C48/601042.4 1287.9 153.2 6 T25

    2nd floorC48/60

    927.3

    Ground floor 1157.6

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    49/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Column Loads & Design

    June 2002

    36

    Column Design SummaryDiameter

    COLUMN F3 350 SW = 8.0

    Moment

    Dead Imposed Service Ultimate M Rebar

    145.2 21.0

    reduction 0.0

    145.2 21.0

    145.2 70.1

    reduction 0.0

    290.5 91.1

    145.2 70.1

    reduction 0.0

    435.7 161.2

    145.2 70.1

    reduction 23.1

    580.9 208.1

    145.2 70.1reduction 22.1

    726.2 256.1

    145.2 70.1

    reduction 21.7

    871.4 304.6

    145.2 70.1

    reduction 21.4

    1016.6 353.2

    145.2 70.1reduction 21.3

    1161.9 402.0

    145.2 70.1

    reduction 21.2

    1307.1 450.8

    145.2 70.1

    reduction 21.2

    1452.3 499.7

    Axial Force

    Roof

    C32/40166.3 198.6 54.3 6 T12

    6 T16

    7th

    floor

    C32/40596.9 742.8 79.4 6 T16

    8th floor

    C32/40381.6 470.7 79.4

    6 T16

    5th

    floor

    C32/40982.3 1219.3 79.4 6 T16

    6th

    floor

    C32/40789.1 980.3 79.4

    6 T20

    3rd floor

    C48/601369.8 1698.9 79.4 6 T16

    4th

    floor

    C32/401176.0 1459.0 79.4

    6 T16

    1st

    floor

    C48/601757.9 2179.4 79.4 6 T16

    2nd floorC48/60

    1563.8 1939.1 79.4

    Ground floor 1952.0 2419.7

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    50/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Typical Floor Beams

    June 2002

    37

    Beam on line EMoments

    Beam on line 5Moments

    Beam on line EShears

    Beam on line 5Shears

    3 T16 top

    3 T20 top 3 T16 top

    3 T16 top

    3 T12 btm

    3 T12 btm

    500 x 400 beams

    Actions taken from FE analysis

    2 Legs of T10 @ 325throughout

    2 Legs of T10 @ 325

    throughout

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    51/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Stability Loading

    June 2002

    38

    Wind Loading EWPressure = 1.5 kN/m

    Width of elevation = 26.345 m Wind load per floor = 142.3 kN

    50% taken by core in this section

    Wind Loading NSPressure = 1.5 kN/m

    Width of elevation = 17.475 m Wind load per floor = 94.4 kN

    Imperfections to Section 5.2 q0 = 1/ 200 m = 14 per storey

    l m q1 S Gk S Qk Hi G Hi Q H WEW H WNSRoof 4.6 14 0.0034 3681 1776 12.56 6.06 55.3 73.4

    Level 8 8.2 28 0.0025 7362 3553 5.94 2.87 71.1 94.4

    Level 7 11.8 42 0.0024 11043 5329 7.84 3.78 71.1 94.4

    Level 6 15.4 56 0.0024 14724 6395 8.68 2.50 71.1 94.4

    Level 519 70 0.0024 18405 7549 8.68 2.71 71.1 94.4Level 4 22.6 84 0.0024 22086 8739 8.68 2.80 71.1 94.4

    Level 3 26.2 98 0.0024 25767 9947 8.68 2.84 71.1 94.4

    Level 2 29.8 112 0.0024 29448 11165 8.68 2.87 71.1 94.4

    Level 1 33.4 126 0.0024 33129 12389 8.68 2.88 71.1 94.4

    Grd Flr 36.4 140 0.0024 36811 13618 8.68 2.89 35.6 47.2

    Summary of Horizontal Loading

    Vertical Loading - Wall on Grid DOverall length = 6.39 Centreline length = 6.14

    Equivalent trapezoidal loading

    Left Right

    Dead 123.38 -18.56

    Total load Imposed 74.07 -12.39Add stairs 6.03

    5.61

    Dead only

    kN/m

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    52/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Wall Loading

    June 2002

    39

    Vertical Loading - Wall on Grid D/EOverall length = 6.39 Centreline length = 6.14

    Equivalent trapezoidal loading

    Left Right

    Total load Dead 137.08 -21.64Imposed 81.54 -14.58

    Add stairs 6.03

    Vertical Loading - Wall on Grid 3/4 5.61Overall length = 2.84

    Equivalent trapezoidal loading

    Left Right

    Dead 73.28 245.45

    Imposed 48.57 178.56

    Vertical Loading - Wall on Grid 6Overall length = 2.84

    Equivalent trapezoidal loading

    Left Right

    Dead 1.94 0.13

    Imposed 1.19 -0.08

    Total load Dead only

    kN/m

    kN/m

    Total load Dead only

    Dead only

    kN/m

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    53/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Wall Design

    June 2002

    40

    Core Wall model, includingimperfections & pD

    West WallRequired vertical steel

    South & East WallsRequired vertical steel

    South & East WallsRequired horizontal steel

    West WallRequired horizontal steel

    2mm /m

    on each face

    See next sheet for abbreviated reinforcement summary

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    54/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Wall Design

    June 2002

    41

    BasementLevel

    T20@

    125

    T20 @ 125 T12 @ 200

    T20 @ 200

    T20@

    200

    Vertical ReinforcementT10 @ 250 EF UNO

    Ground to First

    T20@12

    5

    T25@

    100

    T25 @ 100

    T25 @ 100

    T12 @ 175for 1600

    T12 @ 200

    T20 @ 200

    T25@

    100

    T12@

    250

    First to 2nd

    T12@

    175

    T12 @ 175

    T16 @ 150

    T16 @ 150

    T16@

    150

    T16@150

    T12 @ 250for 1600

    A

    B

    BC

    E

    ED

    2nd to 3rd

    A = T12 @ 200B = T12 @ 250C = T10 @ 250D = T10 @ 250E = T12 @ 150

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    55/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Wall Design 42

    June 2002

    Ground Floor Transfer

    Lintels

    Horizontal ReinforcementMax of T10 @ 300 & 25% vertical steel elsewhere

    T16@

    250=804

    T16@

    250=804

    1 T25 EF 1 T25 EF

    Grnd - 1st

    1st - 2nd

    2nd - 3rd

    T16 @ 250 = 804

    T12 @ 250 = 452

    T10 @ 300 = 262

    1 T25 EF

    1 T25 EF

    1 T25 EF

    1 T16 EF

    1 T16 EF

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    56/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Retaining Walls

    June 2002

    43

    IDEALISED STRUCTURE and FORCE DIAGRAMS DESIGN STATUS : VALID

    DIMENSIONS (mm)H = 3835 B = 1800 Tw = 300

    Hw = 1150.5 BI = 450 Tb = 350

    He = 3815

    MATERIAL PROPERTIESfck = 32 N/mm

    2 gc = 1.50 concretefyk = 500 N/mm

    2 gs = 1.15 steelCover to tension reinforcement (co) = 40 mm

    Allowable design surface crack width (Wmax) = 0.3 mm

    Concrete density = 25.0 kN/m

    Cement type = N (S, N, R or RS)

    Backfill at 21 days

    SOIL PROPERTIESDesign angle of int'l friction of retained mat'l () = 30 degree

    Design cohesion of retained mat'l (C ) = 0 kN/m (Only granular backfill considered, ie "C" = 0)

    Density of retained mat'l (q ) = 20 kN/m

    Submerged Density of retained mat'l (qs ) = 13.33 kN/m (default=2/3 of q), only apply when Hw >0

    Design angle of int'l friction of base mat'l (b) = 20 degree = 13.33

    Design cohesion of base mat'l (Cb ) = 0 kN/m ASSUMPTIONSDensity of base mat'l (qb ) = 10 kN/m a) Wall friction is zero

    Allowable gross ground bearing pressure (GBP) = 600 kN/m b) Minimum active earth pressure = 0.25qH

    LOADINGS (unfactored) c) Granular backfill

    Surcharge load -- live (SQK) = 10 kN/m h) Design not intended for walls over 3.5 m highSurcharge load -- dead (SGK) = 5 kN/m

    Line load -- live (LQK) = 0 kN/m

    Line load -- dead (LGK) = 0 kN/m

    Distance of line load from wall (X) = 250 mm

    Wall load -- live (WQK) = 202.17 kN/m

    Wall load -- Dead (WGK) = 70.49 kN/m

    LATERAL FORCES Ko = 0.50 default Ko = (1-SIN ) = 0.50Kac = 1.41 = 2Ko

    Force (kN) Lever arm (m) gf Ultimate Force (kN)PE = 70.56 LE = 1.299 1.35 95.26

    PS(GK) = 9.54 LS = 1.91 1.35 12.88PS(QK) = 19.07 LS = 1.91 1.50 28.61

    PL(GK) = 0.00 LL = 3.61 1.35 0.00

    PL(QK) = 0.00 LL = 3.61 1.50 0.00

    PW = 6.62 LW = 0.38 1.50 9.93

    Total 105.79 146.68

    i)Does not include check for temp or shrinkage effects

    Wall Geometry

    LL

    LWLE L

    S

    S , S in kN/mGK QK2

    L , L in kN/mGK QK

    W , W in kN/mGK QK

    X

    B1

    TW

    Tb

    B

    HW

    HE H

    Propby Ground FloorEXTERNAL

    WATER

    BASEMENT

    Wall on Grid A

    114 kg/m

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    57/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    June 2002

    44Retaining Walls

    Wall on Grid A

    EXTERNAL STABILITY STABILITY CHECK : OK

    ANALYSIS - Assumptions & Notes

    1) Wall idealised as a propped cantilever ( i.e. pinned at top and fixed at base )

    2) Wall is braced.

    3) Maximum slenderness of wall is limited to 15, i.e [ 0.9*(He-Tb/2)/Tw < 15 ]

    4) Maximum Ultimate axial load on wall is limited to 0.1fck times the wall cross-sectional area

    5) Design Span (Effective wall height) = He - (Tb/2)

    6) -ve moment is hogging ( i.e. tension at external face of wall )+ve moment is sagging ( i.e. tension at internal face of wall )

    7) " Wall MT. " is maximum +ve moment on the wall.

    8) Estimated lateral deflections are used for checking the PD effect .

    UNFACTORED LOADS AND FORCES

    Force Lever arm Base MT. Wall MT. Reaction at Reaction at Estimated Elastic

    Lateral Force (kN) to base (m) (kNm) (kNm) Base (kN) Top (kN) Deflection D (mm)

    PE = 64.66 1.24 -31.93 14.56 51.56 13.10 0.8

    PS(GK) = 9.10 1.82 -4.19 2.35 5.72 3.38 0.2

    PS(QK) = 18.20 1.82 -8.37 4.71 11.44 6.76 0.1

    PL(GK) = 0.00 3.43 0.00 0.00 0.00 0.00 0.0

    PL(QK) = 0.00 3.43 0.00 0.00 0.00 0.00 0.0PW = 4.76 0.33 -1.25 0.22 4.68 0.08 0.0

    Total 96.72 -45.74 21.85 73.40 23.32 1.1

    GROUND BEARING FAILURELOAD CASE: Wall Load MAX 1

    Taking moments about centre of base (anticlockwise "+") Surcharge MAX 1

    Vertical FORCES (kN) Lever arm (m) Moment(kNm)

    Wall load = 272.66 0.30 81.798

    Wall (sw) = 26.14 0.30 7.84

    Base = 15.75 0.00 0.00

    Earth = 28.78 0.68 19.43

    Water = 3.60 0.68 2.43Surcharge = 6.75 0.68 4.56

    Line load = 0.00 0.70 0.00

    V = 353.68 Mv = 116.06

    MOMENT due to LATERAL FORCES, Mo = -45.74 kNm

    RESULTANT MOMENT, M = Mv + Mo = 70.31 kNm

    ECCENTRICITY FROM BASE CENTRE, M / V = 0.20 m

    MAXIMUM GROSS BEARING PRESSURE = 326.70 kN/m2 < 600 OK

    SLIDING AT BASE (using overall factor of safety instead of partial safety factor) F.O.S = 1.50

    SUM of LATERAL FORCES, P = 73.40 kN

    BASE FRICTION, Fb = - ( V TANb + B.Cb ) = -128.73 kN

    Factor of Safety, Fb / P = 1.75 > 1.50 OK

    BEARING PRESSURE (kN/m)

    0

    50

    100

    150

    200

    250

    300

    350

    0.00 1.80

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    58/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    June 2002

    45Retaining Walls

    Wall on Grid A

    STRUCTURAL DESIGNS (ultimate) DESIGN CHECKS : OKprEN 1992-1

    WALL ( per metre length ) reference

    AXIAL LOAD CAPACITY ( Limited to 0.1fck ) = 960.00 kN > 398.4165 OK

    Force gf Ultimate Ult. Moment Ult. Shear Ult. ShearLateral Force (kN) Force (kN) at base (kNm) at base (kN) at top (kN)

    PE = 64.66 1.35 87.29 -43.11 69.61 17.68

    PS(GK) = 9.10 1.35 12.28 -5.65 7.72 4.56

    PS(QK) = 18.20 1.50 27.30 -12.56 17.16 10.14

    PL(GK) = 0.00 1.35 0.00 0.00 0.00 0.00

    PL(QK) = 0.00 1.50 0.00 0.00 0.00 0.00

    PW = 4.76 1.50 7.14 -1.88 7.02 0.12Total 96.72 134.01 -63.20 101.50 32.51

    Design Bending Moments

    On INTERNAL face due to lateral forces, M int = 29.60 kNm

    On EXTERNAL face due to lateral forces, Mext = -63.20 kNm

    Eccentricity of Axial Loads = 125 mm 6.1 (3)P

    LATERAL DEFLECTION " D " = 1.1 mmDue to eccentricity of axial loads, Mecc = 49.8 kNm

    Due to PD effect, Mp = 0.42 kNm

    Total Mmt on INTERNAL face (Mint+0.5Mecc+Mp) = 54.9 kNmTotal Mmt on EXTERNAL face (M ext+0.5Mecc) = -88.1 kNm

    EXTERNAL FACE INTERNAL FACE

    WALL REINFORCEMENT : Min. As = 396 399 mm2

    9.2.1.1 (1)

    f = 16 12 mmcentres = 200 < 250 200 < 250 mm OK 9.3.1.1 (3) & (4)

    Asprov = 1005 > 396 565 > 399 mm2

    OK

    MOMENT of RESISTANCE : d = 252 254 mm

    z = 239.4 241.3 mm Fig 3.5

    As' = 0 0 mm2

    3.1.7 (3)

    Mres = 104.6 > 88.1 59.3 > 54.9 kNm OK

    CRACK WIDTHS: X = 79.08 62.43 mm 7.3.4 (2)

    esm-ecm = 0.00046 0.00017 (7.9)Wk = 0.145 < 0.3 mm 0.000 < 0.3 mm mm OK

    . Section is Uncracke d

    BASE of WALL TOP of WALL

    SHEAR RESISTANCE: As = 1005 f = 10 @200 mm = 393 mm2/mr = 100As/bd = 0.40% = 0.15%

    vRd,ct = 0.530 0.480 N/mm2

    (6.2)

    Vres = 133.6 > 101.5 121.9 > 32.5 kN OK 6.2.2

    REINFORCEMENT SUMMARY for WALL

    f centres As Min. As

    mm mm mm2

    mm2

    EXTERNAL FACE T 16 200 1005 396 OK

    INTERNAL FACE T 12 200 565 399 OK

    TRANSVERSE T 10 300 262 201 OK

    Temp & shrinkage effects not included

    Type

    -100 -50 0 50

    0.00

    0.73

    1.46

    2.20

    2.93

    3.66

    EXT MOMENT (kNm) INT

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    59/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    June 2002

    46Retaining Walls

    Wall on Grid A

    OUTER BASE ( per metre length ) prEN 1992-1Composite gf= 1.41 reference

    Ult. Shear = 41.38 kN (AT d from FACE of WALL)

    Ult. MT. = 32.75 kNm TENSION - BOTTOM FACE

    BOTTOM REINFORCEMENT : Min. As = 478 mm2

    9.2.1.1 (1)

    f = 12 mmcentres = 200 mm < 400 OK 9.3.1.1 (3) & (4)

    Asprov = 565 mm2 > 478 OK

    MOMENT of RESISTANCE : d = 304 mm

    z = 288.8 mm Fig 3.5

    As' = 0 mm2 3.1.7 (3)

    Mres = 71.01 kNm > 32.75 OK

    SHEAR RESISTANCE: r = 100As/bd = 0.22%vRd,ct = 0.480 N/mm

    2(6.2)

    Vres = 145.9 kN > 41.38 OK 6.2.2

    CRACK WIDTHS: Temp & shrinkage effects not included

    X = 69.12 mm esm-ecm = 0.00004 7.3.4 (2)Wk = 0.000 mm < 0.3 mm OK (7.9)

    Section is Uncracke d

    INNER BASE ( per metre length )

    Ult. Shear = -112.41 kN (AT d from FACE of WALL)

    Ult. MT. = 97.39 kNm TENSION - BOTTOM FACE

    BOTTOM REINFORCEMENT : Min. As = 475 mm2

    9.2.1.1 (1)

    f = 16 mmcentres = 250 mm < 400 OK 9.3.1.1 (3) & (4)

    Asprov = 804 mm2 > 475 OK

    MOMENT of RESISTANCE : d = 302 mm

    z = 286.9 mm Fig 3.5

    As' = 0 mm2

    3.1.7 (3)

    Mres = 100.32 kNm < 97.39 OK

    SHEAR RESISTANCE: r = 100As/bd = 0.27%vRd,ct = 0.480 N/mm

    2(6.2)

    Vres = 144.9 kN > 112.41 OK 6.2.2

    CRACK WIDTHS: Temp & shrinkage effects not included

    X = 80.12 mm esm-ecm = 0.00034 7.3.4 (2)Wk = 0.103 mm < 0.3 mm OK (7.9)

    .

    REINFORCEMENT SUMMARY for BASE

    Type f centres As Min. Asmm mm mm

    2mm

    2

    TOP T 12 200 565 475 OK

    BOTTOM T 16 250 565 475 OKTRANSVERSE T 8 400 126 113 OK

    Wall on Grid 6 Wall on Grid E,similar. 2400 x 500 base due to heavier column loads.

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    60/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    Pad Foundations

    June 2002

    47

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    61/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    June 2002

    48Pad Foundations

    (Base B4 similar, but 3050 sq x 800)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    62/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    EC2 Comparative Design 2156

    June 2002

    49Pad Foundations

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    63/127

    Calculations

    toBS 8110

    July 2002

    Comparative Design Study

    toEC2 & BS8110

    of aTypical RC Framed Structure

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    64/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    1Typical Floor GA

    1 hour fire period external exposure = severe internal exposure = moderate.

    Slabs, beams and walls - C32/40 concrete. All reinforcement f = 460 N/mm (high bond).y

    Imposed dead load = 1.0 kN/m on floors and roof (h same as floors).

    Perimeter cladding = 1.0 kN/m on external elevation.

    Superimposed load = (4+1) kN/m on floors, 1.5 kN/m on roof.

    A

    2 64

    1 53

    B

    C

    D

    E

    F

    1668

    985

    625

    325

    3600

    Lineofzerorotat

    ion

    375 sq

    550 sq

    550 sq

    550 sq 400 sq400 sq

    550 sq 375 sq

    375 sq 350 f

    350 f

    350 f350 f

    280 Solid slab

    Allow for one 150 sq holeat centre of face ofinternal columns

    In Ec2 FE analysis, assumefctm = value at10 days.

    Composite f values fromAnnex B of EC2.

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    65/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    2Basement GA

    Pilecaps and ground bearing slab not included in design.

    Ground bearing slab assumed to be 225 thick with 2.5 kN/m imposed load.

    Max ground bearing pressure taken as 600 kN/m

    .

    Foundations & retaining walls - C32/40 concrete - 40mm cover.

    Columns and core walls - C48/60 concrete (reducing to 32/40) - 1 hour fire period.

    72003600 5050

    230063508400

    1450

    4750

    2125

    8400

    8400

    4370

    A

    2 64

    1 53

    B

    C

    D

    E

    F

    Retaining walls resistinggranular backfill with 10

    kN/m surcharge andwater pressure to 1mabove basement level.

    3150 sq 850base

    3600 sq x 1100base

    2400 x 4000x 600 base

    3000 sq x 850base

    1750 x 350 base300 wall

    1750x350base

    300wall

    2250 x 450 base300 wall

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    66/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    3Typical Floor

    Typical Floor Loading280 Slab = 6.72 at 24 kN/m

    Applied Dead = 1.00

    7.72 = Gk

    Partitions = 1.00

    Imposed = 4.00 Qk = 5.00 kN/m

    Total = 12.72 kN/m characteristic

    Permant imposed loading = 0.25 x Imposed load 3.3.3; Part 2

    Permanent UD load = 7.72 + 0.25 x 5 = 8.97 kN/m

    Perimeter line load from cladding = 3.6 kN/m

    ULS UD loading = 1.4Gk + 1.6Qk = 18.81 kN/m

    Parameters for FE Analysisfcu = 40 N/mm

    Ecm28 = 28 kN/mm Table 7.2; Part 2fct = 1.0 N/mm at tensi on steel

    Tension stiffening = 0.55 N/mm long-term from Fig 3.1: Part 2

    LOADING SEQUENCE kN/m at days

    Self weight 6.72 10

    Applied dead 2.00 60

    Permanent imposed 1.00 60

    Variable load 3.00 COMPOSITE E and f VALUESf values from Annex B.1 of EC2

    0 Et 0 EtSelf weight 2.60 7.77 2.60 7.77

    Applied dead 1.85 9.81 1.85 9.81

    Permanent imposed 1.85 9.81 1.85 9.81

    Variable load 0 28.00 (t,t0) Et

    Composite 2.37 8.30 1.81 9.95 1.18 12.86

    Longterm Permanent

    To 60 days

    Longterm Total

    SW + applied dead

    Loading regions = as for EC2, but BS 8110 pattern loading applied

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    67/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    4Typical Floor

    As REQUIRED BTM X FEM-Design

    SecionA

    Sec

    ionB

    WHITE = nominal steel(T12 @ 300)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    68/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    5Typical Floor

    FEM-DesignAs REQUIRED BTM Y

    SectionC

    Section D

    WHITE = nominal steel(T12 @ 300)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    69/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    6Typical Floor

    FEM-DesignAs REQUIRED TOP X

    SectionE

    SectionG

    SectionH

    SectionF

    WHITE = nominal steel(T12 @ 300)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    70/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    7Typical Floor

    FEM-DesignAs REQUIRED TOP Y

    Section J

    Section K

    Section L

    WHITE = nominal steel(T12 @ 300)

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    71/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    8Typical Floor

    Section A

    Bottom steel X direction

    Section B

    Section C

    Bottom steel Y direction

    Section D

    T12 @ 150= 754

    T12 @ 175= 646

    T12 @ 175= 646

    T20 @ 175= 1795T16 @ 175

    = 1149

    T16 @ 225

    = 894

    T12 @ 200= 565

    T16 @ 150

    = 1340

    T16 @ 250= 804

    T12 @ 200= 565

    T12 @ 150= 754

    T16 @ 200= 1005

    T16 @ 250

    = 804

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    72/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    9Typical Floor

    Top steel X direction

    Section F

    Section E

    Section G

    T25 @ 150= 3272

    T20 @ 175

    = 1795T20 @ 275

    = 1142 T16 @ 250

    = 804

    T16 @ 125= 1608

    T20 @ 125= 2513

    T12 @ 225

    = 503

    T12 @ 200

    = 565T12 @ 225

    = 503

    4 T20

    in 800=1571

    8 T25in 925

    =4245

    T12 @200

    = 565

    T12 @200

    = 565

    T16@150

    = 1340

    T16@300

    = 670

    T16@100

    = 2011

    T20@150

    = 1340

    T16@100

    = 2011

    T16@200= 1005

    T16@200= 1005

    T16@275

    = 731

    T16@150= 1340

    T20@150= 2094

    T12@225

    = 503

    T12@225

    = 503

    T12@250

    = 452

    T16@250

    = 804

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    73/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    10Typical Floor

    Top steel Y direction

    Top steel X direction

    Section J

    Section H

    T16@100

    = 2011 T16@150= 1340

    T12@150

    = 754

    T12@200= 565

    T12@225= 503

    T20@100= 3142 T20@125

    = 2513T20@225

    = 1396 T20@250= 1257 T16@150

    = 1340

    T12@275= 411

    T12@275

    = 411T12@250

    = 452

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    74/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    Top steel Y direction

    Section K

    T16@275

    = 731T16@250

    = 804T12@250

    = 452

    T20@100

    = 3142

    T20@200= 1057

    T16@225= 894

    T20@150= 2094

    Section L

    T12@225= 503

    T12@250= 452

    T20@125= 2513

    T20@250

    = 1257

    T25@75= 6545

    T25@175

    = 2805

    11Typical Floor

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    75/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    12Typical Floor

    Permanent Load Defelectionswith Applied Reinforcement

    All permanent load deflections are

    within L/250 limit

    2 x 4900/250 = 39.2> 26.6 - 0.3 = 26.3 mm

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    76/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    Dead Only Defelections (f = 1.18)with Applied Reinforcement

    Max = 15.4 - 0.2 = 15.2 mm

    13Typical Floor

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    77/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    14Typical Floor

    Total Load Defelections (f = 1.81)with Applied Reinforcement

    Max = 35.1 - 0.3 = 34.8 mm

    Max D affecting cladding= 34.8 - 15.2 = 19.6 mm

    = L / 500 OK

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    78/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    Full ULS Column Momentswith Applied Reinforcement

    15Typical Floor

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    79/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    16Typical Floor

    Column Reactions

    Full ULSDead onlyFull ULSDead only

    128.6

    404.2

    530.7

    254.9

    78.8

    366.3

    145.2

    213.4

    113.7

    360.6

    76.1

    213.1

    154.5

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    80/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    Punching at Column D2B2 and B4 similar

    17Typical Floor

    Project BS8110 Comparative Design REINFORCED CONCRETE COUNCIL

    Client BRE Made by Date Page

    Location Column D2 rmw 30-Jun-2002

    PUNCHING SHEAR to BS8110:1997 Checked Revision Job No

    Originated fromRCC13.xls on CD 1999-2002 BCAfor RCC - 2156

    MATERIALS fcu N/mm2 40 STATUS Legend

    fyvN/mm2

    460VALID DESIGN

    link mm 10

    DIMENSIONS A mm 500 E mm 250B mm 500 F mm -75

    G mm 150 H mm 150

    LOADING Vt kN 1299.3 0 0 3397.1ult UDL kN/m2 18.81

    SLAB h mm 280 dx mm 242.5 Asx mm2/m 3272

    dy mm 220 Asy mm2

    /m 3142ave d mm 231.25 ave As % 1.389

    RESULTS Veff = 1494.2 kN vc = 0.9458 N/mm2 (Table 3.8)At col. face, v max = 3.480 N/mm2 At 1.5d perimeter, v = 1.4327 N/mm2

    At 3d perimeter, v = 0.8775 N/mm2

    PROVIDE LINKS (single leg) .

    Perimeter 1 115 from col face

    Perimeter 2 289 from col face

    Perimeter 3 463 from col face

    0 00 0

    0 0

    0 0

    0 0 Plan0 0

    0

    COLUMN

    INTERNAL

    0

    10 T10 @ 33514 T10 @ 33018 T10 @ 325

    0000

    Links not required at perimeter columns

  • 7/28/2019 Comparitive Design Study BS8110 vs EC2

    81/127

    RMW

    Project name Project No

    Calc sheet No

    Date

    Part of structure

    Drawing ref Calculations by Checked by

    CiDConcrete Innovation & Design

    BS8110 Comparative Design 2156

    June 2002

    18Column Loads & Design

    Column Design SummaryH B

    COLUMN A2 & A4 375 375 SW = 11.7

    Dead Imposed Service Ultimate M M - Rebar140.3 19.3

    reduction 0.0

    140.3 19.3

    140.3 64.4

    reduction 8.4

    280.5 75.4

    140.3 64.4

    reducti