complete electric dipole response in 120sn: a test of … electric dipole response in 120sn: a test...

53
120

Upload: vanthuy

Post on 12-May-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Complete electric dipole response in 120Sn: Atest of the resonance character of the pygmydipole resonance

Anna Maria Heilmann

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 1

Outline

I MotivationI Inelastic Proton Scattering

I Nucleon-Nucleus ScatteringI Coulomb ExcitationI Polarized Proton Scattering

I Proton scattering experiment at RCNP

I Experiment

I Analysis steps

I Results

I Outlook

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 2

Motivation

PDR

15 GDR

3

B(E1)

E [

MeV

]

x 100

protonsneutrons

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 3

Extracted transition strength for 120Sn withnuclear resonance ourescence

Energy [MeV]

B. Özel, Ph.D.-Thesis, Çukurova University, Adana, Turkey (2008)

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 4

Open questions

I various models concerning the PDR

I qualitative agreement on collectivemotion

I dierent theories return dierentquantitative results

I strength of PDR propably dependon the thickness of neutron skin

I experimental progress opens newopportunities

I case study of tin isotope chain

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 5

Comparison Theory vs. ExperimentSummed BE1 strenghts

B. Özel et.al, submitted 2008

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 6

Comparison theory vs. experimentCentroid Energy

B. Özel et.al, submitted 2008

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 7

Inelastic proton scattering

I coulomb excitation

I nucleon-nucleus scattering

I polarized proton scattering

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 8

Coulomb ScatteringClassical

(dσdΩ

)Ruth

= a2 sin−4

2

)with a =

1

4πε0

Z1Z2e2

4E

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 9

Coulomb ScatteringRelativistic (1)

σ(Eγ) =∑πλ

∫σγ,πλ(Eγ) nπλ

1

EγdEγ .

Photon numbers are:

nE1 ≈Z 2α

π2

1

γ2 − 1

(g0 (ξ) + γ2g1 (ξ)

),

nE2 ≈Z 2α

π2

1

γ2 − 1

(3γ2g0 (ξ) + (γ2 + 1)g1 (ξ) + γ2g2 (ξ)

),

nM1 ≈Z 2α

π2g1 (ξ) .

The argument of gm: adiabaticity parameter

ξ =ωb

γv0with ω = Eγ/~

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 10

Coulomb ScatteringRelativistic (1)

σ(Eγ) =∑πλ

∫σγ,πλ(Eγ) nπλ

1

EγdEγ .

Photon numbers are:

nE1 ≈Z 2α

π2

1

γ2 − 1

(g0 (ξ) + γ2g1 (ξ)

),

nE2 ≈Z 2α

π2

1

γ2 − 1

(3γ2g0 (ξ) + (γ2 + 1)g1 (ξ) + γ2g2 (ξ)

),

nM1 ≈Z 2α

π2g1 (ξ) .

The argument of gm: adiabaticity parameter

ξ =ωb

γv0with ω = Eγ/~

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 10

Coulomb ScatteringRelativistic (2)

σ(Eγ) =∑πλ

∫σγ,πλ(Eγ) nπλ

1

EγdEγ .

10-3

10-2

10-1

100

10 20 30 40 50

n(E

0, E

γ)

Eγ [MeV]

E2

E1

E.Wolynec et.al, Phys. Rev. Lett. 42 (1979) 27.

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 11

Nucleon-Nucleus Scattering (1)

Protons may excite resonances:

I isoscalar non-spin-ip (∆T = 0, ∆S = 0),

I isoscalar spin-ip (∆T = 0, ∆S = 1),

I isovector non-spin-ip (∆T = 1, ∆S = 0),

I isovector spin-ip (∆T = 1, ∆S = 1).

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 12

Nucleon-Nucleus Scattering (2)

Vip(rip) = V C (rip) + V LS(rip)~L · ~S + V T (rip) Sip .

central term V C , spin-orbit term V LS and a tensor component V T

~L relative angular momentum~S relative spin ~S = ~σi + ~σp

~L · ~S spin-orbit operatorSip tensor operator ~Sip = 3~σi · r ~σp · r − ~σi · ~σp , r = ~r/ |~r |~σ Pauli spin matrices

For small angles → small momentum transfer q < 1 fm−1, spin-orbit and tensorpart of the interactio are small compared to the central interaction

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 13

Nucleon-Nucleus Scattering (2)

Vip(rip) = V C (rip) + V LS(rip)~L · ~S + V T (rip) Sip .

central term V C , spin-orbit term V LS and a tensor component V T

~L relative angular momentum~S relative spin ~S = ~σi + ~σp

~L · ~S spin-orbit operatorSip tensor operator ~Sip = 3~σi · r ~σp · r − ~σi · ~σp , r = ~r/ |~r |~σ Pauli spin matrices

For small angles → small momentum transfer q < 1 fm−1, spin-orbit and tensorpart of the interactio are small compared to the central interaction

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 13

Nucleon-Nucleus Scattering (3)

Vip(rip) = V C0 (rip) + V C

σ (rip) ~σi · ~σp + V Cτ (rip) ~τi · ~τp + V C

στ (rip) ~σi · ~σp~τi · ~τp

0

100

200

300

400

500

0 200 400 600 800

|Vef

f (q=

0)| [

MeV

fm-3

]

Ep [MeV]

V0

Vστ

W.G. Love and M.A. Franey Phys. Rev. C24 (1981) 1073

I small momentum transferq < 1 fm−1

Interactions with

I ~τi · ~τp → isospin-ip transitions

I ~σi · ~σ2 → spin-ip transitions.

I measurements with E=300 MeV

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 14

Nucleon-Nucleus Scattering (3)

Vip(rip) = V C0 (rip) + V C

σ (rip) ~σi · ~σp + V Cτ (rip) ~τi · ~τp + V C

στ (rip) ~σi · ~σp~τi · ~τp

0

100

200

300

400

500

0 200 400 600 800

|Vef

f (q=

0)| [

MeV

fm-3

]

Ep [MeV]

V0

Vστ

W.G. Love and M.A. Franey Phys. Rev. C24 (1981) 1073

I small momentum transferq < 1 fm−1

Interactions with

I ~τi · ~τp → isospin-ip transitions

I ~σi · ~σ2 → spin-ip transitions.

I measurements with E=300 MeV

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 14

Nucleon-Nucleus Scattering (3)

Vip(rip) = V C0 (rip) + V C

σ (rip) ~σi · ~σp + V Cτ (rip) ~τi · ~τp + V C

στ (rip) ~σi · ~σp~τi · ~τp

0

100

200

300

400

500

0 200 400 600 800

|Vef

f (q=

0)| [

MeV

fm-3

]

Ep [MeV]

V0

Vστ

W.G. Love and M.A. Franey Phys. Rev. C24 (1981) 1073

I small momentum transferq < 1 fm−1

Interactions with

I ~τi · ~τp → isospin-ip transitions

I ~σi · ~σ2 → spin-ip transitions.

I measurements with E=300 MeV

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 14

Polarized Proton Scattering (1)

Nucleon-nucleon scattering amplitude in PWIA:

M(q) = A + Bσi nσpn + C (σi n + σpn) + Eσi qσpq + Fσi pσpp.

amplitude coecients consists of isoscalar and isovector terms: A = A0 + Aτ ~τ1 · ~τ2

M(q) = A+1

3(B +E +F )~σi · ~σp +C (σi +σp) · n+

1

3(E−B)Sip(q)+

1

3(F−B)Sip(p)

In the PWIA the T -matrix for the NN scattering is given by

T =⟨f |M(q)e−i~q·~r |i

⟩.

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 15

Polarized Proton Scattering (1)

Nucleon-nucleon scattering amplitude in PWIA:

M(q) = A + Bσi nσpn + C (σi n + σpn) + Eσi qσpq + Fσi pσpp.

amplitude coecients consists of isoscalar and isovector terms: A = A0 + Aτ ~τ1 · ~τ2

M(q) = A+1

3(B +E +F )~σi · ~σp +C (σi +σp) · n+

1

3(E−B)Sip(q)+

1

3(F−B)Sip(p)

In the PWIA the T -matrix for the NN scattering is given by

T =⟨f |M(q)e−i~q·~r |i

⟩.

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 15

Polarized Proton Scattering (1)

Nucleon-nucleon scattering amplitude in PWIA:

M(q) = A + Bσi nσpn + C (σi n + σpn) + Eσi qσpq + Fσi pσpp.

amplitude coecients consists of isoscalar and isovector terms: A = A0 + Aτ ~τ1 · ~τ2

M(q) = A+1

3(B +E +F )~σi · ~σp +C (σi +σp) · n+

1

3(E−B)Sip(q)+

1

3(F−B)Sip(p)

In the PWIA the T -matrix for the NN scattering is given by

T =⟨f |M(q)e−i~q·~r |i

⟩.

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 15

Polarized Proton Scattering (1)

Nucleon-nucleon scattering amplitude in PWIA:

M(q) = A + Bσi nσpn + C (σi n + σpn) + Eσi qσpq + Fσi pσpp.

amplitude coecients consists of isoscalar and isovector terms: A = A0 + Aτ ~τ1 · ~τ2

M(q) = A+1

3(B +E +F )~σi · ~σp +C (σi +σp) · n+

1

3(E−B)Sip(q)+

1

3(F−B)Sip(p)

In the PWIA the T -matrix for the NN scattering is given by

T =⟨f |M(q)e−i~q·~r |i

⟩.

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 15

Polarized Proton Scattering (2)

T =⟨f |M(q)e−i~q·~r |i

⟩.

From the T -matrix to cross section and polarisation transfer:

dσdΩ

=1

2Tr(TT †), Dij =

Tr(TσjT†σi )

Tr(TT †)

For spin-ip transitions under 0:

DSL = DLS = 0 , (1)

DSS = DNN =

(|Bi |2 − |Fi |2

)X 2

T − |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

,

DLL =

(−3|Bi |2 + |Fi |2

)X 2

T + |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

.

XT , XL: spin-transverse and spin-longitudinal form factors

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 16

Polarized Proton Scattering (2)

T =⟨f |M(q)e−i~q·~r |i

⟩.

From the T -matrix to cross section and polarisation transfer:

dσdΩ

=1

2Tr(TT †), Dij =

Tr(TσjT†σi )

Tr(TT †)

For spin-ip transitions under 0:

DSL = DLS = 0 , (1)

DSS = DNN =

(|Bi |2 − |Fi |2

)X 2

T − |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

,

DLL =

(−3|Bi |2 + |Fi |2

)X 2

T + |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

.

XT , XL: spin-transverse and spin-longitudinal form factors

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 16

Polarized Proton Scattering (2)

T =⟨f |M(q)e−i~q·~r |i

⟩.

From the T -matrix to cross section and polarisation transfer:

dσdΩ

=1

2Tr(TT †), Dij =

Tr(TσjT†σi )

Tr(TT †)

For spin-ip transitions under 0:

DSL = DLS = 0 , (1)

DSS = DNN =

(|Bi |2 − |Fi |2

)X 2

T − |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

,

DLL =

(−3|Bi |2 + |Fi |2

)X 2

T + |Bi |2X 2L

(|Bi |2 + |Fi |2) X 2T + |Bi |2X 2

L

.

XT , XL: spin-transverse and spin-longitudinal form factors17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 16

Polarized Proton Scattering (3)

For spin-ip transitions under 0:

DSS = DNN = · · ·DLL = · · ·

Σ =3− (DSS + DNN + DLL)

4

At forward angles total spin transfer

Σ =

1 spinip0 non-spinip

From PT measurements the spinip andnon-spinip cross sections can beextracted

dσdΩ

(∆S = 1) ≡ Σ

(dσdΩ

),

dσdΩ

(∆S = 0) ≡ (1− Σ)

(dσdΩ

).

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 17

Polarized Proton Scattering (3)

For spin-ip transitions under 0:

DSS = DNN = · · ·DLL = · · ·

Σ =3− (DSS + DNN + DLL)

4

At forward angles total spin transfer

Σ =

1 spinip0 non-spinip

From PT measurements the spinip andnon-spinip cross sections can beextracted

dσdΩ

(∆S = 1) ≡ Σ

(dσdΩ

),

dσdΩ

(∆S = 0) ≡ (1− Σ)

(dσdΩ

).

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 17

Summing-Up: Inelastic Proton Scattering

I Nucleon-Nucleus Scattering

I Coulomb Excitation

I Polarized Proton Scattering

nonspin-ip cross sections → E1 excitationsspinip cross sections → M1 exciations

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 18

RCNP facility

0 50 m

Ring Cyclotron

WS

Neutron TOFN0

EN

ES

SOL2

BLP2

LAS

Grand Raiden

SOL1

BLP1

AVF Cyclotron

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 19

RCNP facility

0 50 m

Ring Cyclotron

WS

Neutron TOFN0

EN

ES

SOL2

BLP2

LAS

Grand Raiden

SOL1

BLP1

AVF Cyclotron

I 295 MeV

I beam intensity2-3 nA

I high resolution

I degree ofpolarization: 70%

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 20

Targets

I tin foil isotropically enriched to 98.39 %120Sn

I thickness 6.5 mg· cm−2

I further targets: 12C, 208Pb

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 21

Spectrometer hall

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 22

Spectrometer Grand Raiden

Properties:I total deecting angle 162

I high momentum resolution:p/∆p ≈ 37 000

I momentum acceptance ±2.5%

I dipole magnet for spin rotation(DSR) for polarizationmeasurements

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 23

Detector system of Grand Raiden

Standard Counters

Focal Plane Polarimeter

Primary Beam

VDC 1 VDC 2

Scinitillator

0 1 m

Hodoscope

MWPC 1 MWPC 2MWPC 3

MWPC 4

Carbon Block

ScatteredParticle

Plastic Scintillator

I momentum and trajectory ofscattered protons

I nonspin-ip excitations→ E1

I spin-ip excitations → M1

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 24

Experiments

I 14 days of measurementsI Scattering angles of 0 and 2.5

Online spectra from (p,p′) reaction at 0 of 120Sn:

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 25

Reconstruction of scattering angles

I Sieveslit placed in front of GR

I AI = f (Θ, Y ) dominated by Θ

I BI = f (Θ, Y ) dominated by Y

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 26

High resolution correction - vertical direction

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 27

High resolution correction - horizontal direction

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 28

Determination of the background

vertical position of protonsprojected on vertical focalplane

Gates on YI central region:

true + background

I side region: background

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 29

120Sn(p,p')-spectra

0

500

1000

5 10 15 20

Co

un

ts

Energy [MeV]

background subtracted

0

500

1000

1500

2000C

ou

nts

120Sn(p,p')

Ep = 295 MeV

θ = 0°-2.5°

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 30

Comparison with γ,γ′ experiment

I 120Sn(γ,γ′)data fromB. Özel

I folded with∆E= 30 keV

0

100

200

300

400

500

5.5 6.5 7.5 8.5 9.5

Counts

Energy [MeV]

120Sn(γ, γ’)

E = 9.1 MeV

θ = 130°

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 31

Comparison with γ,γ′ experiment

I 120Sn(γ,γ′)data fromB. Özel

0

100

200

300

5.5 6.5 7.5 8.5 9.5

Counts

Energy [MeV]

120Sn(γ, γ’)

E = 9.1 MeV

θ = 130°

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 32

Comparison with γ,γ′ experiment

I 120Sn(γ,γ′)data fromB. Özel

I folded with∆E= 30 keV

0

100

200

300

5.5 6.5 7.5 8.5 9.5

Counts

Energy [MeV]

120Sn(p,p')

120Sn(γ, γ')

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 33

Comparison with theoryRQTBA

I RQTBA E.Litvinova

0

500

1000

0 5 10 15 20 25 30

B(E

1)↑

⋅ 1

0-3

[

e2 f

m2]

Energy [MeV]

RQTBA

∆ E= 25 keV

0

500

1000

Co

un

ts

120Sn(p,p')

Ep = 295 MeV

θ = 0°-2.5°

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 34

Comparison with theoryQPM and RQTBA

Theoretical models predictions dierI 120Sn(γ,γ′) data from B. Özel

I QPM V. Yu. Ponomarev

I RQTBA E.Litvinova

I 120Sn(γ,γ′) data from B. Özel

0

100

200

4 5 6 7 8 9 10

Energy [MeV]

RQTBAx 1/5

0

5

10

15

B(E

1)↑

⋅ 1

0−

3

[e

2 f

m2] QPM

0

3

6 120Sn(γ, γ’)

Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 35

Comparison with theory112Sn and 120Sn

0

20

40

60

3 4 5 6 7 8 9 10 11

Energy [MeV]

RQTBA

0

5

10

15

B(E

1)↑

⋅ 1

0-3

[

e2 f

m2] QPM

0

5

10

15

20112

Sn(γ, γ')

Sn

0

100

200

4 5 6 7 8 9 10

Energy [MeV]

RQTBAx 1/5

0

5

10

15

B(E

1)↑

⋅ 1

0−

3

[e

2 f

m2] QPM

0

3

6 120Sn(γ, γ’)

Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 36

Comparison with theoryRQTBA

I RQTBA E.Litvinova

0

500

1000

0 5 10 15 20 25 30

B(E

1)↑

⋅ 1

0-3

[

e2 f

m2]

Energy [MeV]

RQTBA

∆ E= 25 keV

0

500

1000

Co

un

ts

120Sn(p,p')

Ep = 295 MeV

θ = 0°-2.5°

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 37

Comparison with theoryQPM and RQTBA

Theoretical models predictions dierI 120Sn(γ,γ′) data from B. Özel

I QPM V. Yu. Ponomarev

I RQTBA E.Litvinova

I 120Sn(γ,γ′) data from B. Özel

0

100

200

4 5 6 7 8 9 10

Energy [MeV]

RQTBAx 1/5

0

5

10

15

B(E

1)↑

⋅ 1

0−

3

[e

2 f

m2] QPM

0

3

6 120Sn(γ, γ’)

Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 38

Comparison with theory112Sn and 120Sn

0

20

40

60

3 4 5 6 7 8 9 10 11

Energy [MeV]

RQTBA

0

5

10

15

B(E

1)↑

⋅ 1

0-3

[

e2 f

m2] QPM

0

5

10

15

20112

Sn(γ, γ')

Sn

0

100

200

4 5 6 7 8 9 10

Energy [MeV]

RQTBAx 1/5

0

5

10

15

B(E

1)↑

⋅ 1

0−

3

[e

2 f

m2] QPM

0

3

6 120Sn(γ, γ’)

Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 39

Outlook

I extraction of the dierential cross section

I analysis for 2.5

I another measurement with longitudinal polarized beam

I identication of M1 excitations possible

I comparision with theoretical models

I better understanding of the pygmy dipole resonance

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 40

Outlook

I extraction of the dierential cross section

I analysis for 2.5

I another measurement with longitudinal polarized beam

I identication of M1 excitations possible

I comparision with theoretical models

I better understanding of the pygmy dipole resonance

Thank you for your attention

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 41

Setup of nuclear resonance ourescencemeasurements

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 42

Systematics of the neutron skinin the Sn isotope chain

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 43