complex networks in quantum gravity and cosmology · complex networks in quantum gravity and...

50
Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout & David Meyer UCSD/Math Marian Boguñá U. Barcelona Joint Network Seminar, CCNR, NU, Boston, February 2014

Upload: others

Post on 13-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Complex networks

in quantum gravity and cosmology

Dmitri Krioukov NU

M. Kitsak (NU), R. Sinkovits (UCSD/SDSC)

David Rideout & David Meyer UCSD/Math

Marian Boguñá U. Barcelona

Joint Network Seminar, CCNR, NU, Boston, February 2014

Page 2: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Random geometric graphs

• Given N nodes

• Hidden variables: Node coordinates 𝜅 in a space 𝜌 𝜅 : uniform in the space

• Connection probability: 𝑝 𝜅 , 𝜅 ′ = Θ 𝑅 − 𝑑 𝜅 , 𝜅 ′

• Results: – Clustering:

Strong

– Degree distribution: • Euclidean or spherical space:

Poisson

• Hyperbolic space: Power law

𝜅 𝜅 ′ 𝑑 𝜅 , 𝜅 ′ < 𝑅

Page 3: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Taxonomy of spaces

Riemannian

Page 4: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Taxonomy of Lorentzian spaces

• Problem: find dual to hyperbolic

• Solution: de Sitter

Curvature 0 >0 <0

Space Minkowski De Sitter Anti-de Sitter

Curvature 0 >0 <0

Space Minkowski De Sitter Anti-de Sitter

Page 5: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Random hyperbolic graphs

• Given N nodes

• Hidden variables: – Node coordinates 𝜅 in a

hyperbolic space

– 𝜌 𝜅 : uniform in the space

• Connection probability: 𝑝 𝜅 , 𝜅 ′ = Θ 𝑅 − 𝑑 𝜅 , 𝜅 ′

• Results: – Clustering:

Strong

– Degree distribution: Power law (𝛾 = 3)

𝜅 𝜅 ′ 𝑑 𝜅 , 𝜅 ′ < 𝑅

de Sitter

de Sitter

0

0

𝛾 = 2

Page 6: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Main theorem

• Growing random hyperbolic graphs N→∞

Random de Sitter graphs

Page 7: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Random geometric graphs

• Are “quantizations”(?)

• No, discretizations of continuous space(time)s

• Riemannian

• Nodes are “atoms” of space

• Links reflect proximity

• Lorentzian

• Nodes are “atoms” of spacetime

• Links reflect causality

Page 8: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Taxonomy of networks

in quantum gravity • Networks in space

– Loop quantum gravity/spin networks

– Quantum graphity

• Networks in timespace

– Causal dynamic triangulations

– Causal sets

• The causal set of a non-pathological spacetime

defines, up to the conformal factor, the spacetime

itself (Hawking/Malament theorem)

Page 9: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Outline

• Random hyperbolic networks

• Random de Sitter networks

• Real graphs and simulations

Page 10: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 − 𝑑𝑧2 𝑟𝑃 = tanh𝑟𝐻2

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 𝑟𝐸 = −𝑖𝐸 𝑖𝑟𝐻, 2

𝑥2 + 𝑦2 − 𝑧2 = −1

𝑥2 + 𝑦2 < 1

Page 11: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 12: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 13: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 14: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 15: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 16: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 17: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 18: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 19: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 20: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 21: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 22: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Degree distribution

P k ∼ k−γ γ = kB + 1

kB =2

−K

Clustering

𝑐 k ∼ k−1

maximized

Page 23: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 24: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Growing hyperbolic model

• New nodes 𝑡 = 1,2, … are coming one at a

time

• Radial coordinate 𝑟𝑡 ∼ log 𝑡

• Angular coordinate 𝜃𝑡 ∈ 𝑈 0,2𝜋

• Connect to 𝑂 1 hyperbolically closest

existing nodes; or

• Connect to all existing nodes at distance

≲ 𝑟𝑡

Page 25: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 26: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

The key properties of the model

• Angular coordinates are projections of properly weighted combinations of all the (hidden) similarity attributes shaping network structure and dynamics

• Infer these (hidden) coordinates using maximum-likelihood methods

• The results describe remarkably well not only the structure of some real networks, but also their dynamics

• Validating not only consequences of this dynamics (network structure), but also the dynamics itself

• Prediction of missing links using this approach outperforms best-performing methods

Page 27: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

The key properties of the model

• Angular coordinates are projections of properly weighted combinations of all the (hidden) similarity attributes shaping network structure and dynamics

• Infer these (hidden) coordinates using maximum-likelihood methods

• The results describe remarkably well not only the structure of some real networks, but also their dynamics

• Validating not only consequences of this dynamics (network structure), but also the dynamics itself

• Prediction of missing links using this approach outperforms best-performing methods

Page 28: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 29: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

𝑥2 + 𝑦2 − 𝑧2 = −1

𝑥2 + 𝑦2 − 𝑧2 = +1

Page 30: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Light cones

Page 31: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Random Lorentzian graphs

(causal sets)

Page 32: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

𝑥2 + 𝑦2 − 𝑧2 = −1

𝑥2 + 𝑦2 − 𝑧2 = +1

Page 33: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 34: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 35: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 36: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Hyperbolic space

• −𝑧02 + 𝑧1

2 + ⋯𝑧𝑑+12 = −𝑏2 =

1

𝐾

• 𝑧0 = 𝑏 cosh 𝜌, 𝑧𝑖 = 𝑏 𝜔𝑖 sinh 𝜌, 𝜌 =𝑟

𝑏

• 𝑑𝑠2 = 𝑏2 𝑑𝜌2 + sinh2 𝜌 𝑑Ω𝑑2

• 𝑑𝑉 = 𝑏𝑑+1 sinh𝑑 𝜌 𝑑𝜌 𝑑Φ𝑑 ≈

𝑏𝑏

2

𝑑𝑒𝑑𝜌 𝑑𝜌 𝑑Φ𝑑

Page 37: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

De Sitter spacetime

• −𝑧02 + 𝑧1

2 + ⋯𝑧𝑑+12 = 𝑎2 =

1

𝐾

• 𝑧0 = 𝑎 sinh 𝜏, 𝑧𝑖 = 𝑎 𝜔𝑖 cosh 𝜏, 𝜏 =𝑡

𝑎

• 𝑑𝑠2 = 𝑎2 −𝑑𝜏2 + cosh2 𝜏 𝑑Ω𝑑2

• sec 𝜂 = cosh 𝜏, conformal time

• 𝑑𝑠2 = 𝑎2 sec2 𝜂 −𝑑𝜂2 + 𝑑Ω𝑑2

• 𝑑𝑉 = 𝑎𝑑+1 sec𝑑+1 𝜂 𝑑𝜂 𝑑Φ𝑑 =

𝑎𝑑+1 cosh𝑑 𝜏 𝑑𝜏 𝑑Φ𝑑 ≈ 𝑎𝑎

2

𝑑𝑒𝑑𝜏 𝑑𝜏 𝑑Φ𝑑

Page 38: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Hyperbolic balls

• 𝜌0 =2

𝑑ln

𝑁0

𝜈, current ball radius, i.e.,

the radial coordinate of new node 𝑁0

• Hyperbolic distance from the new node

𝑥 =𝑏 acosh cosh 𝜌 cosh 𝜌0 − sinh 𝜌 sinh 𝜌0 cos Δ𝜃 ≈

𝑏 𝜌 + 𝜌0 + 2 lnΔ𝜃

2

• 𝑥 < 𝑏𝜌0, connection condition

• 𝜌 + 2 lnΔ𝜃

2< 0, approximately

Page 39: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Past light cones

• Δ𝜃 < Δ𝜂, connection condition

• Δ𝜃 < 𝜂0 − 𝜂 = asec cosh 𝜏0 − asec cosh 𝜏 ≈2 𝑒−𝜏 − 𝑒−𝜏0 , where 𝜂0, 𝜏0 is the current time

• Δ𝜃 < 2𝑒−𝜏, approximately

• 𝜌 + 2 lnΔ𝜃

2< 0, in the hyperbolic case

• The last two inequalities are the same iff

𝜏 =𝜌

2

• Mapping, two equivalent options:

– 𝑡 = 𝑟; 𝑎 = 2𝑏

– 𝑡 =𝑟

2; 𝑎 = 𝑏

Page 40: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Node density

• Hyperbolic, non-uniform

– 𝑁 = 𝜈𝑒𝑑𝜌

2

– 𝑑𝑉 ≈ 𝑏𝑏

2

𝑑𝑒𝑑𝜌 𝑑𝜌 𝑑Φ𝑑

– 𝑑𝑁 = 𝛿 𝑒−𝑑𝜌

2 𝑑𝑉

• De Sitter, uniform

– 𝑑𝑉 ≈ 𝑎𝑎

2

𝑑𝑒𝑑𝜏 𝑑𝜏 𝑑Φ𝑑 = 𝑏𝑑+1𝑒

𝑑𝜌

2 𝑑𝜌 𝑑Φ𝑑

– 𝑑𝑁 = 𝛿 𝑑𝑉, where 𝛿 =𝑑𝜈

2𝑏𝑑+1𝜎𝑑, 𝜎𝑑 = ∫ 𝑑Φ𝑑 =

2𝜋𝑑+12

Γ𝑑+1

2

Page 41: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 42: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Web of trust (PGP graph)

User A User B

Data A Email address,

PGP certificate

Trust

User A signs data B

Data B Email address,

PGP certificate

Page 43: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Brain (fMRI graph)

Page 44: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

De Sitter universe

• The universe is accelerating

• Dark energy (73%) is an explanation

• Remove all matter from the universe

– Dark matter (23%)

– Observable matter (4%)

• Obtain de Sitter spacetime

– Solution to Einstein’s field equations for an

empty universe with positive vacuum energy

(cosmological constant Λ > 0)

Page 45: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 46: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 47: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 48: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &
Page 49: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

Conclusion • The large-scale structure and dynamics of complex networks and

causal sets in de Sitter universes are asymptotically identical – Growing hyperbolic graphs

• Radial coordinates: popularity

• Angular coordinates: similarity

• Growth dynamics: multidimensional optimization “least action”

– Growing de Sitter graphs • Popularity time

• Similarity space

• Growth dynamics spacetime expansion

• Two options: – This equivalence is a coincidence

• Compute the probability of this coincidence

– This equivalence is not a coincidence: possible explanation: • Spacetime expansion Einstein’s equations Least Einstein-Hilbert action

• Einstein-Hilbert action has recently been found for causal sets

• No action for growing networks (either preferential attachment or hyperbolic graphs)

Are there any common fundamental laws

from which Einstein’s equations (known) and

complex network equations (unknown)

both follow as particular cases?

Page 50: Complex networks in quantum gravity and cosmology · Complex networks in quantum gravity and cosmology Dmitri Krioukov NU M. Kitsak (NU), R. Sinkovits (UCSD/SDSC) David Rideout &

• D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá, Hyperbolic Geometry of Complex Networks, Physical Review E, v.82, 036106, 2010, Physical Review E, v.80, 035101(R), 2009

• F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, and D. Krioukov, Popularity versus Similarity in Growing Networks, Nature, v.489, p.537, 2012

• D. Krioukov, M. Kitsak, R. Sinkovits, D. Rideout, D. Meyer, and M. Boguñá, Network Cosmology, Nature Scientific Reports, v.2, 793, 2012 Press: Space, Time, … UCSD, SDSC, Space, Time, TheRegister, CBS, HuffingtonPost, HuffingtonPostUK, PopularScience, LiveScience, Slashdot, Robots.Net, PhysOrg, ScienceDaily, TGDaily, DigitalJournal, Vesti, MK, LifeNews, theRunet