compliance monitoring pilot for marpol annex vi - … · compliance monitoring pilot for marpol...

11
Compliance monitoring pilot for Marpol Annex VI Inversion Tools Ari Karppinen, Res. Man., FMI Jari Härkönen Juha Nikmo Timo Mäkelä Jukka-Pekka Jalkanen Lasse Johansson

Upload: dangtuyen

Post on 10-Aug-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

Compliance monitoring pilot for Marpol Annex VI

Inversion Tools

Ari Karppinen, Res. Man., FMIJari HärkönenJuha NikmoTimo MäkeläJukka-Pekka JalkanenLasse Johansson

Rautatiealan sääntelyelin

Integrated use of models and data

Monitoring Models Satellite

Goal: operational system taking into account all sources of information

Rautatiealan sääntelyelin

ECMWFHIRLAMRCR

HARMONIE LAPS

Weather prediction models Dispersion models - long-

range, regional

Dispersion and effects models

– urban, local

PALM FINFLO,FLUENT(CFD),

DNS-code development

SILAM LRT, meso-

scale, radioactivity , pollen

Modelling system - FMI

OSPM (NERI), street canyon

UDM-FMI, urban

CAR-FMI, roadside

Aerosol process models: UHMA (U Helsinki, FMI)

MONO32 (U Helsinki, Stadia)

SALSA(UH,UKU,FMI)

SILAM-APMs

MPP-FMI, Meteorological pre-

processing model

ESCAPE, chemical accidents

BUOYANT, fires

EXPAND (FMI, YTV)

population exposure

FMI- EnFuser

Rautatiealan sääntelyelin

Jalkanen, J.-P., L. Johansson, and J. Kukkonen, 2016. A comprehensive inventory of ship traffic exhaust

emissions in the European sea areas in 2011. Atmos. Chem. Phys., 16, 71–84, 2016. http://www.atmos-chem-

phys.net/16/71/2016/acp-16-71-2016.pdf.

Rautatiealan sääntelyelin

Local inversion: in theory trivial..but..

13/12/2016 5

u-vS

rM0

vM-vS

SL r2(tS2) r0(tS0) r1(tS1)=rM0 + vM tS1

GL

vM rS(tS0) vS

𝐶 𝑥𝑤,𝑦𝑤, 𝑧 = 𝑓1 𝑥𝑤 ∗ 𝑓2 𝑥𝑤 *𝑓3 𝑥𝑤 , where (2a)

𝑓1 𝑥𝑤 =𝑄

2∗𝜋∗𝜎𝑦 𝑥𝑤 ∗𝜎𝑧 𝑥𝑤 ∗ 𝒖−𝒗𝑺 (2b)

𝑓2 𝑥𝑤 = 𝑒𝑥𝑝 −0.5 ∗ 𝑦𝑤 𝑥𝑤

𝜎𝑦 𝑥𝑤

2

(2c)

𝑓3 𝑥𝑤 = 𝑒𝑥𝑝 −0.5 ∗ 𝑧−ℎ

𝜎𝑧 𝑥𝑤

2

+ 𝑒𝑥𝑝 −0.5 ∗ 𝑧+ℎ

𝜎𝑧 𝑥𝑤

2

(2d)

Rautatiealan sääntelyelin

First complication: measurements (concentration & met)

13/12/2016 6

..part of the problemcan be in most cases handledwith simple filtering/smoothing

The “modeled” signal is the filtered line from which discrete values are

sampled at raw observation times. The maximum of the signal is monitored 2016-01-27 17:38:20.

Rautatiealan sääntelyelin

..the major problem : turbulent flow /meteorology is hard to handle in small time sclaes like this

• Dierect analytical solution does not

genarally work:

Possible solutions:

1.The ”normal” one : use tracer(s) to eliminante (?!) the problems with disperson

2. Formulate the problem as an optimisation problem

• Minimize ~|| measured- modeled ||

• For time of transform & and speed & heading of the ship

• Solve ship emsissions (least squares) basedon equations (2*)

13/12/2016 7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1.10.1.12.31.1. 1.4. 1.6. 1.8. 1.10.1.12.31.1.

S %

Marraskuu 2015-2016

2.6.2016 1.76%

1,76

0,0

0,5

1,0

1,5

2,0

09

01

80

27

03

60

1.10. 1.12. 31.1. 1.4. 1.6. 1.8. 1.10. 1.12. 31.1.

S-%

Tu

ule

n s

uu

nta

Utö, 1 year ”standard” method

wind dir ⁰ polttoaineneen-S %

Rautatiealan sääntelyelin

Utö test (with NOx )

Constraints:

• Ship speed = ShipSpd(STEAM2) 2 m/s

• Ship heading = ShipDir(STEAM2) 30o

All dirty details given in the final report.. here we just jump to one of the conclusions

13/12/2016 8

~FAC5

N=66FAC2 ~50%>FAC5~15 %

Rautatiealan sääntelyelin

Conclusions from the Utö excersise

13/12/2016 9

Simple local scale modelling toolstogether with ”simple” optimisationroutines can be used for INDICATIVEemsssion inversion EVEN without the knowledge/measurements on CO2

Utö is quite an ideal case for modeller..but.. still some problems in asessingthe plume rise & mixing height & long distance from ship route to monitorslead to relatitvely high uncertainty on the final optimisation

Rautatiealan sääntelyelin

Final conclusions

• The local scale inversion-tool can givean (strong) indication on ships notobeying the regulations

• The method is unfortunately verysensitive to availability of detailedmeteorological information, so canwork well only in locations wherethese good quality measurements areavailbale (like Utö)

The method also requires smoothterrain/no major obstacles: complexterrain would require methods which areseveral orders of magnitude heavier

13/12/2016 10

These type of existing measurementsshould always be utilized as an additional info to other methods:

modelling tools required/developed in CompMon are easy and cheap to install/test

Naturally the ”official” solution:

adding a parallel CO2 measurement as close as possible to the SO2/NOX

measurements is always the prefereedoption/ uncertainty with this methodespecially with NOx should however becarefully asessed

Compliance monitoring pilot for Marpol Annex VI

www.compmon.eu

Partners