composition of lipids from the first lusatian lignite seam of the … › egu2020 ›...

1
Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relations to vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum 1 2 3 A. Bechtel , M. Widera , M. Woszczyk 1 Applied Geosciences & Geophysics, Montanuniversität Leoben, Peter-Tunner-Strasse 5, A-8700 Leoben, Austria 2 Adam Mickiewicz University, Institute of Geology, 12 Krygowski Street, 61-680 Poznań, Poland 3 Adam Mickiewicz University, Laboratory of Biogeochemistry,10 Krygowski Street, 61-680 Poznań, Poland The positive correlation between d13C and di-/(di + tri-)terpenoid ratios of lignite indicates the role of varying gymnosperm/angiosperm contributions on the carbon isotopic composition (Fig. 7). The C- isotope data of long-chain n-alkanes, diterpenods, and angiosperm- derived triterpenoids show parallel fluctuations within the profiles, arguing for the role of minor variations in d13C of atmospheric CO2 on d13C of plant lipids during the Mid-Miocene Climatic Optimum (Fig. 8). However, the influence of local variations in ambient CO2 (e.g., the canopy effect) cannot be excluded. Fluctuations in d13C values of individual compounds may also be related to changes in humidity, air temperature, and carbon cycling within the peat (Fig. 8). Geological Setting and Samples The Adamów, Jóźwin IIB and Tomisławice lignite mines cover fault-bounded, relatively shallow tectonic depressions. They are located ~20–35 km of Konin in central Poland (Fig. 1a). The Grey Clays Member of the Miocene Poznań Fm. contains the examined First Lusatian lignite seam. It is up to several meters thick, on average 6.3–8.1 m (Fig. 1b-d). The seam formed in the middle part of the mid-Miocene (~15 Ma), during the last peak of the mid-Miocene Climatic Optimum. Acknowledgement: This poster, presented at the EGU General Assembly 2020 in Vienna, is a contribution to the Research Project No. 2017/27/B/ST10/00001, funded by the National Science Centre, Poland. Bulk geochemistry and molecular composition of lipids Bulk geochemistry and molecular composition of lipids Sample AD-02 Hydrocarbons (F1) 30 35 40 45 50 55 60 65 70 75 80 85 90 Time (min) 0 10 20 30 40 50 60 70 80 90 100 Relative Abundance Std. 23 25 Dehydroabietane Simonellite a-Phyllocladane b-Phyllocladane Pimarane Isonorpimarane Norpimarane Isopimaradiene des-A-Lupane des-A-Oleanenes 27 29 31 Dinoroleana-tetraene Dinorlupa-triene ab-C31-Hopane (22R) bb-C31-Hopane des-A-8,14-seco-noroleana-pentaene a) Cadalene 19 C30 Hop-17(21)-ene Alcohols (F3) 30 35 40 45 50 55 60 65 70 75 80 85 90 Time (min) 0 10 20 30 40 50 60 70 80 90 100 Relative Abundance C24 n-Alkanol C26 n-Alkanol C28 n-Alkanol C22 n-Alkanol Std. C18 n-Alkanol C16 n-Alkanol C14 n-Alkanol C12 n-Alkanol C23 n-Alkanol C25 n-Alkanol Campesterol b-Sitosterol b-Amyrin a-Amyrin Lupeol Friedelin c) Carboxylic Acids (FA) 30 35 40 45 50 55 60 65 70 75 80 85 90 Time (min) 0 10 20 30 40 50 60 70 80 90 100 Relative Abundance C16:0 n-FA C16:1 n-FA C15:0 n-FA C15:0 i-FA C14:0 n-FA C12:0 n-FA C10:0 n-FA Std. C18:0 n-FA C18:1 n-FA C17:0 n-FA C17:0 i-FA C20:0 n-FA C22:0 n-FA C24:0 n-FA C26:0 n-FA C28:0 n-FA C30:0 n-FA C23:0 n-FA C25:0 n-FA C27:0 n-FA C21:0 n-FA Hopanoic acids d) Ketones + PAHs (F2) 30 35 40 45 50 55 60 65 70 75 80 85 90 Time (min) 0 10 20 30 40 50 60 70 80 90 100 Relative Abundance Std. Dehydroferruginol Ferruginol Labdan-15-oic acid, ME Retene 6,10,14 Trimethyl-pentadecan-2-one C25 n-Alkan-2-one C27 n-Alkan-2-one C29 n-Alkan-2-one C31 n-Alkan-2-one C29 n-Alkan-10-one Tetramethyl-octahydro-picenes C31 n-Alkan-16-one Squalene b) Trimethyl-dihydro-picene Friedelin C20 n-Alkanol Fig. 5: Total ion current chromatograms of the (a) hydrocarbon fraction, (b) the ketone fraction, (c) the alcohol fraction, and (d) the carboxylic acids obtained from the lignite sample AD-02, Std. = Internal Standard (deuterated tetracosane (F1), 1,1´-binaphthyl (F2), 1-nonadecanol (F3), nonadecanoic acid (FA), respectively). Fig. 6: Relative percentages of source specific plant lipids within the samples. Elevated ash yields and low sulfur contents indicate peat formation in topogenous mires under freshwater conditions (Figs. 2, 3, 4). The molecular composition of the extracted lipids is highly variable, including leaf-wax n-alkanes in the C23 to C31 range, diterpenoids, hopanoids, and angiosperm-derived triterpenoids, as well as saturated fatty acids, long-chain n-alkanols and n-alkan-2-ones (Figs. 2, 3. 4). The enhanced abundances of short-chain n-FAs in several lignite samples argue for the contribution of algae and microorganisms to the biomass during periods of raised water table. Low bb/(bb+ab) hopane ratios imply acidic conditions during peatification. High concentrations of plant wax derived lipids are found in samples of detrital lignite (Fig. 5). The relative abundances (Paq = 0.08–0.51; Figs. 2d, 3d, 4d) of mid-chain (C23, C25) n-alkanes argue for a minor contribution of macrophytes (graminoids, etc.), enhanced during periods of raised water level. Terpenoid biomarker ratios (Fig. 6) argue for mixed vegetation, including gymnosperms (i.e. conifers) and angiosperms. From the sesqui- and diterpenoids present in the lignite (Fig. 5), a significant contribution of species of the coniferales families Cupressaceae and Pinaceae is concluded. High relative abundances of triterpenoids of the oleanane and ursane structural types in several parts of the seam indicate angiosperm domination in the peat-forming vegetation (Fig. 6). The input from Betulaceae is suggested from the occurrence of lupeol and its derivatives. Stable Isotope Analyses Texture of lignite lithotypes: DL - detritic, XDL - xylodetritic, DXL - detroxylitic, WDL - weathered Structure of lignite lithotypes: m - massive, h - horizontal stratification, fr - fractured F - fines (silt and clay), S - sand - fractures (cleats) - horizontal stratification - xylites (fossilised wood) Adamów mine S DL XDL DXL F 61 62 63 64 65 66 67 68 AD-02 AD-03 AD-04 AD-05 AD-06 AD-07 AD-08 AD-09 AD-01 WDLm WDLm DXLm(fr) XDLm(fr) XDLm DLm AD-10 Jóźwin IIB mine S DL XDL DXL F 40 39 41 42 43 44 45 46 JD-01 JD-02 JD-03 JD-04 JD-05 JD-05 - sample position JD-06 JD-00 XDLm(fr) DLm(fr) DLm(fr) JD-07 47 Tomisławice mine S DL XDL DXL F TD-02 TD-03 TD-04 TD-05 TD-06 TD-07 TD-08 TD-09 TD-01 XDLm(fr) XDLh XDLm DXLm XDLh DLm DLm TD-10 First Lusatian lignite seam Grey Clays (Mid-Polish) Member Kozmin Formation Poznan Formation Wielkopolska Member 53 54 55 56 57 58 59 60 61 62 63 m a.s.l. sample sedimentary log m a.s.l. sample sedimentary log m a.s.l. sample lithostratigraphy sedimentary log POLAND Warsaw Poznan KONIN TUREK N 5 km 200 km Jóźwin IIB lignite deposit Tomisławice lignite deposit Adamów lignite deposit - studied section a) b) c) d) Fig. 1: (a) Location of the studied lignite opencast mines in the Konin Basin (Poland); and lignite lithotypes, structural elements, and position of detrital lignite samples in the profiles from the (b) Adamów, (c) Jóźwin IIB, and (d) Tomisławice opencast mines. Altitude (m a.s.l.) Adamów mine S DL XDL DXL F 61 62 63 64 65 66 67 68 AD-05 AD-06 AD-07 AD-08 AD-09 AD-01 WDLm WDLm DXLm(fr) XDLm(fr) XDLm DLm AD-10 sample sedimentary log AD-02 AD-03 AD-04 Altitude (m a.s.l.) Legend see Fig. 1 60 61 62 63 64 65 66 67 68 0 50 100 150 200 250 long-chain FAs short-chain FAs 60 61 62 63 64 65 66 67 68 0 25 50 75 100 Steroids Hopanoids 0 100 200 300 Diterpenoids Triterpenoids 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 unsat. FAs branched FAs a) b) c) 0 10 20 30 40 50 60 TOC, Ash (wt%) 0.0 0.5 1.0 1.5 TIC, S (wt%) 0 50 100 150 200 250 Conc. (mg/g TOC) TOC Ash TIC S n-Alkanes n-Alkan-2-ones n-Alkanols Conc. (mg/g TOC) Conc. (mg/g TOC) Di-/(Di- + Tri-)- terpenoids Conc. (mg/g TOC) Conc. (mg/g TOC) e) f) g) h) i) 0.0 0.2 0.4 0.6 0.8 1.0 Paq d) Fig. 2: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Adamów mine. TOC, Ash (wt%) TIC, S (wt%) Altitude (m a.s.l.) Jóźwin IIB mine S DL XDL DXL F 40 39 41 42 43 44 45 46 JD-01 JD-02 JD-03 JD-04 JD-05 JD-06 JD-00 XDLm(fr) DLm(fr) DLm(fr) JD-07 47 sample sedimentary log Altitude (m a.s.l.) Legend see Fig. 1 Conc. (mg/g TOC) Di-/(Di- + Tri-)- terpenoids Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) 38 39 40 41 42 43 44 45 46 47 0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 0 50 100 150 200 250 0 50 100 150 200 250 long-chain FAs short-chain FAs 38 39 40 41 42 43 44 45 46 47 0 25 50 75 100 Steroids Hopanoids 0 100 200 300 Diterpenoids Triterpenoids 0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 unsat. FAs branched FAs TOC Ash TIC S n-Alkanes n-Alkan-2-ones n-Alkanols a) b) c) e) f) g) h) i) 0.0 0.2 0.4 0.6 0.8 1.0 Paq d) Fig. 3: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Jóźwin IIB mine. Altitude (m a.s.l.) Tomisławice mine Di-/(Di- + Tri-)- terpenoids Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) S DL XDLDXL F TD-02 TD-03 TD-04 TD-05 TD-06 TD-07 TD-08 TD-09 TD-01 XDLm(fr) XDLh XDLm DXLm XDLh DLm DLm TD-10 53 54 55 56 57 58 59 60 61 62 63 sample sedimentary log Altitude (m a.s.l.) Legend see Fig. 1 51 52 53 54 55 56 57 58 59 60 61 62 63 0 20 40 60 80 0.0 1.0 2.0 3.0 0 200 400 600 0 100 200 300 400 long-chain FAs short-chain FAs 51 52 53 54 55 56 57 58 59 60 61 62 63 0 20 40 60 80 100 120 Steroids Hopanoids 0 50 100 150 200 Diterpenoids Triterpenoids 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 unsat. FAs branched FAs TOC Ash TIC S n-Alkanes n-Alkan-2-ones n-Alkanols Conc. (mg/g TOC) TOC, Ash (wt%) TIC, S (wt%) a) b) c) e) f) g) h) i) 0.0 0.2 0.4 0.6 0.8 1.0 Paq d) Fig. 4: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Tomisławice mine. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -26.5 -26.3 -26.1 -25.9 -25.7 -25.5 -25.3 -25.1 -24.9 -24.7 -24.5 Adamów Jóźwin IIB Tomisławice 13 C ( o / oo , PDB) d Di-/(Di- + Tri-)terpenoids Fig. 7: Cross-correlation of d13C of total organic carbon versus the ratios of diterpenoids to the sum of di- plus triterpenoids concentrations of lignite samples. S DL XDL DXL F 61 62 63 64 65 66 67 68 AD-05 AD-06 AD-07 AD-08 AD-09 AD-01 WDLm WDLm DXLm(fr) XDLm(fr) XDLm DLm AD-10 sample sedimentary log AD-02 AD-03 AD-04 Altitude (m a.s.l.) S DL XDL DXL F 40 39 41 42 43 44 45 46 JD-01 JD-02 JD-03 JD-04 JD-05 JD-06 JD-00 XDLm(fr) DLm(fr) DLm(fr) JD-07 47 sample sedimentary log Altitude (m a.s.l.) Adamów mine S DL XDLDXL F TD-02 TD-03 TD-04 TD-06 TD-07 TD-08 TD-09 TD-01 XDLm(fr) XDLh XDLm DXLm XDLh DLm DLm TD-10 53 54 55 56 57 58 59 60 61 62 63 sample sedimentary log Altitude (m a.s.l.) Legend see Fig. 1 TD-07 Tomisławice mine -32 -31 -30 -29 -28 -28 -27 -26 -25 -24 -30 -29 -28 -27 -26 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d a) b) c) n-C23 n-C29 n-C31 Norabietane Pimarane a-Phyllocladane Ferruginol Monoarom. Oleanene Monoarom. Lupene Triarom. Oleanene Tetraarom. Oleanene -32 -31 -30 -29 -28 -27 -26 -25 -24 -30 -29 -28 -27 -26 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d Jóźwin IIB mine n-C23 n-C29 n-C31 Norabietane Pimarane a-Phyllocladane Ferruginol Monoarom. Oleanene Monoarom. Lupene Triarom. Oleanene Tetraarom. Oleanene a) b) c) -32 -31 -30 -29 -28 -27 -26 -25 -24 -30 -29 -28 -27 -26 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d 13 C ( o / oo , PDB) d a) b) c) n-C23 n-C29 n-C31 Norabietane Pimarane a-Phyllocladane Ferruginol Monoarom. Oleanene Monoarom. Lupene Triarom. Oleanene Tetraarom. Oleanene Fig. 8: Depth trends of carbon isotopic compositions of (a) C23, C29, and C31 n-alkanes, (b) diterpenoids, and (c) triterpenoids within the studied profiles.

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Composition of lipids from the First Lusatian lignite seam of the … › EGU2020 › EGU2020-15... · 2020-04-03 · Composition of lipids from the First Lusatian lignite seam of

Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relations to vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum

1 2 3A. Bechtel , M. Widera , M. Woszczyk 1 Applied Geosciences & Geophysics, Montanuniversität Leoben, Peter-Tunner-Strasse 5, A-8700 Leoben, Austria

2 Adam Mickiewicz University, Institute of Geology, 12 Krygowski Street, 61-680 Poznań, Poland3 Adam Mickiewicz University, Laboratory of Biogeochemistry,10 Krygowski Street, 61-680 Poznań, Poland

The positive correlation between d13C and di-/(di + tri-)terpenoid ratios of lignite indicates the role of varying gymnosperm/angiosperm contributions on the carbon isotopic composition (Fig. 7). The C-isotope data of long-chain n-alkanes, diterpenods, and angiosperm-derived triterpenoids show parallel fluctuations within the profiles, arguing for the role of minor variations in d13C of atmospheric CO2 on d13C of plant lipids during the Mid-Miocene Climatic Optimum (Fig. 8). However, the influence of local variations in ambient CO2 (e.g., the canopy effect) cannot be excluded. Fluctuations in d13C values of individual compounds may also be related to changes in humidity, air temperature, and carbon cycling within the peat (Fig. 8).

Geological Setting and Samples

The Adamów, Jóźwin IIB and Tomisławice lignite mines cover fault-bounded, relatively shallow tectonic depressions. They are located ~20–35 km of Konin in central Poland (Fig. 1a). The Grey Clays Member of the Miocene Poznań Fm. contains the examined First Lusatian lignite seam. It is up to several meters thick, on average 6.3–8.1 m (Fig. 1b-d). The seam formed in the middle part of the mid-Miocene (~15 Ma), during the last peak of the mid-Miocene Climatic Optimum.

Acknowledgement: This poster, presented at the EGU General Assembly 2020 in Vienna, is a contribution to the Research Project No. 2017/27/B/ST10/00001, funded by the National Science Centre, Poland.

Bulk geochemistry and molecular composition of lipids

Bulk geochemistry and molecular composition of lipids

Sample AD-02 Hydrocarbons (F1)

30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abundance

Std

.

23

25

Dehydro

abie

tane

Sim

onellite

a-P

hyllocla

dane

b-P

hyllocla

dane

Pim

ara

ne

Isonorp

imara

ne

Norp

imara

ne

Isopim

ara

die

ne

des-A

-Lupane

des-A

-Ole

anenes

27

29

31

Din

oro

leana-t

etr

aene

Din

orlupa-t

riene

ab-C

31-H

opane (

22R

)

bb-C

31-H

opane

des-A

-8,1

4-s

eco-n

oro

leana-p

enta

ene

a)

Cad

alen

e

19

C30 H

op-1

7(2

1)-

ene

Alcohols (F3)

30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abundance

C24 n

-Alk

anol

C26 n

-Alk

anol

C28 n

-Alk

anol

C22 n

-Alk

anol

Std

.

C18 n

-Alk

anol

C16 n

-Alk

anol

C14 n

-Alk

anol

C12 n

-Alk

anol

C23 n

-Alk

anol

C25 n

-Alk

anol

Cam

peste

rol

b-S

itoste

rol

b-A

myrin

a-A

myrin

Lupeol

Friedelin

c)

Carboxylic Acids (FA)

30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abundance

C16:0

n-F

AC

16:1

n-F

A

C15:0

n-F

AC

15:0

i-F

A

C14:0

n-F

A

C12:0

n-F

A

C10:0

n-F

A

Std

.

C18:0

n-F

AC

18:1

n-F

A

C17:0

n-F

AC

17:0

i-F

A C20:0

n-F

A

C22:0

n-F

A

C24:0

n-F

A C26:0

n-F

A

C28:0

n-F

A

C30:0

n-F

A

C23:0

n-F

A

C25:0

n-F

A

C27:0

n-F

A

C21:0

n-F

A

Hopanoic

acid

s

d)

Ketones + PAHs (F2)

30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abundance

Std

.

Dehydro

ferr

ugin

ol

Ferr

ugin

ol

Labdan-1

5-o

ic a

cid

, M

ER

ete

ne6,1

0,1

4 T

rim

eth

yl-penta

decan-2

-one

C25 n

-Alk

an-2

-one

C27 n

-Alk

an-2

-one

C29 n

-Alk

an-2

-one

C31 n

-Alk

an-2

-one

C29 n

-Alk

an-1

0-o

ne

Tetr

am

eth

yl-octa

hydro

-pic

enes

C31 n

-Alk

an-1

6-o

ne

Squale

ne

b)

Trim

eth

yl-dih

ydro

-pic

ene

Friedelin

C20 n

-Alk

anol

Fig. 5: Total ion current chromatograms of the (a) hydrocarbon fraction, (b) the ketone fraction, (c) the alcohol fraction, and (d) the carboxylic acids obtained from the lignite sample AD-02, Std. = Internal Standard (deuterated tetracosane (F1), 1,1´-binaphthyl (F2), 1-nonadecanol (F3), nonadecanoic acid (FA), respectively).

Fig. 6: Relative percentages of source specific plant lipids within the samples.

Elevated ash yields and low sulfur contents indicate peat formation in topogenous mires under freshwater conditions (Figs. 2, 3, 4). The molecular composition of the extracted lipids is highly variable, including leaf-wax n-alkanes in the C23 to C31 range, diterpenoids, hopanoids, and angiosperm-derived triterpenoids, as well as saturated fatty acids, long-chain n-alkanols and n-alkan-2-ones (Figs. 2, 3. 4). The enhanced abundances of short-chain n-FAs in several lignite samples argue for the contribution of algae and microorganisms to the biomass during periods of raised water table. Low bb/(bb+ab) hopane ratios imply acidic conditions during peatification. High concentrations of plant wax derived lipids are found in samples of detrital lignite (Fig. 5). The relative abundances (Paq = 0.08–0.51; Figs. 2d, 3d, 4d) of mid-chain (C23, C25) n-alkanes argue for a minor contribution of macrophytes (graminoids, etc.), enhanced during periods of raised water level. Terpenoid biomarker ratios (Fig. 6) argue for mixed vegetation, including gymnosperms (i.e. conifers) and angiosperms. From the sesqui- and diterpenoids present in the lignite (Fig. 5), a significant contribution of species of the coniferales families Cupressaceae and Pinaceae is concluded. High relative abundances of triterpenoids of the oleanane and ursane structural types in several parts of the seam indicate angiosperm domination in the peat-forming vegetation (Fig. 6). The input from Betulaceae is suggested from the occurrence of lupeol and its derivatives.

Stable Isotope Analyses

Texture of lignite lithotypes: DL - detritic, XDL - xylodetritic, DXL - detroxylitic,

WDL - weathered Structure of lignite lithotypes: m - massive, h - horizontal stratification, fr - fractured

F - fines (silt and clay), S - sand

- fractures (cleats)

- horizontal stratification

- xylites (fossilised wood)

Adamów mine

S DL XDL DXLF61

62

63

64

65

66

67

68

AD-02

AD-03

AD-04

AD-05

AD-06

AD-07

AD-08

AD-09

AD-01

WDLm

WDLm

DXLm(fr)

XDLm(fr)

XDLm

DLm

AD-10

Jóźwin IIB mine

S DL XDL DXLF

40

39

41

42

43

44

45

46

JD-01

JD-02

JD-03

JD-04

JD-05

JD-05 - sample position

JD-06

JD-00

XDLm(fr)

DLm(fr)

DLm(fr)

JD-07

47

Tomisławice mine

S DL XDL DXLF

TD-02

TD-03

TD-04

TD-05

TD-06

TD-07

TD-08

TD-09

TD-01

XDLm(fr)

XDLh

XDLm

DXLm

XDLh

DLm

DLm

TD-10

First Lusatia

n li

gnite

seam

Gre

y C

lays (

Mid

-Polis

h)

Mem

ber

Kozmin Formation

Po

zna

n F

orm

atio

n

Wielkopolska Member

53

54

55

56

57

58

59

60

61

62

63m a.s.l. samplesedimentary

logm a.s.l. samplesedimentary

logm a.s.l. sample lithostratigraphysedimentary

log

POLAND

WarsawPoznan

KONIN

TUREK

N

5 km

200 km

Jóźwin IIB

lignite

deposit Tomisławice

lignite

deposit

Adamów

lignite

deposit

- studied section

a)

b) c) d)

Fig. 1: (a) Location of the studied lignite opencast mines in the Konin Basin (Poland); and lignite lithotypes, structural elements, and position of detrital lignite samples in the profiles from the (b) Adamów, (c) Jóźwin IIB, and (d) Tomisławice opencast mines.

Alt

itu

de

(m

a.s

.l.)

Adamów mine

S DL XDL DXLF61

62

63

64

65

66

67

68

AD-05

AD-06

AD-07

AD-08

AD-09

AD-01

WDLm

WDLm

DXLm(fr)

XDLm(fr)

XDLm

DLm

AD-10

samplesedimentarylog

AD-02

AD-03

AD-04

Alt

itu

de (

m a

.s.l.)

Legend see Fig. 1 60

61

62

63

64

65

66

67

68

0 50 100 150 200 250

long-chain FAs

short-chain FAs

60

61

62

63

64

65

66

67

68

0 25 50 75 100

Steroids

Hopanoids

0 100 200 300

Diterpenoids

Triterpenoids

0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30

unsat. FAs

branched FAs

a) b)c)

0 10 20 30 40 50 60

TOC, Ash (wt%)

0.0 0.5 1.0 1.5

TIC, S (wt%)

0 50 100 150 200 250

Conc. (mg/g TOC)

TOC

Ash

TIC

S

n-Alkanes

n-Alkan-2-ones

n-Alkanols

Conc. (mg/g TOC) Conc. (mg/g TOC)Di-/(Di- + Tri-)-

terpenoidsConc. (mg/g TOC) Conc. (mg/g TOC)

e) f) g) h) i)

0.0 0.2 0.4 0.6 0.8 1.0

Paq

d)

Fig. 2: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Adamów mine.

TOC, Ash (wt%) TIC, S (wt%)

Alt

itu

de

(m

a.s

.l.)

Jóźwin IIB mine

S DL XDL DXLF

40

39

41

42

43

44

45

46

JD-01

JD-02

JD-03

JD-04

JD-05

JD-06

JD-00

XDLm(fr)

DLm(fr)

DLm(fr)

JD-07

47samplesedimentary

log

Alt

itu

de

(m

a.s

.l.)

Legend see Fig. 1

Conc. (mg/g TOC)

Di-/(Di- + Tri-)-terpenoids

Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC)

38

39

40

41

42

43

44

45

46

47

0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 0 50 100 150 200 250

0 50 100 150 200 250

long-chain FAs

short-chain FAs

38

39

40

41

42

43

44

45

46

47

0 25 50 75 100

Steroids

Hopanoids

0 100 200 300

Diterpenoids

Triterpenoids

0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20

unsat. FAs

branched FAs

TOC

Ash

TIC

S

n-Alkanes

n-Alkan-2-ones

n-Alkanols

a) b) c)

e) f) g) h) i)

0.0 0.2 0.4 0.6 0.8 1.0

Paq

d)

Fig. 3: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Jóźwin IIB mine.

Alt

itu

de (

m a

.s.l

.)

Tomisławice mine

Di-/(Di- + Tri-)-terpenoids

Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC) Conc. (mg/g TOC)

S DL XDLDXLF

TD-02

TD-03

TD-04

TD-05

TD-06

TD-07

TD-08

TD-09

TD-01

XDLm(fr)

XDLh

XDLm

DXLm

XDLh

DLm

DLm

TD-10

53

54

55

56

57

58

59

60

61

62

63samplesedimentary

log

Alt

itu

de

(m

a.s

.l.)

Legend see Fig. 1 51

52

53

54

55

56

57

58

59

60

61

62

63

0 20 40 60 80 0.0 1.0 2.0 3.0 0 200 400 600

0 100 200 300 400

long-chain FAs

short-chain FAs

51

52

53

54

55

56

57

58

59

60

61

62

63

0 20 40 60 80 100 120

Steroids

Hopanoids

0 50 100 150 200

Diterpenoids

Triterpenoids

0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40

unsat. FAs

branched FAs

TOC

Ash

TIC

S

n-Alkanesn-Alkan-2-onesn-Alkanols

Conc. (mg/g TOC)TOC, Ash (wt%) TIC, S (wt%)

a) b) c)

e) f) g) h) i)

0.0 0.2 0.4 0.6 0.8 1.0

Paq

d)

Fig. 4: Sampling position and variation of concentrations and concentration ratios of lipids within the First Lusatian lignite seam at the Tomisławice mine.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-26.5 -26.3 -26.1 -25.9 -25.7 -25.5 -25.3 -25.1 -24.9 -24.7 -24.5

Adamów

Jóźwin IIB

Tomisławice

13C (o/oo, PDB)d

Di-

/(D

i- +

Tri

-)te

rpe

no

ids

Fig. 7: Cross-correlation of d13C of total organic carbon versus the ratios of diterpenoids to the sum of di- plus triterpenoids concentrations of lignite samples.

S DL XDL DXLF61

62

63

64

65

66

67

68

AD-05

AD-06

AD-07

AD-08

AD-09

AD-01

WDLm

WDLm

DXLm(fr)

XDLm(fr)

XDLm

DLm

AD-10

samplesedimentarylog

AD-02

AD-03

AD-04

Alt

itu

de

(m a

.s.l.

)

S DL XDL DXLF

40

39

41

42

43

44

45

46

JD-01

JD-02

JD-03

JD-04

JD-05

JD-06

JD-00

XDLm(fr)

DLm(fr)

DLm(fr)

JD-07

47samplesedimentary

log

Alt

itu

de

(m a

.s.l.

)

Adamów mine

S DL XDLDXLF

TD-02

TD-03

TD-04

TD-06

TD-07

TD-08

TD-09

TD-01

XDLm(fr)

XDLh

XDLm

DXLm

XDLh

DLm

DLm

TD-10

53

54

55

56

57

58

59

60

61

62

63samplesedimentary

log

Alt

itu

de (

m a

.s.l.)

Legend see Fig. 1

TD-07

Tomisławice mine

-32 -31 -30 -29 -28 -28 -27 -26 -25 -24 -30 -29 -28 -27 -26

13C (o/oo, PDB)d 13C (o/oo, PDB)d 13C (o/oo, PDB)d

a) b) c)

n-C23

n-C29

n-C31

NorabietanePimaranea-PhyllocladaneFerruginol

Monoarom. OleaneneMonoarom. LupeneTriarom. OleaneneTetraarom. Oleanene

-32 -31 -30 -29 -28 -27 -26 -25 -24 -30 -29 -28 -27 -2613C (o/oo, PDB)d 13C (o/oo, PDB)d 13C (o/oo, PDB)d

Jóźwin IIB mine

n-C23

n-C29

n-C31

NorabietanePimaranea-PhyllocladaneFerruginol

Monoarom. OleaneneMonoarom. LupeneTriarom. OleaneneTetraarom. Oleanene

a) b) c)

-32 -31 -30 -29 -28 -27 -26 -25 -24 -30 -29 -28 -27 -26

13C (o/oo, PDB)d 13C (o/oo, PDB)d 13C (o/oo, PDB)d

a) b) c)

n-C23

n-C29

n-C31

NorabietanePimaranea-PhyllocladaneFerruginol

Monoarom. OleaneneMonoarom. LupeneTriarom. OleaneneTetraarom. Oleanene

Fig. 8: Depth trends of carbon isotopic compositions of (a) C23, C29, and C31 n-alkanes, (b) diterpenoids, and (c) triterpenoids within the studied profiles.