computabonal&physicsparticle.korea.ac.kr/class/2016/phys461/cphy_stat-ch02.pdf · 2016. 6. 11. ·...

18
Korea U/Dept. Physics, Prof. Eunil Won (All rights are reserved) ComputaBonal Physics Examples of Probability FuncBons Korea University Eunil Won 1

Upload: others

Post on 24-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    ComputaBonal  PhysicsExamples  of  Probability  FuncBons  

    Korea  University  Eunil  Won

    1

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial  distribuBon

    2

    •  Binomial  distribuBon    Consider  a  series  of  N  independent  trials  with  only  two  possible  outcomes.  When  the  desired  outcome  of  one  trial  is  p,  the  probability  of  finding  n  desired  outcome  from  N  trials  is  governed  by  the  binomial  distribuBon.  

    The  probability  to  have  n  desired  outcomes  in  N  events  is

    f(n;N, p) =N !

    n!(N � n)!pn(1� p)N�n

    The  expectaBon  and  the  variance  are

    V [n] = E[n2]� (E[n])2 = Np(1� p)

    Can  you  prove  them?

    E[n] =NX

    n=0

    nN !

    n!(N � n)!pn(1� p)N�n = Np

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial  distribuBon  -‐  proof  1

    3

    The  expectaBon  value  can  be  found  as

    E[n] =NX

    n=0

    nN !

    n!(N � n)!pn(1� p)N�n

    = NpNX

    n=1

    (N � 1)!(n� 1)!

    �(N � 1)� (n� 1)

    �!p(n�1)(1� p)(N�1)�(n�1)

    with m = n� 1, M = N � 1,

    = NpMX

    m=0

    M !

    m!(M �m)!pm(1� p)M�m

    = Np

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial  distribuBon  -‐  proof  2

    4

    The  variance    can  be  found  as

    E[n(n� 1)] =NX

    n=0

    n(n� 1) N !n!(N � n)!p

    n(1� p)N�n

    =NX

    n=2

    N !

    (n� 2)!(N � n)!pn(1� p)N�n

    = N(N � 1)p2NX

    n=2

    (N � 2)!(n� 2)!

    �(N � 2)� (n� 2)

    �!pn�2(1� p)(N�2)�(n�2)

    = N(N � 1)p2

    E[n2] = E[n(n� 1) + n] = E[n(n� 1)] + E[n]

    ) V [n] = E[n2]� (E[n])2 = N(N � 1)p2 +Np� (Np)2 = Np(1� p)

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial  distribuBon  -‐  example

    5

    N=  5,  p=0.5 N=10,  p=0.5

    N=20,  p=0.2 N=20,  p=0.5

    Can  you  write  ROOT  C++  code  that  draws  this?

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial   distribuBon  

    6

    #include //// Drawing a binomial function//// E. Won ([email protected])

    Double_t f1(Int_t n, Int_t N, Double_t p) { Double_t fac = TMath::Power(p,n)*TMath::Power((1.0-p),N-n); for (Int_t i=1;iSetStyle("Plain"); gROOT->ForceStyle();

    TCanvas* c = new TCanvas("c","",200,10,600,400); c->Divide(2,2); h1 = new TH1F("h1","",20,0.0,20); h1->SetMaximum(0.4); h2 = new TH1F("h2","",20,0.0,20); h2->SetMaximum(0.4); h3 = new TH1F("h3","",20,0.0,20); h3->SetMaximum(0.4); h4 = new TH1F("h4","",20,0.0,20); h4->SetMaximum(0.4); h1->SetFillColor(3);h2->SetFillColor(3); h3->SetFillColor(3);h4->SetFillColor(3); for (Int_t i=0;iFill(i,f1(i, 5,0.5)); h2->Fill(i,f1(i,10,0.5)); h3->Fill(i,f1(i,20,0.2)); h4->Fill(i,f1(i,20,0.5)); } c->cd(1); h1->Draw(); c->cd(2); h2->Draw(); c->cd(3); h3->Draw(); c->cd(4); h4->Draw();}

    - the source code

    The  funcBon  f1  returns  the  binomial  distribuBon

    mailto:[email protected]

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial  distribuBon  -‐  example

    7

    •  Histogram    Suppose  we  are  interested  in  one  parBcular  bin  of  a  compound  histogram.  Then  “success”  may  correspond  to  geVng  an  entry  in  this  parBcular  bin,  and  “failure”  corresponds  to  an  entry  in  any  other  bin  of  the  histogram  -‐  so  it  is  related  with  the  binomial  distribuBon.  

    The  probability  p  for  a  success  is  p  =  n/N  when  n  and  N  are  entries  in  the  bin  and  the  total  number  of  events  in  the  histogram.

    V [n] = Np(1� p) = N nN

    ⇣1� n

    N

    ⌘= n

    ⇣1� n

    N

    �[n] =

    rn⇣1� n

    N

    ⌘⇡

    pn for p ! 0 (or N ! 1)

    Half  size  of  the  verBcal  bar  shows  the  “error  of  yi”

    �yi :  error  of  yi�yi =

    pyi

    We  did  this  when  we  discussed  histogram  errors!

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    MulBnomial  distribuBon

    8

    •  MulBnomial  distribuBon    GeneralizaBon  of  the  binomial  distribuBon  with  m  different  possible  outcomes.    For  a  parBcular  outcome  has  the  probability  pi,  and  of  course

    mX

    i=1

    pi = 1

    f(n1, ..., nm;N, p1, ..., pm) =N !

    n1!n2!..nm!pn11 p

    n22 ...p

    nmm

    The  expectaBon  and  the  variance  areE[ni] = Npi and V [ni] = Npi(1� pi)

    ex)  For  three  possible  outcomes

    f(ni, nj ;N, pi, pj) =N !

    ni!nj !(N � ni � nj)!pnii p

    njj (1� pi � pj)

    N�ni�nj

    The  covariance  becomescov[ni, nj ] = �Npipj

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Poisson  DistribuBon

    9

    •  Poisson  distribuBon    LimiBng  case  of  the  binomial  distribuBon  when  N  becomes  large,  p  very  small  but  the  product  Np  (i.e.  the  expectaBon  value)  remains  a  finite  value  ν

    f(n; ⌫) =⌫n

    n!e�⌫

    E[n] =1X

    n=0

    n⌫n

    n!e�⌫ = ⌫ V [n] =

    1X

    n=0

    (n� ⌫)2 ⌫n

    n!e�⌫ = ⌫

    The  expectaBon  and  the  variance  are

    ν=2 ν=10

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Poisson  DistribuBon

    10

    •  Poisson  distribuBon    LimiBng  case  of  the  binomial  distribuBon  when  N  becomes  large,  p  very  small  but  the  product  Np  (i.e.  the  expectaBon  value)  remains  a  finite  value  ν  -‐  proof

    Np = ⌫ and  SBrling’s  formula  gives N ! ⇡p2⇡NNNe�N

    so,N !

    n!(N � n)!pn(1� p)N�n = 1

    n!

    p2⇡NNNe�Np

    2⇡(N � n)(N � n)(N�n)e�(N�n)⇣ ⌫N

    ⌘n⇣1� ⌫

    N

    ⌘N�n

    ⇡ 1n!

    N (N�n)e�N

    (N � n)(N�n)e�(N�n)⌫n

    ⇣1� ⌫

    N

    ⌘N�n

    ⇡ 1n!

    1

    (1� nN )(N�n)en⌫n

    ⇣1� ⌫

    N

    ⌘N�n

    ⇡ 1n!

    1

    (1� nN )Nen⌫n

    ⇣1� ⌫

    N

    ⌘N (1� ⌫N )�n

    (1� nN )�n

    ⇡ e�⌫⌫n

    n!

    limN!1

    ⇣1 +

    N

    ⌘N= e✏

    is  used.

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Uniform  DistribuBon

    11

    •  Uniform  distribuBon    The  uniform  p.d.f.  for  the  conBnuous  variable  is  defined  by

    f(x;↵,�) =

    ⇢ 1��↵ ↵ x �0 otherwise

    E[x] =

    Z �

    x

    � � ↵dx =1

    2(↵+ �)

    V [x] =

    Z �

    ↵[x� 1

    2(↵+ �)]2

    1

    � � ↵dx =1

    12(� � ↵)2

    The  expectaBon  and  the  variance  are

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    ExponenBal  DistribuBon

    12

    •  ExponenBal  distribuBon    The  exponenBal  p.d.f.  for  the  conBnuous  variable  is  defined  by

    f(x, ⇠) =1

    e

    �x/⇠ (0 x < 1)

    The  expectaBon  and  the  variance  are

    E[x] =1

    Z 1

    0xe

    �x/⇠dx = ⇠

    V [x] =1

    Z 1

    0(x� ⇠)2e�x/⇠dx = ⇠2

    ξ=1ξ=2ξ=5

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    ExponenBal  DistribuBon

    13

    •  ExponenBal  distribuBon  :  the  source  code

    ξ=1ξ=2ξ=5

    //// Drawing exponential functions//// E. Won ([email protected])

    Double_t f1(Double_t *x, Double_t *xi) { return TMath::Exp(-1.0*x[0]/xi[0])/xi[0]; }

    void exp(){ gROOT->SetStyle("Plain"); gROOT->ForceStyle(); TF1 *fun1 = new TF1("fun1",f1,0.0,5.0,1); TF1 *fun2 = new TF1("fun2",f1,0.0,5.0,1); TF1 *fun3 = new TF1("fun3",f1,0.0,5.0,1); fun1->SetParameter(0,1.0); fun1->Draw(); fun2->SetLineColor(kBlue); fun2->SetParameter(0,2.0); fun2->Draw("LSAME"); fun3->SetLineColor(kRed); fun3->SetParameter(0,5.0); fun3->Draw("LSAME");}

    ξ=1ξ=2ξ=5

    mailto:[email protected]

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Gaussian  DistribuBon

    14

    •  Gaussian  distribuBon    The  gaussian  p.d.f.  for  the  conBnuous  variable  is  defined  by

    f(x;µ,�

    2) =

    1p2⇡�

    2exp

    ⇣� (x� µ)

    2

    2�

    2

    E[x] = µ

    V [x] = �2

    The  expectaBon  and  the  variance  are

    μ=0,σ=2μ=4,σ=3μ=0,σ=6Can  you  prove  them?

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    N-‐dim.  Gaussian  DistribuBon

    15

    •  Generalized  N-‐dimensional  gaussian  distribuBon    The  N-‐dim.  gaussian  p.d.f.  for  the  conBnuous  variables  x  is  defined  by

    f(x;µ, V ) =1

    (2⇡)N/2|V |1/2exp

    h� 1

    2

    (x� µ)TV �1(x� µ)i

    where  x  and  μ  are  column  vectors  containing  x1,...,xn  and  μ1,...,μn,  xT  and  μT  are  the  corresponding  row  vectors,  and  |V|  is  the  determinant  of  a  symmetric  NxN  matrix  V.

    The  expectaBon  and  the  (co)variance  are

    E[xi] = µi, V [xi] = Vii, cov[xi, xj ] = Vij

    The  two  dimensional  example  becomesf(x1, x2;µ1, µ2,�1,�2, ⇢) =

    1

    2⇡�1�2

    p1� ⇢2

    ⇥ exp(

    � 12(1� ⇢2)

    h⇣x1 � µ1

    �1

    ⌘2+

    ⇣x2 � µ2

    �2

    ⌘2� 2⇢

    ⇣x1 � µ1

    �1

    ⌘⇣x2 � µ2

    �2

    ⌘i)

    where                                                                                                          is  the  correlaBon  coefficient  ⇢ = cov[x1, x2]/(�1�2)

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Chi-‐square  DistribuBon

    16

    •  The  χ2(chi-‐square)  distribuBon    The  χ2(chi-‐square)  distribuBon  of  the  conBnuous  variable  z  is  defined  by

    f(z;n) =1

    2n/2�(n/2)zn/2�1e�z/2, n = 1, 2, ... (0 z < 1)

    where  the  parameter  n  is  called  the  number  of  degrees  of  freedom  and  the  gamma  funcBon  is  defined  by

    �(x) =

    Z 1

    0e

    �tt

    x�1dt

    The  expectaBon  and  the  variance  are  found  to  be

    E[z] =

    Z 1

    0z

    1

    2n/2�(n/2)zn/2�1e�z/2 dz = n,

    V [z] =

    Z 1

    0(z � n)2 1

    2n/2�(n/2)zn/2�1e�z/2 dz = 2n

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Chi-‐square  DistribuBon

    17

    //// E. Won ([email protected])//// gammln from Numerical Recipes

    float gammln(float xx){ double x,y,tmp,ser; static double cof[6]={76.18009172947146,-86.50532032941677, 24.01409824083091,-1.231739572450155, 0.1208650973866179e-2,-0.5395239384953e-5}; int j;

    y=x=xx; tmp=x+5.5; tmp -= (x+0.5)*log(tmp); ser=1.000000000190015; for (j=0;jSetStyle("Plain"); gROOT->ForceStyle(); TH2F *h2 = new TH2F("h2","",2,0.0,20.0,2,0.0,0.5); h2->Draw(); TF1 *fun1 = new TF1("fun1",f1,0.0,20.0,1); TF1 *fun2 = new TF1("fun2",f1,0.0,20.0,1); TF1 *fun3 = new TF1("fun3",f1,0.0,20.0,1); TF1 *fun4 = new TF1("fun4",f1,0.0,20.0,1); fun1->SetParameter(0, 1); fun1->Draw("LSAME"); // rest of lines skipped ...

    n=1n=2n=5n=10

    Can you understand how it is done? (I took the logarithm first!)

    mailto:[email protected]

  • Korea  U/Dept.  Physics,  Prof.  Eunil  Won  (All  rights  are  reserved)

    Binomial,  Poisson,  and  Gaussian  PDF

    18

    Binomial Poisson

    Gaussian

    N ! 1, Np = µ

    N ! 1 µ ! 1