computational nmr spectroscopy applied to bioglasses

25
Computational NMR spectroscopy applied to bioglasses Alfonso Pedone Department of Chemical and Geological Sciences University of Modena and Reggio Emilia NIS Colloquia Turin 28-29 November 2013

Upload: others

Post on 20-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computational NMR spectroscopy applied to bioglasses

Computational NMR

spectroscopy applied

to bioglasses

Alfonso PedoneDepartment of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia

NIS Colloquia

Turin 28-29 November 2013

Page 2: Computational NMR spectroscopy applied to bioglasses

Overview of the talk

o Introduction (bioglasses & NMR)

o Methodology:

o MD-GIPAW to simulate NMR spectra

o Application:

o 45S5 Bioglass (31P, 29Si, 17O, 23Na)

o Fluorinated bioglasses (19F, 29Si, 23Na)

o Conclusions

Page 3: Computational NMR spectroscopy applied to bioglasses

Prof. Larry Hench

Imperial College London

HA [Ca10(PO4)6(OH)2]

SBF [Na+, K+, Ca2+, Mg2+,

HPO42-, HCO3

-, Cl- and

SO42-]

®Bioglass 45S5 (Hench, 1971)

SiO2 45%

Na2O 24.5%

CaO 24.5%

P2O5 6%

Hench et al J. Biomed. Mater. Res. Symp. 1971, 2, 117

Bioglasses

Structure-bioactivity relationships

The crucial issue for the development of bioglasses is an improved

understanding of their fundamental structure–bioactivity

relationships.

Page 4: Computational NMR spectroscopy applied to bioglasses

Nuclear Magnetic Resonance spectroscopy is

extremely sensitive to chemical environment of

active nuclei :

o Topological disorder (bond distances and angles,

coordination numbers etc..)

o the nature of the 2nd coordination sphere (chemical disorder)

BONBO

Page 5: Computational NMR spectroscopy applied to bioglasses

ZEEMAN INT.

Anisotropic!! BROAD SOLID STATE SPECTRA

DIPOLAR INT. QUADRUPOLAR INT. (I>1/2)

CHEMICAL SHIFT

MAS

DAS

DOR

MQMAS

MAS

Improved

Resolution

Improved

Accuracy

Page 6: Computational NMR spectroscopy applied to bioglasses

β-CaSiO3 glassNMR of amorphous systems

Distribution of

structural features

Distribution of

NMR parametersBroad Spectra

29Si MAS

M. Edèn, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.,

2012,108, 177-221

Topological disorder

Chemical disorder

Page 7: Computational NMR spectroscopy applied to bioglasses

Our Approach

Charpentier, T. Menziani, M. C., Pedone A. RSC Advances 2013, 3 (27), 10550 - 10578

GLASS SAMPLE

3D structure

unknown

GLASS MODEL

3D structure

from MD

Collect NMR

spectra & extract

NMR parameters

Compute NMR

parameters

(DFT-GIPAW)

& theoretical

spectra (fpNMR)

Experiments verify theory

Theory explains experiments

No

Refine the

model

Agreement?

Yes

NMR - structure relationships

Structural Inversion

Peak assignments

Spectra

Interpretation

Page 8: Computational NMR spectroscopy applied to bioglasses

Glass Generation: Molecular Dynamics Simulations

• Models of crystalline (or random) systems are melted; the

melts are then quenched , freezing the structure into a

disordered glassy phase.

Pedone, A. J. Phys. Chem. C 2009, 113, 20773.

Page 9: Computational NMR spectroscopy applied to bioglasses

NMR CASTEP

QUANTUM ESPRESSO

DFT-PBE calculations

Plane waves Basis set

Pseudo-Potentials

NMR Calculations

GIPAW: C.J. Pickard, F. Mauri, Physical Review B 63 245101 (2001)

Spin ½ nuclei:δiso, ΔCSA, ηCSA

Spin > ½ nuclei:δiso, ΔCSA, ηCSA,

CQ, ηQ

fpNMR

nnmmv tottotnm HH ,

Pedone, A.; Charpentier, T.; Menziani, M. C.

Phys. Chem. Chem. Phys. 2010, 12, 5064.

(90°,MAS) 2D NMR

MQMAS

MAS

NMR parameters

Page 10: Computational NMR spectroscopy applied to bioglasses

Bioglasses

General Microscopic Structure

• very open silicate network dominated by Q2 and Q3 species

• phosphate groups are predominantly isolated Q0 units associated

with modifier cations.

• bioactivity appears for glasses with network connectivity (NC) < 3

45S5: 46.1% SiO2, 24.4% Na2O, 26.9%CaO, 2.6% P2O5

Page 11: Computational NMR spectroscopy applied to bioglasses

Bioglasses

General Microscopic Structure

• Fluoride prefers to form FMn moieties (M=Na/Ca)

• The high affinity of F for Na and Ca modifier cations determines the

separation of a highly polymerized phosphosilicate matrix from an

ionic phase rich in Na, Ca and F.

45S5F: 46.1% SiO2, 24.4% Na2O, 16.9%CaO, 10CaF2 2.6% P2O5

CaF2

CaO

Network

connectivity

increases

Lusvardi et al. J. Phys. Chem. B 2008, 112, 12730. Christie et al. J. Phys. Chem. B 2011, 115, 2038-2045.

Page 12: Computational NMR spectroscopy applied to bioglasses

Open Questions on the structure

Bi- or Trinomial Qn(Si) distributions?

Are P-O-Si bonds present in the glass?

Nature of Cation Mixing around NBOs.

Random or Non-Random distributions?

Fluorine environment? Are Si-F bonds

present in the glass?

Does Fluorine prefer to bond with Na or

Ca?

Page 13: Computational NMR spectroscopy applied to bioglasses

PHOSPHOROUS ENVIRONMENT

150 100 50 0 -50 -100 -150

MAS

Static

Inte

nsity (

Arb

. U

nits)

ppm

Exp.

Theor.

Q0

P

Q1

P

No Si-O-P bonds are present in the real structure

δiso = 8.7 ppm, CSA=-11.2 ppm

δiso = -0.7 ppm, CSA=-70.2 ppm

Pedone, A.; Charpentier, T.; Malavasi, G.; Menziani, M. C. Chem. Mater. 2010, 22, 5644.

45S5

Page 14: Computational NMR spectroscopy applied to bioglasses

-50 -60 -70 -80 -90 -100 -110

MAS

ppm

Exp.

Theor.

Q1

Si

Q2

Si

Q3

Si

SILICON ENVIRONMENT

Pedone, A. et al. Chem. Mater. 2010, 22, 5644.

45S5

-70.7 ppm -87.0 ppm

-79.5 ppm

Page 15: Computational NMR spectroscopy applied to bioglasses

Pedone, A. et al. Chem. Mater. 2010, 22, 5644.

Direct fitting of the 29Si MAS spectrum

𝑆𝑖 − 𝑁𝐵𝑂

𝑆𝑖 − 𝐵𝑂 − 𝑆𝑖=

3𝑄1 + 2𝑄2 + 𝑄3

0.5𝑄1 + 𝑄2 + 1.5𝑄3

Compositional constraints:

𝑄1 = −0.1087𝑄2 + 0.789𝑄3

10.5%

67.2%

22.3%

Page 16: Computational NMR spectroscopy applied to bioglasses
Page 17: Computational NMR spectroscopy applied to bioglasses

Good agreement between the experimental and theoretical 17O

NMR spectra

Analysis of the 17O NMR parameters for each oxygen species

17O NMR

Page 18: Computational NMR spectroscopy applied to bioglasses

Oxygen sites

MD-GIPAW assisted the deconvolution of 17O NMR

Page 19: Computational NMR spectroscopy applied to bioglasses

Si-O-P sites

Page 20: Computational NMR spectroscopy applied to bioglasses

The theoretical calculations have been used to guide the fitting

of the experimental 17O 3QMAS spectra

Site MQMAS

P-O(Ca,Na) 14.7%

P-O(Na) 5.9%

P-O(Ca) -

Si-O(Ca,Na)

Si-O(Na)

Si-O(Ca)

37.3%

6.5%

7.1%

Si-O-Si 28.1%

Site Populations

OXYGEN ENVIRONMENT

NON RANDOM DISTRIBUTION OF Na & Ca AROUND OXYGEN

Page 21: Computational NMR spectroscopy applied to bioglasses

19F MAS NMR

Experiment

Theory

The calculated spectra of the various F sites fall within the

experimental isotropic chemical shift ranges denoting a satisfactory

agreement. Pedone et al. J. Mater. Chem. 2012 22 12599

45S5F Bioglass

Page 22: Computational NMR spectroscopy applied to bioglasses

de-shielding due to the partial covalence of the Ca-F bonds.

F[Ca3Na] 8%

F

Na

F[Ca2Na2] 24%F[CaNa3] 12%

Highδiso

lowδiso

CaCa

Ca Ca

Ca

Ca

Page 23: Computational NMR spectroscopy applied to bioglasses

F[Ca2Si] 4%F[CaNaSi] 4%F[Na2Si] 8%

it is difficult to assess the presence of Si–F bonds by means of the

MAS NMR spectra only.

Contribution of Si-F bonds to 19F MAS spectra…

Page 24: Computational NMR spectroscopy applied to bioglasses

Conclusions

o NMR spectroscopy + MD-GIPAW is a powerfull tool to

improve amorphous system structural characterization

o P is present as orthophosphate units (No Si-O-P bonds in

the compositions studied)

o Trinomial distribution of Qn(Si) species

o Non-random distribution of Na/Ca around NBO

o Si-F bonds are not detectable by means of 29Si MAS

NMR but REDOR experiments must be used

o F atoms are coordinated to the modifiers in a mixed

state

Page 25: Computational NMR spectroscopy applied to bioglasses

Acknowledgments

Thank you all for your kind attention!

o E. Gambuzzi, G. Lusvardi, G. Malavasi, L.

Menabue & M. C. Menziani (UniMORE)

o T. Charpentier (CEA, FRANCE)

o A. Tilocca & J. Christie (UCL, UK)