comsol ® design tool: simulations of optical components

31
| | Institute of Electromagnetic Fields (IEF) Yannik Horst – [email protected] Shadi Nashashibi – [email protected] Raphael Schwanninger – [email protected] 26.10.2020 1 COMSOL ® Design Tool: Simulations of Optical Components Week 6: Waveguides and Propagation 3 – S Parameters Shadi Nashashibi, Raphael Schwanninger & Yannik Horst

Upload: others

Post on 15-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 1

COMSOL ® Design Tool:Simulations of Optical ComponentsWeek 6: Waveguides and Propagation 3 – S ParametersShadi Nashashibi, Raphael Schwanninger & Yannik Horst

Page 2: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 2

Revision wave propagation Waveguide Confinement Modes

S-parameters Theory

COMSOL examples Taper Waveguide bend

Projects Outline Short overview projects

Content

Part of the Theory Recording

Part of the Tutorial Recording

Page 3: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 3

Dielectric slab waveguide What we want Propagation in core Decay (exponential) in sub/superstrate High confinement

What we don’t want Propagation in sub/superstrate Low confinement (except in certain application - e.g. couplers)

Revision Wave Propagation

Page 4: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 4

Confinement

Revision Wave Propagation

𝑛𝑛cladding

𝑛𝑛cladding

𝑛𝑛core

𝑦𝑦

𝑥𝑥

Strongly confinedWave mostly in the core

𝐸𝐸𝑧𝑧 𝑦𝑦

𝑛𝑛cladding

𝑛𝑛cladding

𝑛𝑛core 𝐸𝐸𝑧𝑧 𝑦𝑦

𝑦𝑦

𝑥𝑥

Weakly confinedWave leaks into cladding

Page 5: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 5

Revision Wave PropagationOut-of-plane

Mode analysis

In-plane

Propagation

Page 6: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 6

We have 1W at the input of our waveguide It’s straight We have lossless material

Now, the output 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 will bea) 0.333… Wb) 0.5 Wc) 1 Wd) Nah, who cares!

Revision Wave Propagation: Quiz

𝑃𝑃𝑖𝑖𝑖𝑖= 1W

Page 7: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 7

Multimode silicon ridge waveguide

Revision Wave Propagation: Ridge Waveguide

Given:• 𝜆𝜆 = 1550 nm• 𝑛𝑛Si = 3.47

• SiHeight = 220 nm

• SiWidth = 350,1000 nm

Output:• E-field (guided modes)• Effective refractive index 𝑛𝑛eff

Page 8: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 8

Single-mode ridge Solution 1: neff = 2.2719

Solution 2: neff = 1.5422

Multi-mode ridge (increased geometry) Fundamental mode

Higher order mode

Revision Wave Propagation: Ridge Waveguide𝑛𝑛Si = 3.4757𝑛𝑛SiO2 = 1.44𝑛𝑛air = 1

Page 9: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 9

Revision Wave Propagation: Optical Fiber

2effn n<For a confined mode, no energy flow in the radial direction:

1 2effn n n< <Wave cannot be evanescent in the core region:

n2 n1

• Core• r = 8um• n = 1.4457

• Cladding• r = 40um• n = 1.4378

𝑚𝑚 = 1𝑛𝑛 = 1

Page 10: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 10

Revision Wave Propagation: Optical Fiber

HE11 TE01 TM01

LP11LP01

E-Field

Intensity distribution of E𝑥𝑥

Page 11: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 11

S-parameters Theory

Content

Page 12: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 12

What happens with systems for multiple inputs and multiple outputs (MIMO)? How can it be described mathematically?

We use the S-matrix

S-Parameters: Motivation

Page 13: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 13

How to characterize our photonics system as whole? Scattering matrix (so called S-matrix)

S-Parameters for Photonics

Superposition:

𝑏𝑏𝑖𝑖 = �𝑗𝑗=1..𝑖𝑖

𝑆𝑆𝑖𝑖𝑗𝑗𝑎𝑎𝑗𝑗

𝑏𝑏1𝑏𝑏2⋮𝑏𝑏𝑖𝑖

=𝑆𝑆11 … 𝑆𝑆1𝑖𝑖⋮ ⋱ ⋮𝑆𝑆𝑖𝑖1 … 𝑆𝑆𝑖𝑖𝑖𝑖

𝑎𝑎1𝑎𝑎2⋮𝑎𝑎𝑖𝑖

inputoutput

Page 14: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 14

How to characterize our photonics system as whole? S-matrix Unitary in lossless systems Diagonal 𝑆𝑆𝑖𝑖𝑖𝑖 terms are complex valued amplitude reflection coefficients

S-Parameters for Photonics

Superposition:

𝑏𝑏𝑖𝑖 = �𝑗𝑗=1..𝑖𝑖

𝑆𝑆𝑖𝑖𝑗𝑗𝑎𝑎𝑗𝑗

𝑏𝑏1𝑏𝑏2⋮𝑏𝑏𝑖𝑖

=𝑆𝑆11 … 𝑆𝑆1𝑖𝑖⋮ ⋱ ⋮𝑆𝑆𝑖𝑖1 … 𝑆𝑆𝑖𝑖𝑖𝑖

𝑎𝑎1𝑎𝑎2⋮𝑎𝑎𝑖𝑖

Page 15: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 15

How to characterize our photonics system as whole? S-matrix Unitary in lossless systems Diagonal 𝑆𝑆𝑖𝑖𝑖𝑖 terms are complex valued amplitude reflection coefficients

S-Parameters for Photonics

Two input/output ports:

𝑏𝑏1𝑏𝑏2

= 𝑆𝑆11 𝑆𝑆12𝑆𝑆21 𝑆𝑆22

𝑎𝑎1𝑎𝑎2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1

𝑏𝑏2

T

𝑻𝑻 =𝑹𝑹 =

R

Page 16: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 16

How to characterize our photonics system as whole? S-matrix Unitary in lossless systems Diagonal 𝑆𝑆𝑖𝑖𝑖𝑖 terms are complex valued amplitude reflection coefficients

S-Parameters for Photonics

Two input/output ports:

𝑏𝑏1𝑏𝑏2

= 𝑆𝑆11 𝑆𝑆12𝑆𝑆21 𝑆𝑆22

𝑎𝑎1𝑎𝑎2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1

𝑏𝑏2

T

R𝑻𝑻 = 𝑆𝑆21 2

𝑹𝑹 = 𝑆𝑆11 2

Page 17: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 17

Can COMSOL help? S-matrix Luckily, COMSOL has built-in calculation of these!

S-Parameters for Photonics: COMSOL

Two input/output ports:

𝑏𝑏1𝑏𝑏2

= 𝑆𝑆11 𝑆𝑆12𝑆𝑆21 𝑆𝑆22

𝑎𝑎1𝑎𝑎2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1

𝑏𝑏2

T

R𝑻𝑻 = 𝑆𝑆21 2

𝑹𝑹 = 𝑆𝑆11 2

These are the ports we define in COMSOL!

COMSOL calculates this matrix!

Page 18: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 18

COMSOL examples Taper Waveguide bend

Content

Page 19: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 20

“Tapering” Sometimes, photonics design requires that waveguide also changes its width… Example is Multi – Mode – Interference coupler (one of the projects)

COMSOL Examples: Taper

Page 20: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 21

Tasks: Plot transmission curve for different taper lengths (Note: you can add trapezoid or polygon in COMSOL) Ltaper greater then 100 nm…

COMSOL Examples: Taper

clad: SiO2

core: Si

wg1_widthLtaper

wg_length

wg_length

wg2_width

domain_y

domain_x

Page 21: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 22

COMSOL Examples: Taper

Page 22: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 23

Waveguide bending

Tapers

5 mm

Page 23: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 24

S-Parameters for Photonics: COMSOL Waveguide Bend

Port 1

Port

2

Bending radiusbend_r

SiO2

Si

WG bend with a circular segment with

a radius bend_r

bend_r goes to the center of the WG

We collect the power at port 2

We calculate the transmission

Page 24: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 25

COMSOL Examples: Waveguide Bend

Goals:1. Get S21(dB) parameter for 1 simulation,

check correct mode excitation2. Parametric sweep bend radius bend_r3. Parametric sweep lam0 = 1450:?:1550 nm

for bend_r = [1.5,10] um

Page 25: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 28

Projects Outline Short overview projects

Content

Page 26: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 29

Date ContentOct 26th Short description of all projectsNov 2nd Detailed project description, grouping, starting on the projectsNov 9th Individual work on projectsNov 16th Individual work on projectsNov 23rd Individual work on projects / How to do presentationsNov 30th Individual work on projectsDec 7th Start preparing your report / presentationsDec 14th Presentations

Projects – Outline

Page 27: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 30

Directional coupler 2 students Goal Fix power ratio (to 50/50 and 90/10) Minimize bending losses

Ring resonator 2 - 3 students Goal Find the resonant behavior at 1550 nm Maximize Q factor and minimize losses Cascaded ring resonators

Projects Overview

Page 28: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 31

Delay interferometer 3 students Goal Find delay line for a 𝜋𝜋 phase shift

Bragg mirror 2 - 3 students Goal Incoming wave should be 99% reflected

Projects Overview

Page 29: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 32

Multimode interferometer 2 - 3 students Goal Find geometry such that output ratio is

50/50 and also 10/90

Waveguide to waveguide coupling 2 students Goal Design the taper as shown below for

defined power transmission

Projects Overview

Silicon Dioxide

Silicon Nitride

Silicongap

taper length

Page 30: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 33

Waveguide Crossings 2 - 3 students Goal Minimize transmission losses

Projects Overview Waveguide to Fiber Coupling 3 students Goal Maximize transmission

Air (𝑛𝑛 = 1)

Silicon dioxide (𝑛𝑛 = 1.44)Silicon (𝑛𝑛 = 3.4777)

Core

Clad

Clad

taper length

dielectric length

dielectricw

idthwgwidth co

re

diam

eter fiber

diameter

gap

Page 31: COMSOL ® Design Tool: Simulations of Optical Components

||Institute of Electromagnetic Fields (IEF)Yannik Horst – [email protected]

Shadi Nashashibi – [email protected] Schwanninger – [email protected]

26.10.2020 34

Your own ideas

They are WELCOME!

Please put together your ideas and make a small sketch by next week and let’s have a look together

Projects Overview