confronting the water crisis of beijing municipality in a...

66
Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Jin Ma Master of Science Thesis Stockholm 2011

Upload: others

Post on 30-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

Confronting the Water Crisis of Beijing Municipality in a Systems Perspective

Focusing on Water Quantity and Quality Changes

J i n M a

Master of Science ThesisStockholm 2011

Page 2: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable
Page 3: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

Jin Ma

Master of Science ThesisSTOCKHOLM 2011

Confronting the Water Crisis of Beijing Municipality in a Systems Perspective

Focusing on Water Quantity and Quality Changes

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY

Supervisor:

Ronald Wennersten Examiner:

Ronald Wennersten

Page 4: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

TRITA-IM 2011:15 ISSN 1402-7615 Industrial Ecology, Royal Institute of Technology www.ima.kth.se

Page 5: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

i

SUMMARY

In recent decades, water systems worldwide are under crisis due to excessive human interventions

particularly in the arid and semi-arid regions. In many cities, the water quantity situation has

become more and more serious, caused either by absolute water shortage or water pollution.

Considering population growth and fast urbanization, ensuring adequate water supply with

acceptable water quality is crucial to socio-economic development in the coming decades. In this

context, one key point is to (re-)address various water problems in a more holistic way.

This study explores the emerging water crisis events in Beijing Municipality so as to have a better

understanding of water systems changes and to make more sustainable water-related decisions.

The changes of water quantity and water quality in the region are analyzed in a systems

perspective; and opportunities towards improved performance of Beijing‟s water systems are

discussed. In order to aid in water systems analysis, a conceptual framework is developed, with a

focus on identifying the most important interactions of the urban water sector.

The results of the study show that the emerging water crisis events in the Beijing region are

caused by a variety of inter-related factors, both external and internal. The external factor is

mainly the decreasing upstream surface water inflow into the Guanting and Miyun reservoirs.

The internal factors include precipitation variation, excessive water withdrawals, increasing water

demands for different purposes and a large amount of pollutants discharged to the receiving

water bodies. These factors together have caused tremendous water systems changes in Beijing

Municipality from both the water quantity and water quality perspectives.

In order to alleviate the serious water situation in Beijing Municipality, many further efforts are

required in the dynamic socioeconomic and ecological context. Although tremendous work has

been carried out by water-related institutions to prevent flood and ensure water supply, water

resources development, planning and management must be addressed employing systems

thinking and in a more holistic way. This is crucial for balancing the tradeoffs of water quantity

and water quality in the Beijing region. Besides the experimental inter-basin water transfer

activities, water demand management and pollution reduction and prevention should be the top

priority on the agenda of the Beijing government in the long term. Moreover, only at a river

basin level may various upstream-downstream conflicts be alleviated by wiser water allocation

among administrative regions, as well as taking the ecological water demand into consideration.

Finally, considering the current water situation and water management system, the following

three aspects of improvement are emphasized in the present study, including a promoted water-

centric value, institutional capacity building and employing economic principles for water

resources management.

Key words: Beijing, sustainability, systems thinking, urban water, water quality, water quantity

Page 6: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

ii

ACKNOWLEDGEMENT

This thesis work is carried out at the Department of Industrial Ecology (DoIE), Royal Institute

of Technology (KTH), Stockholm. I really appreciate the experiences of studying in the

international master program of „Sustainable Technology‟. I have benefited so much from

various courses related to Industrial Ecology and Sustainable Development. Absolutely many

people have contributed either directly or indirectly to the thesis work.

First of all, I would like to thank my supervisor Ronald Wennersten, professor at the DoIE, for

his constructive guidance, encouragement and valuable comments on the thesis. Thanks too to

Xingqiang Song, PhD student at the DoIE, for his assistance in data collection and helpful

comments on the earlier drafts of the thesis.

Further thanks to the teachers of all courses I took at KTH. Moreover, thanks to Karin Orve,

the Education Administrator at the DoIE, and Monika Olsson, the Director of Studies at the

DoIE, for their kindness and various help during my study period at KTH.

I am also grateful to Ms. Yingfang He at the International Office of KTH for her help during my

living in Stockholm, especially for her encourage when I still hesitated to apply for this master

program a few years ago. In addition, I would like to thank all my Chinese friends for their help.

Last but not least, I would like to add personal thanks to my family for years of support and

understanding during the period of my study and living in Sweden.

Page 7: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

iii

TABLE OF CONTENTS

SUMMARY ........................................................................................................................... i

ACKNOWLEDGEMENT ................................................................................................... ii

ABBREVIATIONS ............................................................................................................... v

LIST OF FIGURES ............................................................................................................. vi

LIST OF TABLES ............................................................................................................ viii

1 INTRODUCTION ........................................................................................................... 1

1.1 Background .................................................................................................................................... 1

1.2 Water Stress in the Beijing Region .............................................................................................. 2

1.3 Aim and Objectives ...................................................................................................................... 5

2 METHODOLOGY ........................................................................................................... 6

2.1 Systems Thinking .......................................................................................................................... 6

2.2 A Conceptual Framework for Urban Water Systems Analysis .............................................. 6

2.3 Data Collection ............................................................................................................................. 7

3 WATER RESOURCES MANAGEMENT ...................................................................... 9

3.1 Sustainability and Water Resources ............................................................................................ 9

3.2 Integrated Water Resources Management ............................................................................... 11

3.4 Urban Water Management ......................................................................................................... 12

4 MATERIALS................................................................................................................... 16

4.1 Beijing Municipality and its Water Systems ............................................................................. 16

4.2 Characteristics of Water Systems Development .................................................................... 18

4.3 The Social and Economic Context .......................................................................................... 20

5 RESULTS ........................................................................................................................ 23

5.1 Water Quantity Changes ............................................................................................................ 23

5.1.1 Precipitation variation .................................................................................................... 23

5.1.2 Surface water inflow (SWI) ........................................................................................... 24

5.1.3 Surface water outflow (SWO) ....................................................................................... 26

5.2 Water Uses and Regional Water Deficits ................................................................................. 29

5.2.1 Water supply and water uses ......................................................................................... 29

5.2.2 Water deficits and decreasing groundwater table ....................................................... 31

5.3 Water Quality Changes ............................................................................................................... 33

5.3.1 Point and non-point pollution ...................................................................................... 33

5.3.2 Surface water quality....................................................................................................... 37

5.3.3 Groundwater quality....................................................................................................... 39

6 DISCUSSION ................................................................................................................. 41

6.1 Water Quantity Changes ............................................................................................................ 41

6.2 Water Quality Changes ............................................................................................................... 43

Page 8: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

iv

6.3 Suggestions for Alleviating Water Stress in Beijing Municipality ........................................ 44

7 CONCLUSIONS ............................................................................................................ 47

REFERENCES .................................................................................................................. 49

Page 9: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

v

ABBREVIATIONS

BSIN Beijing Statistical Information Net

BMCUP Beijing Municipal Commission of Urban Planning

BMEPB Beijing Municipal Environmental Protection Bureau

BRB Beiyun River Basin in the Beijing Region

BWA Beijing Water Authority

COD Chemical Oxygen Demand

CRB Chaobai River Basin in the Beijing Region

DRB Daqing River Basin in the Beijing Region

GDP Gross Domestic Product

GWP Global Water Partnership

HRB Hai River Basin

IWRM Integrated Water Resources Management

IWT Inter-basin Water Transfer

JRB Jiyun River Basin in the Beijing Region

JWSC Jingmi Water Supply Canal

MEP Ministry of Environmental Protection of China

MDGs Millennium Development Goals

NBS National Bureau of Statistics of China

RFWR Renewable Fresh Water Resources

SD Sustainable Development

SWI Surface Water Inflow

SWO Surface Water Outflow

UN United Nations

UNESCO United Nations Educational, Scientific and Cultural Organizations

UWM Urban Water Management

WCOED World Commission on Environment and Development

WRM Water Resources Management

YRB Yongding River Basin in the Beijing Region

YWSC Yongding Water Supply Canal

Page 10: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

vi

LIST OF FIGURES

Figure 1.1 Some influencing factors in the emerging water stress events 1

Figure 1.2 Location of Beijing Municipality and its water systems 3

Figure 1.3 Amount of water storage in the Guanting and Miyun Reservoir, 1999-2009 4

Figure 2.1 A conceptual framework showing the identified sub-systems in the study 7

Figure 3.1 We all live downstream at a watershed 10

Figure 3.2 The general components of IWRM 11

Figure 3.3 Ways in which human use affects the water cycle and freshwater ecosystems 12

Figure 3.4 The hydrological cycle in society 13

Figure 3.5 Stages of water use and pollution abatement 14

Figure 4.1 Average monthly precipitation in the Beijing region, 1956-2000 16

Figure 4.2 The five main river basins in Beijing Municipality 17

Figure 4.3 Population growth and urbanization in Beijing Municipality, 1949-2008 20

Figure 4.4 Growth of GDP and GDP per capita in Beijing Municipality, 1949-2008 21

Figure 4.5 Strategic structure of Beijing‟s urban spatial development described in the “Overall Urban Planning (2004-2020)”

21

Figure 5.1 Yearly precipitation at the Beijing Rainfall Station (1724-1949) and in the Beijing region (1950-2009)

23

Figure 5.2 Spatial distribution of annual average precipitation in the fiver river basins and the Beijing region, 1956-2000

24

Figure 5.3 Surface water inflow of the Beijing region, 1961-2009 25

Figure 5.4 Changes of the surface water inflow of the YRB and the average annual precipitation in the upstream area of the Guanting reservoir in the YRB, 1956-2000

26

Figure 5.5 Surface water outflow of the Beijing region, 1961-2009 27

Figure 5.6 Precipitation and the composition of surface water outflows of the BRB (1961-2000) and the Beijing region (2001-2009)

28

Page 11: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

vii

Figure 5.7 Water used in different sectors in Beijing Municipality, 1988-2009 29

Figure 5.8 Yearly amount of tap water supply and well water supply, 1949-2008 31

Figure 5.9 Comparison of the annual amount of renewable freshwater resources, surface water inflow, and water withdrawals in the Beijing region, 2000-2009

32

Figure 5.10 Decreasing groundwater table of the plain area in the Beijing region, 1960-2009

33

Figure 5.11 Amount of yearly wastewater discharge in the Beijing region, 1996-2009 34

Figure 5.12 Daily wastewater discharge and yearly wastewater treatment rate in the Beijing region, 1954-2008

35

Figure 5.13 Amount of COD discharge from different sectors in the Beijing region, 1998-2009

35

Figure 5.14 Numbers of sewage outfall and amount of wastewater discharged in 2003 36

Figure 5.15 Amount of pollutants discharge in the five river basins in 2003 36

Figure 5.16 Amount of yearly fertilizer use in the Beijing region, 1949-2008 37

Figure 5.17 River water quality of the Beijing region, 2001-2009 38

Figure 5.18 Surface water quality of the Beijing region in 2008 38

Figure 5.19 Groundwater quality of the Beijing region in 2004 39

Figure 5.20 Fraction of the shallow groundwater quality in the Beijing region, 2003-2009

40

Figure 6.1 Changes of arable land area and irrigation area in the Beijing region, 1949-2008

43

Page 12: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

viii

LIST OF TABLES

Table 3.1 The functions of urban water management 13

Table 4.1 Area of the five river basins 17

Table 4.2 Five main hydropower projects in the Beijing region 18

Table 5.1 Amount of water supplied from different sources and used in different

sectors in the Beijing region, 1980-2009

30

Page 13: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

1

1 INTRODUCTION

1.1 Background

Water is essential to the existence of the earth and human. It is the bloodstream of both

human society and ecosystems. Human has a very close relationship with rivers from the

beginning of human civilization. The history of human society and rivers development is

intermingled in many ways. In turn, rivers nourish various materials provided to human

society or threaten to destroy it e.g. by flood or drought. Correspondingly, local

inhabitants keep thinking about how to manage rivers since the ancient time, employing

either controlling or adapting methods.

In recent decades, however, water systems are gradually degraded by intensive human

activities. More and more water-related crisis events happen in many regions, which to

some extent block the progress towards sustainable development in general and

particularly towards achieving the UN Millennium Development Goals by 2015. Among

them, water scarcity is the most obvious one worldwide, which is caused either by

absolute shortage of renewable freshwater resources or relative shortage of usable

freshwater resources due to serious pollution. In brief, water stress is caused by a variety

of factors, e.g. population growth, socio-economic development, climate change,

unsustainable water use pattern, and the sectoral water management. On the other hand,

the aggravating water stress has brought up diverse challenges, e.g. difficulties of water

supply with acceptable quality and emerging water allocation conflicts at all levels. A

brief schematic cause-and-effect of water stress is shown in Figure 1.1.

Figure 1.1 Some influencing factors in the emerging water stress events

Precipitation versus

evapotranspiration

WATER

STRESS

Threats of sufficient water

supply with acceptable quality

Emerging water allocation

conflicts to meet all different

water demands in river basins

Population

increase

Economic growth

Climate variation &

Land use changes

Water-use pattern

Water pollution

Water-related

institutions

Page 14: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

2

Nowadays various water crisis events need to be addressed from different perspectives

particularly in the urban areas. With continuous population growth (from 6.1 billion in

2000 to 8.9 billion in 2050) and rapid urbanization (UN 2004), the capacity of water

supply and wastewater treatment would be greatly challenged in many countries. In China,

for example, the urbanization rate (urban population) would increase from 35.8% (0.45

billion) in 2000 to 60.3% (0.88 billion) in 2030 and to 72.9% (1.02 billion) in 2050 (UN

2007). In this context, urban water environment may undergo huge stress in many

regions in the coming decades. It is widely accepted that one of the major challenges of

the 21st century is to provide safe drinking water and basic sanitation for all

(Vairavamoorthy 2008). In this regard, it is even more challengeable for urban water

manager in such a megacity as Beijing Municipality. Moreover, climate variation may

worsen the fragile urban water systems in many regions.

From the sustainability point of view, one of the characteristics of urban water systems

is their complexity. Urban water is regarded as the lifeline of cities and the focus of the

movement towards more sustainable and emerging „green‟ cities (Novotny & Brown

2007). Urban water systems are more or less linked with several other urban systems, e.g.

energy, transportation and waste. Although a vast amount of money has spent on costly

„hard‟ solutions like sewers and treatment plants, however, water supplies and water

quality still remain a major concern in many urbanized areas (Novotny 2009). In this

context, a more holistic analysis is crucial to having a better understanding of urban

water systems changes and to moving towards improved water resources management

employing systems thinking in a multidisciplinary context.

1.2 Water Stress in the Beijing Region

Beijing Municipality (see Figure 1.2) is located in the semi-arid North China Plain (Hua

Bei Ping Yuan) between east longitude 115°25‟ - 117°30‟ and north latitude 39°26‟ - 41°05‟.

Its total land area is around 16,800 km2, among which 10,400 km2 (62%) forms the

mountain area and 6,400 km2 (38%) is of the plain area. The mountain area is situated at

an elevation of 1,400-1,600 m; and the elevation of the plain area ranges between 30 m

and 100 m. The highest mountain, Ling Mountain, locates in Western Beijing at an

elevation of 2,303 m above the sea level.

Along with the rapid socio-economic development, Beijing Municipality has been under

severe water stress in recent decades from the viewpoint of water quantity. From 1956 to

2000, the average annual available freshwater resources is around 3.8 billion m3 and the

average water resources per capita is less than 300 m3. In 2008, the amount of annual

available freshwater per capita was only 220 m3, which accounts for roughly 1/10 of

China‟s average and 1/37 of the global average.

Since the foundation of the P.R. China in 1949, there are four main quantitative water

crisis events in the Beijing region (Zhang 2009). The first event happened in the 1960s.

In 1960, there was only 61 mm precipitation from January to June, which was only half

Page 15: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

3

of the average annual precipitation during the same period. In 1965, the annual

precipitation was 377 mm and the urban water supply was under stress. During the

period, the Guanting reservoir was almost dried up due to dry weather and the

decreasing surface water inflow.

Figure 1.2 Location of Beijing Municipality and its water systems (Probe International Beijing

Group 2008)

During the second water crisis event (1970-1972), the average annual precipitation

decreased to 508 mm. The amount of water storage in the Guanting and Miyun

reservoirs decreased so fast that supplied water only to the urban areas in the Beijing and

Tianjin regions. In order to meet the agricultural water demand, around 30,000 wells

were excavated in the plain area. Meanwhile, the Yongding River started running dry

periodically in its downstream river courses.

The third event (1980-1986) was characterized as seven continuous drought years.

During this period, the average annual precipitation was further decreased to 498 mm

that was close to its lowest historical annual precipitation of 492 mm (1857-1870). By the

Page 16: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

4

end of July in 1981, the total water storage in the Guanting and Miyun reservoirs was

only 0.5 billion m3. In 1981, the state council decided that the Miyun reservoir would

only supply water to the Beijing city since then. Meanwhile, some water conservation

measures were put forward, e.g. by setting water use cap in the different water sectors.

The last water crisis event was from 1999 to 2007, with an average annual precipitation

of 428 mm. The amount of water storage in the two main reservoirs also had a

decreasing trend (see Figure 1.3). By the end of 2003, the amount of water stored in the

Guanting and Miyun Reservoir was 211 million m3 and 723 million m3, which had

reduced by around 320 million m3 and 2,120 million m3, respectively, compared to those

in 1999. On the other hand, the Yongding River courses below Sanjiadian frequently ran

dry since the 1990s. In 2001, for the first time, the Yongding River had been running dry

for 58 days in total during the rainy season from May to August. Similarly, between July

and August in 2003, the Guanting reservoir had no surface water inflow for 20 days in

total. Those facts show that the upstream-downstream water conflicts are more and

more serious in both river basins and municipalities.

Figure 1.3 Amount of water storage in the Guanting and Miyun Reservoir, 1999-2009 (based on

data from BWA 2000-2010)

Besides various water quantity crisis events, Beijing Municipality has been experiencing

the water quality crisis since the 1970s. In 2009, accounting for 45% of the monitored

2,323.7 km river courses was classified as Grade V Worst (GB3838-2002), which means

that this water was essentially useless (BWA 2010). For the shallow aquifer, around 3,030

km2 – 48% of the plain area was classified as Grade IV & Grade V in 2009, which means

that this water was only suitable for industrial and agricultural uses, respectively (BWA

2010). The serious water quality situation was caused mainly by a higher value of

hardness, ammonia-nitrogen and nitrate-nitrogen. In contrast, the quality of deep

groundwater was better. Only 563 km2 deep ground water – accounting for 16% of the

monitored area – was classified as Grade IV & Grade V in 2009 (BWA 2010). At that

0

500

1000

1500

2000

2500

3000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

wat

er s

tora

ge,

mil

lio

n m

3

Guanting Miyun

Page 17: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

5

time, the main pollutants were ammonia-nitrogen and fluoride. In the near future,

therefore, tremendous efforts are required to be put on pollution prevention in order to

protect both the surface water and groundwater sources in the region.

1.3 Aim and Objectives

The overall aim of the thesis is to analyze the changes of water quantity and water

quality in the Beijing region in a systems perspective. Having a better understanding of

water systems changes is crucial towards improved water resources management in such

a mega-city as Beijing under water crisis. Specific objectives of the thesis work are to

explore the challenges of the current water systems in the Beijing region and to discuss

opportunities towards improved performance of Beijing‟s water systems from the

sustainability point of view, taking the specific ecological and socio-economic context

into consideration. Specifically,

Exploring the challenging water situation in the Beijing region.

Developing a conceptual framework for aiding in urban water systems analysis,

with a focus on identifying the interactions between human and rivers.

Identifying, analyzing and discussing the significant contributing factors of the

emerging water crisis events.

Drawing up suggestions to improve the future water management practices in the

region.

Page 18: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

6

2 METHODOLOGY

2.1 Systems Thinking

Systems science aims to study the interaction between man and his environment from

multiple perspectives, holistically (Skyttner 2005). Due to the increasing complexity of

the modern society, water systems need to be addressed from a more holistic point of

view. Only in this way could the contributing factors of water crisis be better understood

and may more sustainable solutions be developed. The formerly partial analysis of water

supply and wastewater treatment is no longer suitable from the viewpoint of

sustainability. In this context, the systems approach is inherent in a comprehensive

historical, contemporary and futuristic outlook (Skyttner 2005). Therefore, addressing

the emerging water crisis events in the mega city of Beijing, to a large extent, requires

thinking in systems.

Aiming to achieve satisfied results of a systems analysis, first, we need to better

understand the basic context of systems theory. An identified system is not a collection

of different parts in isolation; in fact, a system is more than the sum of its parts.

Specifically, a system is a set of elements so interconnected as to aid in driving toward a

defined goal (Gibson et al. 2007). In Brief, there are four questions to ask whether we are

looking at a system or just a bunch of stuff (Meadows 2008):

(1) Can the parts be identified? and

(2) Do the parts affect each other? and

(3) Do the parts together produce an effect that is different from the effect of each

other on its own? and perhaps

(4) Does the effect, the behavior over time, persist in a variety of circumstances?

These four questions actually bring forwards some tips of developing a system. In brief,

the most basic aspects of a system include: (i) system boundaries, (ii) subsystems, and (iii)

interactions among the hierarchical/nested subsystems.

2.2 A Conceptual Framework for Urban Water

Systems Analysis

In order to have a better understanding of water systems development in the Beijing

region, systems thinking and analysis is employed in the present study. Systems thinking

could aid in identifying the contributing factors of the emerging water stress in recent

decades, from both water quantity and water quality perspectives. Based on the Industrial

Ecology-based approach developed at the DoIE (Song et al. 2011a), a conceptual

framework (see Figure 2.1) is developed to aid in analyzing water systems changes

including both the natural river systems and human society. In the present study, the

system boundary is the whole Beijing Municipality (the whole Beijing region). Four

subsystems are identified: (i) a freshwater resources (surface and underground water

Page 19: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

7

bodies) subsystem, (ii) a water withdrawals and supply system subsystem, (iii) a water

allocation and uses subsystem, and (iv) a wastewater collection and disposal subsystem.

The four subsystems are inter-related by water flows and/or pollutants flows. There are

three inputs of the system: upstream surface water inflow (SWI), local precipitation,

inter-basin water transfer inflow (IWT). The outflow of the system is surface water

outflow (SWO) in rivers. Because of data availability, other important factors of a water

system are not included in the present study, e.g. groundwater movement,

evapotranspiration and storm water.

Figure 2.1 A conceptual framework showing the identified sub-systems in the study, with an

emphasis of the most important interactions of urban water systems (where P is precipitation,

SWI is surface water inflow, IWT is inter-basin water transfer inflow, and SWO is surface water

outflow) (based on Song et al. 2011a)

2.3 Data Collection

This study attempts to provide a more holistic picture of water systems development in

the Beijing region, with a focus on water quantity and water quality changes in recent

decades. A variety of information had been collected from various sources and been

synthesized. Data were collected mainly from the water-related governmental statistics

and reports, e.g. the yearly „Beijing Environmental Statement‟ by Beijing Municipal

Environmental Protection Bureau (BMEPB), the yearly „Beijing Water Resources Bulletin‟

by Beijing Water Authority (BWA), and the report „Investigation and Assessment of

Surface Water Quantity in Beijing Municipality‟ by BWA and Beijing Institute of Water.

Moreover, some relevant local policy documents were studied and some literature

sources were reviewed regarding sustainable water resources management in river basins

Page 20: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

8

and cities.

An interesting thing observed in the data collection process is that the same category of

data from different sources sometimes is a bit different. Until now, it is very hard to find

out the true reasons for explaining those differences. In the present study, however, we

mainly adopt the published data from the relevant governmental agencies with their

references in texts.

Page 21: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

9

3 WATER RESOURCES MANAGEMENT

3.1 Sustainability and Water Resources

Sustainability, along with its various definitions, now seems to have different meanings

for people working in different discipline. But it always focuses on the long-term

improvement of human‟s well-being. The definition of “Sustainability” in the Brundtland

Commission‟s report Our Common Future (World Commission On Environment and

Development 1987) is: “Human has the ability to make development sustainable – to ensure that it

meets the needs of the present without compromising the ability of future generations to meet their own

needs.” Sustainability to some extent may be regarded as a philosophical concept without

a precise state of being. However, the universally accepted vision of moving towards

sustainability, first of all, could be facilitated by developing integrated resources

management approaches for natural resources including the limited freshwater resources

on earth.

Sustainability, to a large extent, is related to water issues and the capability of human

society coping with the diverse water crisis events. The common water-related challenges

globally can be classified into four groups, i.e. too little water (drought), too much water

(flood), too seriously polluted (water pollution), and degradation of aquatic and riparian

ecosystems. They are caused by both unevenly natural distribution and the behavior of

water consumer. Therefore, freshwater scarcity may have severely limiting impacts on

moving towards sustainable development and improving human well-being.

From the sustainability point of view, human society needs to address and solve various

water-related challenges in order to meet various socio-economic and ecological

demands. Hence, water resources management becomes of central importance in the

context of sustainable development. To alleviate the emerging water stress, attentions

have been paid to an integrated approach to sustainable water resource management

through effective water governance (UNESCO 2003). Moreover, the water-related

conflicts of upstream-downstream and human-nature need to be addressed with a higher

priority, since we to some extent all live downstream at a watershed level (see Figure 3.1).

Ensuring a safe water supply with accepted water quality is crucial to achieving

sustainable ecological, economic and social development (Cosgrove & Rijsberman 2000).

Water resources play a crucial role in achieving the Millennium Development Goals

(MDGs). In the MDGs, there are two water-related goals, i.e. to halve the number of

human beings who have no access to safe drinking water and adequate sanitation

facilities respectively, by 2015. In 2002, there were 1.1 billion people (18% of the world‟s

population) who have no access to safe drinking water, and 2.6 billion people (42% of

the total) lack access to basic sanitation (WHO & UNICEF 2005). At the global scale,

there seems to be tremendous challenges to achieve the two goals by 2015. One main

point is how to manage the available freshwater resources more sustainable, involving all

levels of stakeholders in the specific socio-economic and ecological context of different

Page 22: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

10

countries.

Figure 3.1 We all live downstream at a watershed level (GWP 2000a)

The definition of sustainable water resources systems is put forward based on the

concept of sustainable development. In terms of the definition developed by Loucks &

Gladwell (1999), Sustainable water resource systems are „those designed and managed to fully

contribute to the objectives of society, now and in the future, while maintaining their ecological,

environmental, and hydrological integrity‟.

In general, the purpose of water resources management is to wisely allocate water

resources for socio-economic and ecological development. Therefore, the scope of

water management are diverse, e.g. relevant to water supply, wastewater treatment,

storm water management and flood prevention, hydropower, transportation, recreation,

and water for the aquatic ecosystems. Within the context of sustainable water

management, temporal and spatial dimensions are two key points. The aim of

sustainable water management is to provide sufficient water with the right quality at the

right place and at the right time. In practice, water management is strongly related to

three aspects: preventing flood, ensuring the balance between water supply and water

demand, protecting water ecological environment. The ultimate goal is water resources

management for socio-economic development, while keeping ecosystem healthy.

Similarly to the definition of sustainable development, the criteria for sustainable water

systems are usually divided into economic sustainability criteria, ecological and

environmental sustainability criteria, and institutional and social aspects of sustainability.

Until now, there are no specific criteria for sustainable water systems, depending on the

specific socio-economic and ecological conditions in different countries. For the

qualitative criteria, they to some extent are more often to be discussed, with a focus on

identifying suitable systems boundary and subsystems for water management, e.g. river

basin boundary vs. municipal boundary, water vs. land, and water vs. energy.

Page 23: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

11

3.2 Integrated Water Resources Management

Global Water Partnership (GWP) defined IWRM as “IWRM is a process which promotes the

coordinated development and management of water, land and related resources in order to maximize the

resultant economic and social welfare in an equitable manner without compromising the sustainability of

vital ecosystems” (GWP 2000b). The general components of IWRM are listed in Figure 3.2.

The concept of IWRM is developed based on the understanding that water systems are

an integral component of ecosystems at the scale of a river basin. To move towards

IWRM, comprehensive issues together need to be addressed in river basins, including

hydrological variation, institutional arrangements, land use, water infrastructure projects,

and water use in human society.

Figure 3.2 The general components of IWRM (Mayfield 2003)

The components of IWRM to some extent implicate the complexity of water resources

management, which includes several key water sectors and causes a variety of negative

impacts on nature. In order to meet various socio-economic demands of water resources,

various human activities have intensively disturbed the freshwater ecosystems in recent

decades (see Figure 3.3). Until now, most of river water systems and human society are

inter-related in several aspects, e.g. water quantity, water quality, and the function and

structure of ecosystems.

Page 24: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

12

Figure 3.3 Ways in which human use affects the water cycle and freshwater ecosystems

(Carpenter & Biggs 2009)

The IWRM approach could improve the performance of water systems at a theoretical

level; however, there are still some serious bottlenecks on the implementation of IWRM.

One of them is simply uncertainty about how to get started on a process of creating an

IWRM and water efficiency strategy in specific national decision-making (Lenton 2004).

Furthermore, Lundqvist (2004) points out that a major challenge for IWRM refers to

those conventionally outside the water sector, and an integrated thinking is still absent to

follow water through the landscape and society. In this context, exploring various urban

water flows is also crucial to having a better understanding of water systems changes in

river basins and to ensuring water supply and protecting river ecosystems.

3.4 Urban Water Management

Urban water systems are related to a variety of issues in urban areas, e.g. water supply,

sanitation, wastewater collection and treatment, and storm water disposal. They are

essential to the socio-economic development of cities as well as to having healthy aquatic

and terrestrial ecosystems. Figure 3.4 shows the hydrological cycle in human society,

which can be seen as a basis for urban water systems analysis. Since urban water systems

have so many direct and indirect linkages with human society and nature, sustainable

visions for urban water systems development are required in order to have a healthy

water cycle at a river basin level in the long term.

Page 25: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

13

Figure 3.4 The hydrological cycle in society (Lundin et al. 2000)

One of the main aspects of managing urban water systems may be to find the best way to

maintain water services and to ensure various water demands. Table 3.1 lists some of the

functions of urban water management. But these functions are mainly human-oriented,

though recycling nutrients between human and nature is emphasized (Larsen & Gujer

1997). From a sustainability point of view, however, urban water management is a part of

river basin management, and water allocation between human society and natural

ecosystems needs to be balanced.

Table 3.1 The functions of urban water management (Larsen & Gujer 1997)

1 Urban hygiene

Traditionally, urban hygiene meant solving the problems of removing faecal matter from urban areas, thereby minimizing the transfer of infectious agents. It should be extended to include the supply of water for production and cleaning purposes within households, trade and industry, including the handling of wastewater.

2 Drinking water and personal hygiene

Water for drinking, for cooking and for personal hygiene is subject to strict quality requirements. Urban water management must supply such quality water and protect the appropriate resources.

3 Prevention of flooding in draining of urban areas

Urban drainage is fundamental in many urban areas for preventing flooding. Although urban drainage has serious consequences for the water cycle and for the quality of receiving waters during storm events, it is not possible to maintain present population densities in urban areas without this service.

4 Integration of urban agriculture into urban water management

Traditionally, urban water management was assigned responsibility for recycling the nutrients between city and countryside. With the introduction of inexpensive fertilizers, this responsibility was lost. Urban agriculture has a good potential for simultaneously increasing life quality and the possibility of nutrient recycling in urban areas. Urban water management is regaining importance in this area.

5 Providing water for pleasure and for recreational aspects of urban culture Water has always been an important aspect of urban culture. Without fountains, ponds, public parks, etc. urban life would lose important qualities.

Page 26: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

14

One of the greatest challenges posed by the fast urbanization rate and rapid population

growth is to guarantee safe, adequate and reliable water supply, as well as adequate

sanitation conditions (Porto 2000). Considering water use and pollution abatement

approaches, four stages (see Figure 3.5) have been identified showing the important

stages in water and environmental management (Lundqvist et al. 2001). The first two

stages adopt the conventional approaches, which assign nature and the public sector to

take care of the discharged wastewater and various pollutants. During the two stages, the

focus is on developing end-of-pipe solutions and alleviating negative impacts of

pollutants discharge on the nature environment, regardless of the amount of water uses

and what kinds of pollutants having been introduced into the water systems.

Figure 3.5 Stages of water use and pollution abatement (Lundqvist et al. 2001)

In contrast, the third and fourth stages aim to facilitate adopting the approaches of

„reduction at source‟ and „reduction before source‟, respectively. These two approaches

are more challengeable to be put into practice, because they need higher requirements on

economic development, corporate social responsibility, institutional capacity, production

and consumption styles, etc. But effectively employing the two approaches could result

in reducing a large amount of water used in different sectors and in alleviating the

negative impacts on water environment in cities and their nearby river basins.

Page 27: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

15

To facilitate the transitions to the last two approaches in society, first of all, various water

systems changes need to be better understood in a more holistic way. Here, it is also

crucial to developing more sustainable water-related strategies in the specific national

socio-economic and ecological context. In this context, a systems perspective is helpful

to identify the most significant influencing factors of the emerging water crisis events and

to analyzing alternative solutions from the viewpoint of sustainability.

Page 28: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

16

4 MATERIALS

4.1 Beijing Municipality and its Water Systems

Beijing Municipality is located in the semi-arid and semi-humid monsoon climate zone.

Between 1949 and 2008, the average annual temperature is 12.2 °C, with a maximum

value of 41.9 °C (in 1999) and a minimum value of -22.8 °C (in 1951) (BMBS 2010).

The average annual precipitation is 585 mm during the period 1956-2000, with an uneven

monthly distribution (see Figure 4.1). Around 80% of precipitation occurs in the rainy

season from June to September. The highest average monthly precipitation is 196.7 mm

in July, while the lowest monthly precipitation is only 1.9 mm in December. Moreover,

the annual average evaporation of the water surface is around 1,120 mm, and around

450-550 mm from the land surface. These characteristics together have posed huge

challenges e.g. on flood and drought prevention in the region.

Figure 4.1 Average monthly precipitation in the Beijing region, 1956-2000 (based on data from

Dou & Zhao 2006)

In history, there were abundant renewable freshwater resources in the Beijing region,

with healthy river ecosystems. In Beijing Municipality, there were around 100 running

rivers with a total length of 2,700 km. Most of the rivers origin in the west and north

mountain areas, flow from Northwest to Southeast, and finally enter into the Bohai Sea.

There are five main rivers (river basins) in the Beijing region (see Figure 4.2), i.e. Daqing

River (of the Daqing River Basin (DRB)), Yongding River (of the Yongding River Basin

(YRB)), Beiyun River (of the Beiyun River Basin (BRB)), Chaobai River (of the Chaobai

River Basin (CRB)), and Xun River (of the Jiyun River Basin (JRB)). All of the rivers

(river basins) are in the Hai River Basin (HRB). Among them, the CRB has the largest

area, while the JRB is the smallest one (see Table 4.1). Moreover, the five main rivers

originate in different regions: the JRB, CRB and DRB from Hebei province, the YRB

0.0

50.0

100.0

150.0

200.0

250.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pre

cip

itat

ion

, mm

Page 29: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

17

from Shanxi province and Inner Mongolia, and only the BRB is a local river in the

Beijing Region.

Figure 4.2 The five main river basins in Beijing Municipality

Table 4.1 Area of the five river basins

River River Basin Area (km2)

Mountain Plain Total

Juma river DRB 1,615 604 2,219

Yongding river YRB 2,491 677 3,168

Beiyun river BRB 1,000 3,423 4,423

Chaobai river CRB 4,605 1,083 5,688

Xun river JRB 689 688 1,377

Beijing Municipality 10,400 6,400 16,800

Due to the uneven precipitation spatially and temporally, a variety of water infrastructure

projects have been constructed since 1949. By 2004, there were 85 reservoirs in total,

including 4 large-scale reservoirs1, 17 middle-scale reservoirs and 64 small-scale reservoirs,

with a total planned storage capacity of around 9.4 billion m3 (BWA 2005). The four

large-scale reservoirs are: Guanting, Miyun, Huairou and Haizi, with a total planned

1 In China, the large-scale reservoir refers to those with a planned storage capacity larger than

100 million m3; the middle-scale reservoir includes those with a planned storage capacity of 10-

100 million m3; and the small-scale reservoir is of a planned storage capacity of 0.1-10 million m3.

Page 30: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

18

storage capacity of 8.8 billion m3. Among them, the Guanting and Miyun Reservoir are

of the two largest ones, with a total planned storage capacity of 8.54 billion m3 (91% of

the total reservoir storage capacity in the region). Moreover, by 2000, there were 51,699

constructed water wells in total, of which 51,454 wells were electromechanically operated.

Moreover, 47,335 wells locate in the plain area, and 4,364 wells are in the mountain area.

Those water projects have contributed to flood prevention, water supply and hydro-

electricity production. There are five main hydropower projects in the Beijing region (see

Table 4.2). In 2008, the total hydro-electricity production was 489.95 million kWh.

Table 4.2 Five main hydropower projects in the Beijing region

Name Location

Total

storage

capacity

(million m3)

Installed

capacity

(MW)

Operational

year

Electricity

production

in 2008

(million kWh)

Guanting Yongding

RB 4,160 350 1955 0.9

Miyun Chaobai

RB 4,375 88 1960 3.67

Xiama Ling Yongding

RB 14.3 65 1961 6.6

Xiawei Dian Yongding

RB 3.77 30 1975 2.78

Shisan Ling Beiyun RB 73 800 1995 476

The Guanting and Miyun Reservoir are the two main surface water suppliers to the

Beijing city. The Guanting Reservoir was completed in 1954, with a planned storage

capacity of 2.27 billion m3 (updated to 4.16 billion m3 in 1989). It was China‟s first large

reservoir since 1949. The Miyun Reservoir, located in the Chaobai River Basin (CRB)

was constructed in 1960, with a planned water storage capacity of 4.375 billion m3.

Besides the two reservoirs, there are two main water transfer canals that are responsible

for supplying water from the Guanting and Miyun Reservoir to the Beijing city. Firstly,

the Yongding Water Supply Canal (YWSC), constructed in 1956 with a length of 25.4 km,

is responsible for transferring water from the Guanting Reservoir to the central city.

Secondly, the Jingmi Water Supply Canal (JWSC), in operation since 1966 with a length

of 105.2 km, is responsible for transferring water from the Miyun Reservoir to the

Beijing city.

4.2 Characteristics of Water Systems Development

Since the foundation of the P. R. China, many efforts have been put on water systems

development in the capital Beijing region. Along with socioeconomic-ecological

development and climate variations, the emphases of water systems planning and

Page 31: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

19

management vary since 1950. Until now, six water systems development periods can be

summarized as follows (Ouyang et al. 2009):

(1) Flood prevention and reservoir construction (1950-1959)

It was characterized by the construction of the Guanting and Miyun Reservoir. Besides

water storage function, they are the main measures of preventing rivers flood.

(2) Preventing waterlogging and flood particularly in the urban area (1960-1969)

In this period, the focus is on controlling the urban water systems, including lakes and

rivers. Several former river courses and streams were buried under the cities.

(3) Reservoir pollution and water shortage (1970-1979)

In 1971, some toxic substances, e.g. hydroxybenzene, cyanogens and mercury, were

detected in the Guanting Reservoir. Since then, it took three years to improve water

quality in the reservoir until meeting the standard of potentially potable water. In 1978,

the Daning Reservoir (located just below the Lugou Bridge) completely dried up, which

signaled the era of rivers running dry in the downstream area of the YRB.

(4) Municipal water supply under stress (1980-1989)

In 1980 and 1981, water scarcity was very serious in the Hai River Basin and the total

amount of yearly surface water inflow of the Guanting and Miyun Reservoir decreased

dramatically to 0.514 billion m3 (about 1/4 of the average in the 1980s). Since the middle

of the 1980s, the two reservoirs stopped agriculture water supply and only supplied water

to the domestic and industrial sectors. The agriculture water use turned to groundwater

and the era of overly groundwater withdrawal started since then.

Meanwhile, the Guanting Reservoir was seriously polluted once again, due to the large

amount of wastewater discharged in the upstream area of the Yongding River. In order

to protect water sources, wastewater treatment plants started construction since the end

of the 1980s in the Beijing region.

(5) Over-exploited groundwater (1990-1999)

Since the middle of the 1990s, Beijing had been suffering from serious water scarcity.

Beginning from 1999, there were continuous nine drought years, with average annual

precipitation of 455 mm (21.9% less than the average annual precipitation of 585mm

during the period 1956-2000). On the other hand, due to serious water pollution, the

Guanting Reservoir was banned as a drinking water supply source. The Miyun Reservoir

had been the only surface water source supplied to the Beijing city for years.

(6) Continuous drought years since 2000

In august 2001, water bloom2 occurred in most of the urban rivers and lakes. In 2003,

upstream surface water inflow of the Guanting reservoir decreased rapidly and its annual

2 Dense aquatic population of microscopic photosynthetic organisms produced by an abundance

of nutrient salts in surface water, coupled with adequate sunlight for photosynthesis (for more

information, see http://www.britannica.com/EBchecked/topic/636972/water-bloom). One

visible phenomenon of water bloom is a fast growth of algae near or at rivers, lakes and ponds.

Page 32: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

20

average water storage was less than 0.1 billion m3 since then. In 2003, the upstream river

courses of the Miyun Reservoir ran dry. Meanwhile, the amount of water stored in the

Miyun Reservoir decreased to 0.7 billion m3, only 0.25 billion m3 of water available for

use after deducting its dead storage volume.

4.3 The Social and Economic Context

The Beijing region has been experiencing fast population growth and a rapid

urbanization rate during the last 60 years (see Figure 4.3). In 1949, its total population

was only 4.2 million, of which 1.8 million (43%) inhabitants living in the urban area. In

1980, there were 9.04 million inhabitants in total, among which 5.2 million (58%) lived in

the urban area. In 2008, however, the total registered population reached 16.95 million,

of which 14.39 million (85%) lived in the city centre and near suburbs. The average

population density in 2008 was 1,033 persons per km2. The large amount of population

has posed huge challenges on its fragile water systems in the region, with respect to water

supply, sanitation, aquatic and terrestrial ecosystems, etc.

Figure 4.3 Population growth and urbanization in Beijing Municipality, 1949-2008 (based on

data from BMBS 2010)

On the other hand, the regional gross domestic product (GDP) keeps growing since

1978. During the period 1978-2008, the regional GDP had increased from 10.9 billion

Chinese Yuan to 1,048.8 billion Chinese Yuan. Correspondingly, the GDP per capita had

increased from 1,257 Chinese Yuan in 1978 to 63,029 Chinese Yuan in 2008.

To cope with the emergent problems caused by rapid urban development, the Overall

Urban Planning (2004-2020) was issued in 2005, which emphasizes the urban

development scale, regional cooperation, and systematic solutions to ecosystems

protection, traffic congestion, and higher standards for urban infrastructure construction.

Successful implementation of the new urban plan is crucial to achieving the strategic

development vision of moving towards a sustainable urban area.

0

2

4

6

8

10

12

14

16

18

19

49

19

52

19

55

19

58

19

61

19

64

19

67

19

70

19

73

19

76

19

79

19

82

19

85

19

88

19

91

19

94

19

97

20

00

20

03

20

06

po

pu

lati

on

, mill

ion

rural area

urban area

Page 33: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

21

Figure 4.4 Growth of GDP and GDP per capita in Beijing Municipality, 1949-2008 (base on

data from BMBS 2010)

The new “Overall Urban Planning” clearly puts forward four development aims, i.e.,

national capital, world city, liveable city, and cultural city. It brings forward a new urban

spatial pattern, which can be summarized as “two axes - two belts - multiple centres” (see

Figure 4.5). Furthermore, it is supposed to form new city-town structure, i.e. “central

urban area - new city - county”. The central urban area will be the political, economic

and cultural centre of Beijing region which is supposed to be around 1,085 km2 (Jiang

2004). However, the key problem is how to deal with the traditional urban development

contradictions, e.g. water allocation between the rural area and the urban area, economic

development vs. environmental protection, water supply management vs. water demand

management.

Figure 4.5 Strategic structure of Beijing‟s urban spatial development described in the “Overall

Urban Planning (2004-2020)” (after BMCUP 2005)

0

10

20

30

40

50

60

70

0

200

400

600

800

1000

1200

19

49

19

52

19

55

19

58

19

61

19

64

19

67

19

70

19

73

19

76

19

79

19

82

19

85

19

88

19

91

19

94

19

97

20

00

20

03

20

06

GD

P p

er capita, 1

,00

0 Yu

an R

egio

nal

GD

P, b

illio

n Y

uan

regional GDP

GDP per capita

Page 34: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

22

Moreover, this master planning also sets standards for population control, which is

supposed to be about 18 million (8.5 million living in the urban central area) in 2020

(BMCUP 2005). This number is suggested based on a natural population growth rate and

considering by the water resources carrying capacity in the Beijing region. Already in

2009, however, Beijing‟s population had reached 17.55 million (BSIN 2010), 0.6 million

higher compared with that in 2008. During the three consecutive years – 2007, 2008 and

2009 – the population has increased with more than 0.5 million people per year.

In order to meet various socio-economic water demands since the 1980s, water systems

in the Beijing region have been intensively disturbed. At present, the water situation in

Beijing Municipality is far from satisfactory from both water quantity and water quality

perspectives. Diverse water-related conflicts nowadays are more obvious in river basins as

well as between nature and human society. In the near future, the vulnerable water

systems may be further aggravated by many factors, e.g. urbanization, population growth,

pollutants discharge, and potential climate change.

Page 35: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

23

5 RESULTS

5.1 Water Quantity Changes

5.1.1 Precipitation variation

Due to climate variation, yearly precipitation is unevenly distributed in the Beijing region

(see Figure 5.1). During the period 1724-2009, the average annual precipitation is around

600 mm. Based on the monitoring data at the Beijing Rainfall Station from 1724 to 1949

(Gao et al. 1987), the highest yearly precipitation was 1,401.1 mm (in 1891) and the

lowest was 242 mm (in 1869).

Figure 5.1 Yearly precipitation at the Beijing Rainfall Station (1724-1949) and in the Beijing

region (1950-2009) (based on data from Gao et al. 1987; Dou & Zhao 2006; BMBS 2010)

0

200

400

600

800

1000

1200

1400

1600

17

24

17

39

17

54

17

69

17

84

17

99

18

14

18

29

18

44

18

59

18

74

18

89

19

04

19

19

19

34

19

49

mm

precipitation

average

0

200

400

600

800

1000

1200

19

50

19

53

19

56

19

59

19

62

19

65

19

68

19

71

19

74

19

77

19

80

19

83

19

86

19

89

19

92

19

95

19

98

20

01

20

04

20

07

mm

precipitation

average

Page 36: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

24

During the period 1950-2009, the maximum annual precipitation was 1,005.6 mm (in

1954); the minimum value was 373 mm (in 1999) in the Beijing region. However, the

average annual precipitation is similar between the period 1734-1949 and 1950-2009. The

former is 603.4 mm based on the data at the Beijing Rainfall Monitoring Station. The

latter is 588.7 mm in the whole Beijing region.

On the other hand, precipitation is unevenly distributed spatially (see Figure 5.2). During

the period 1956-2000, the average annual precipitation in the Beijing region was 584.7

mm (576.9 mm in the mountain area and 597.2 mm in the plain area). Among the five

river basins, the Jiyun River Basin (JRB) had the highest annual average precipitation of

666.3 mm; and the Yongding River Basin (YRB) had the lowest value of 512.8 mm.

Moreover, precipitation in the mountain area was higher than that in the plain area in the

DRB and JRB; in contrast, precipitation in the plain area was more than that in the

mountain area in the other three river basins.

Figure 5.2 Spatial distribution of annual average precipitation in the fiver river basins and the

Beijing region, 1956-2000 (based on data from Dou & Zhao 2006)

5.1.2 Surface water inflow (SWI)

Besides local precipitation, surface water inflow is the other main surface water source.

In Beijing Municipality, there are four river basins with their main river streams flowing

through the region, expect the Beiyun River Basin. In this context, the changes of

renewable freshwater resources in the Beijing region to a large extent depend on the

amount of surface water inflow from the upstream areas of river basins.

Similar to the trends of precipitation, the surface water inflows were unevenly distributed

spatially and temporally during the period 1961-2009 (see Figure 5.3). The average annual

surface water inflow of the Beijing region was 1,531.7 million m3, with a highest value of

590.6

512.8

581.7 604.9

666.3

584.7

0

100

200

300

400

500

600

700

800

DRB YRB BRB CRB JRB Beijing Region

Pre

cip

itat

ion

, mm

mountain area plain area in total

Page 37: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

25

4,334.3 million m3 (in 1964) and a lowest value of 303 million m3 (in 2009). In the YRB,

the highest average annual surface water inflow was 1,889.2 million m3 (in 1967); but the

lowest was only 44 million m3 (in 2009). Among the four river basins with the upstream

inflows, the YRB accounts for around 50% of the total surface water inflow of the

Beijing region. The second largest one is the CRB, which accounts for around 40% of

the total surface water inflow.

Figure 5.3 Surface water inflow of the Beijing region (based on data from Dou & Zhao 2006;

BWA 2001-2010)

As can be seen from Figure 5.3, the amount of surface water inflow had a decreasing

trend since the 1980s, compared with that between 1961 and 1980. This decreasing trend

was much obvious since 2000. The average annual surface water inflow of Beijing

Municipality was 2,396.9 million m3 in the period 1961-1980, 1,160.6 million m3 between

1981 and 2000, while only 445.3 million m3 from 2003 to 2009. For each of the river

basins except the JRB, there was also a fast decreasing trend with respect to the surface

water inflow. The YRB had the most obvious decreasing surface water inflow. During the

period 1961-1980, there was 1,044.9 million m3 of surface water flowing into the region

in average per year. However, it decreased to 333.3 million m3 between 1981 and 2000,

and only 108.1 million m3 from 2003 to 2009.

During the period 1956-1969, the amount of surface water inflow of the YRB was

consistent with the changes of the upstream precipitation; but their gaps had become

larger since 1970 (see Figure 5.4). There are two main factors contributing to the

decreasing surface water inflow. Firstly, the average annual precipitation in the upstream

area of the Guanting reservoir in the Yongding River Basin has a decreasing trend. The

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

19

61

19

63

19

65

19

67

19

69

19

71

19

73

19

75

19

77

19

79

19

81

19

83

19

85

19

87

19

89

19

91

19

93

19

95

19

97

19

99

20

01

20

03

20

05

20

07

20

09

mill

ion

m3

YRB

CRB

JRB

DRB

Beijingregion

Page 38: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

26

average annual precipitation between 1956 and 1969 was 429.9 mm; it decreased to 396.9

mm in the period 1970-2000. From 1980 to 2000, the average annual precipitation was

390 mm, which decreased by 9.3% compared with that during the period 1956-1969.

Secondly, excessive human interventions in the upstream area had substantially

contributed to a fast decreasing amount of surface water inflow since the 1970s.

Comparing the period 1956-1969 and 1970-2000, the average annual precipitation

decreased only by 7.7%; however, the average annual surface water inflow of the YRB in

the Beijing region decreased by 65.3%. Besides, various human activities in the upstream

area are the other main contributing factor. A variety of water storage projects have been

constructed in the upstream area of the YRB, including two large-scale reservoirs (named

Cetian and Youyi) and 16 middle-scale reservoirs. Moreover, due to rapid socio-economic

development, excessive water withdrawals in the upstream area of the YRB are popular.

Those activities in the upstream of the YRB have greatly affected the natural river flows

and resulted in a decreasing amount of surface water inflow of its downstream Yongding

river reaches in the Beijing region.

Figure 5.4 Changes of the surface water inflow of the YRB and the average annual precipitation

in the upstream area of the Guanting reservoir in the YRB, 1956-2000 (based on data from Dou

& Zhao 2006)

5.1.3 Surface water outflow (SWO)

The amount of yearly surface water outflow of the Beijing region shows a decreasing

trend since the 1980s, compared with that in the 1960s and the 1970s (see Figure 5.5). In

Beijing Municipality, the average annual amount of surface water outflow was 2,361.7

million m3 from 1961 to 1980; however, it decreased to 1,547.1 million m3 during the

period 1981-2000, and to 837.7 million m3 between 2001 and 2009. The relatively less

0

5

10

15

20

25

30

0

100

200

300

400

500

600

700

19

56

19

58

19

60

19

62

19

64

19

66

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

19

98

20

00

Surface w

ater inflo

w, m

illion

m3

pre

cip

itat

ion

, mm

precipitation surface water inflow

Page 39: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

27

amount of surface water outflow of the region happened in both the 1980s and the

2000s.

For the five river basins in the region, they have a similar trend with the whole Beijing

region, regarding the amount of surface water outflow. However, the most obvious

changes happen in the YRB. During the period 1961-2009, its highest value was 605.7

million m3 (in 1967); but there was zero surface water outflow for 15 years in total (1981-

1983, 1986-1993 and 1997-2000) from 1981 to 2000. The least changes happen in the

BRB, which has the main drainage river system of Beijing Municipality. During the

period 1961-2000, the average annual surface water outflow in the BRB was 903.3 million

m3, accounting for 46.2% of the total surface water outflow (1,954.4 million m3) in the

Beijing region. In contrast with the other four river basins from 2003 to 2009, the

average annual surface water outflow in the BRB was 713.4 million m3, accounting for

85.2% of the total amount of surface water outflow in the Beijing region (837.7 million

m3).

Figure 5.5 Surface water outflow of the Beijing region (based on data from Dou & Zhao 2006;

BWA 2001-2010)

In Brief, there are three significant factors – surface water inflow (SWI), local

precipitation and wastewater discharge – that influence the amount of surface water

outflow (SWO) of the region. As can be seen from Figure 5.3 and Figure 5.5, the peak

period and changing trends of surface water inflow and outflow of the Beijing region are

almost consistent. To some extent, this phenomenon may implicate that the total amount

of SWI determines the total amount of SWO in the Beijing region if we do not consider

the extreme climate variation locally.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

19

61

19

63

19

65

19

67

19

69

19

71

19

73

19

75

19

77

19

79

19

81

19

83

19

85

19

87

19

89

19

91

19

93

19

95

19

97

19

99

20

01

20

03

20

05

20

07

20

09

mill

ion

m3

YRB

CRB

JRB

DRB

BRB

Beijingregion

Page 40: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

28

Precipitation in the Beijing region is the second significant impact factor of the total

amount of SWO. Here, the locally originated Beiyun River Basin (BRB) and the Beijing

region can be taken as two examples demonstrating the impacts of local precipitation

(see Figure 5.6). In general, the amount of SWO changes along with the amount of

precipitation in the BRB during the period 1961-2000. This point is also reflected by the

changes of the average annual SWO and precipitation in the Beijing region from 2001 to

2009.

Figure 5.6 Precipitation and the composition of surface water outflows of the BRB (1961-2000)

and the Beijing region (2001-2009) (based on data from Dou & Zhao 2006; BWA 2002-2010)

The third impact factor of the SWO is the amount of wastewater discharge, which is

reflected in the BRB having most of the Drainage Rivers in the Beijing region (see Figure

5.6). However, the proportion of fresh river water and discharged wastewater in the

SWO is annually different. For the surface water outflow of the BRB, the average annual

0

100

200

300

400

500

600

700

800

900

0

200

400

600

800

1000

1200

1400

1600

1800

19

61

19

64

19

67

19

70

19

73

19

76

19

79

19

82

19

85

19

88

19

91

19

94

19

97

20

00

precip

itation

, mm

Su

rfac

e w

ater

ou

tflo

w, m

illio

n m

3

Beiyun River Basin

freshwater wastewater precipitation

0

100

200

300

400

500

600

700

0

200

400

600

800

1000

1200

2001 2002 2003 2004 2005 2006 2007 2008 2009

precip

itation

, mm

Surf

ace

wat

er o

utf

low

, mill

ion

m3

Beijing Region

Page 41: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

29

discharged wastewater accounted for 19.02% in the 1960s, for 37.52% in the 1970s, for

51.88% in the 1980s, and for 9.6% from 1991 to 2000, with an average annual

precipitation of 592.1 mm, 591.9 mm, 509.1 mm and 553.8 mm, respectively. For the

Beijing region, the average annual discharged wastewater accounted for 69.7% of the

total amount of SWO in the period 2001-2009, with an average annual precipitation of

485.3 mm. In the present study, however, there is still not any evidence to explain the fast

decreasing amount of wastewater discharge in the BRB in the 1990s. The other

explanation may be of data error from 1990 to 2000 in the reference source (Dou & Zhao

2006).

5.2 Water Uses and Regional Water Deficits

5.2.1 Water supply and water uses

With rapid urbanization, industrialization and population growth, a huge amount of

freshwater is required to meet different requirement. Considering the limited freshwater

resources, the large amount of water demand will cause intensive water allocation

conflicts among different water sectors (see Figure 5.7). The total amount of water use

kept increasing from 4.11 billion m3 in 1990 up to 4.64 billion m3 in 1992. After 1992, the

total amount of water use had a decreasing trend and was down to 3.55 billion m3 in

2009. From 2002 to 2009, the total amount of water use in different sectors was around

3.5 billion m3, around 14% less compared with that in 1990. This is mainly due to the

tremendous efforts of water conservation particularly in the industrial and agricultural

sectors. The amount of annual industrial water use had decreased from 1.55 billion m3 in

1992 to 0.52 billion m3 in 2009. Similarly, the amount of annual agricultural water use had

decreased from 2.44 billion m3 in 1989 to 1.20 billion m3 in 2009.

Figure 5.7 Water used in different sectors in Beijing Municipality, 1988-2009 (based on data

from BWA 1989-2010)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

19

88

19

89

19

90

19

91

19

92

19

93

19

94

19

95

19

96

19

97

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

20

06

20

07

20

08

20

09

Wat

er u

sed

by

sect

ors

, bill

ion

m3

environment

domestic

Industry

agriculture

Page 42: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

30

However, the amount of domestic water use kept increasing from 0.64 billion m3 in 1988

to 1.47 billion m3 in 2009. In 2000, the amount of domestic water use, for the first time,

exceeded the amount of industrial water use. The other change is the amount of

environmental water use, which kept increasing since 2003 and reached 0.36 billion m3 in

2009. Due to rapid population growth and increasing living standards, the amount of

domestic and environmental water uses may continue increasing, which probably causes

more water allocation conflicts among different water sectors in the near future.

The large amount of water demands for different purposes brings about a huge

challenge to the vulnerable water systems in the Beijing region. Due to decreasing surface

water inflow and precipitation in the Beijing region, the amount of surface water supply

keeps decreasing in recent years (see Table 5.1). During the period 2000-2009, around

2/3 of the total amount of water supply was from groundwater, which was up to 78% in

2004. In 2008, for the first time, the amount of reclaimed wastewater use exceeded the

amount of surface water use. Since 2004, the amount of reclaimed wastewater use kept

increasing, which reached 0.65 billion m3 (18.3% of the total amount of water supply) in

2009. Correspondingly, the amount of groundwater withdrawal kept decreasing, which

decreased to 2.18 billion m3 (61.4% of the total amount of water supply) in 2009.

Table 5.1 Amount of water supplied from different sources and used in different sectors in the

Beijing region, 1980-2009

Year

Water Supply (billion m3) Water Use (billion m

3)

Surface Ground Other3 Total Agriculture Industry Domestic Environment

1980 2.49 2.29 0 4.78 3.06 1.31 0.40 0.01

1985 1.22 2.60 0 3.82 2.11 1.04 0.63 0.04

1990 1.32 2.33 0 3.65 1.88 0.93 0.80 0.04

1995 1.24 2.71 0.01 3.96 1.84 1.05 1.03 0.04

2000 1.33 2.71 0.01 4.05 1.78 0.99 1.24 0.04

2005 0.70 2.49 0.26 3.45 1.32 0.68 1.34 0.11

2009 0.46 2.18 0.91 3.55 1.20 0.52 1.47 0.36

Source: based on data from BWA (1989-2010) and BWA (2006)

There are two main kinds of freshwater supply systems, i.e. tap water supply and well

water supply (see Figure 5.8). The quantity of yearly tap water supply increased from 7.1

million m3 in 1949 to 829.9 million m3 in 2004. Most tap water is supplied to domestic

and industrial water use, except a small proportion of agricultural water use between

1984 and 2000. From 1949 to 2008, the percent of domestic tap water use varied

3 Other water sources mainly refer to reclaimed wastewater. In this table, it also includes the

amount of inter-basin water transfer (0.07 billion m3 in 2008 and 0.26 billion m3 in 2009).

Page 43: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

31

between 93% (in 1951) and 48.7% (in 1973). From 2000 to 2008, the amount of

domestic water use accounted for around 80% of the total amount of tap water supply.

On the other hand, well water supply started from 1981. In the 1980s, water supplied

from wells was mainly for the domestic and agricultural purposes; and the latter

accounted for around 60% of total amount of well water supply. Since the 1990s, well

water supply was mainly used for domestic and industrial purposes. In the 1990s, more

than half of well water was supplied to industry; around 57.2% of the total amount of

well water supply was used by the domestic sector from 2000 to 2008.

Figure 5.8 Yearly amount of tap water supply and well water4 supply, 1949-2008 (based on data

from BMBS 2010)

5.2.2 Water deficits and decreasing groundwater table

Although the total amount of water withdrawals has a decreasing trend since 2000, water

systems in the Beijing region are still under tremendous pressure. It is mainly caused by

4 There are various types of wells in the Beijing region, e.g. drinking water well, industrial water

well and irrigation well. Here, it refers to all wells in the Beijing region.

0

100

200

300

400

500

600

700

800

900

19

49

19

52

19

55

19

58

19

61

19

64

19

67

19

70

19

73

19

76

19

79

19

82

19

85

19

88

19

91

19

94

19

97

20

00

20

03

20

06

Wat

er q

uan

tity

, mill

ion

m3

Tap Water Supply

domestic

industry

in total

0

100

200

300

400

500

600

700

19

81

19

83

19

85

19

87

19

89

19

91

19

93

19

95

19

97

19

99

20

01

20

03

20

05

20

07

Wat

er q

uan

tity

, mill

ion

m3

Well Water Supply

domestic

industry

in total

Page 44: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

32

the large deficits between the amount of available freshwater resources and the total

amount of water withdrawals. For the Beijing region, the available freshwater resources

include two main parts: the renewable fresh water resources (RFWR) from local

precipitation and the surface water inflow from the upstream area of the region. Here,

one assumption is that the amount of total available freshwater resources would be used

as water sources, regardless of evapotranspiration and ecological water requirements in

river basins. This is not the case in practice; but it can greatly simplify the following brief

comparisons. Under this hypothesis, therefore, the amount of water deficits discussed

below is actually the minimum value and the actual amount of water deficit would be

much larger.

As can be seen from Figure 5.9, water deficits in the Beijing region varied between 0.67

billion m3 (in 2005) and 1.62 billion m3 (in 2000) from 2000 to 2009. During this period,

the amount of average annual water deficit is 0.93 billion m3. However, there is only one

exception happened in 2008, then there was 0.64 billion m3 of water surplus. This is

mainly caused by higher yearly precipitation. In 2008, the average annual precipitation

was 638 mm, higher than the average annual precipitation of 607 mm during the period

1950-2000. Considering general relationship between precipitation and the RFWR in the

region, it may implicate that the water surplus situation would happen more often given

higher yearly precipitation level in the future.

Figure 5.9 Comparison of the annual amount of renewable freshwater resources (RFWR)5,

surface water inflow, and water withdrawals in the Beijing region, 2000-2009 (based on data from

BWA 1989-2010)

5 Here, the RFWR refers to the sum of locally available surface water and groundwater

transformed from precipitation in the Beijing region.

0

100

200

300

400

500

600

700

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

precip

itation

, mm

W

ater

qu

anti

ty, b

illio

n m

3

RFWR (Beijing region) surface water inflowwater withdrawals precipitationaverage precipitation (1956-2000)

Page 45: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

33

In order to meet the large water deficits in the Beijing region, groundwater resources

have been overly withdrew particularly in the 2000s, which had resulted in a decreasing

groundwater table in the plain area of Beijing Municipality (see Figure 5.10). At the end

of 1960, the depth to groundwater in the plain area was 3.19 m, and it was 7.24 m at the

end of 1980. However, the depth to groundwater had increased fast from 11.88 m in

1998 to 24.07 m in 2009, with an average annual increasing rate of 1.02 m. In the end of

June 2009, the ground water table reached 24.38 m that was the highest value since 1978.

Compared the yearly groundwater situation in 2009 with that in 1980, the depth to

groundwater have dropped by 16.83 m and the total groundwater storage in the region

has decreased by 8.62 billion m3 (BWA 2010).

Figure 5.10 Decreasing groundwater table6 of the plain area in the Beijing region, 1960-2009

(based on data from BWA 2001-2010)

5.3 Water Quality Changes

5.3.1 Point and non-point source pollution

Together with the limited water quantity, wastewater associated with pollutants

discharged has caused huge pressure on the vulnerable water systems in the Beijing

region too. During the period 1996-2009, the amount of average annual wastewater

discharge was 1.292 billion m3; varying between 1.057 billion m3 (in 1996) and 1.365

billion m3 (in 2009) (see Figure 5.11). But the proportion of wastewater discharge from

different sectors has changed greatly. From 1996 to 2005, the amount of average annual

wastewater discharge from industry was 0.554 billion m3, while it decreased to 0.092

billion m3 between 2006 and 2008. This was mainly due to a decreasing amount of

industrial water use, owing to water conservation measures and an increased rate of

wastewater reclamation. In contrast, the amount of domestic wastewater keeps

increasing, from 0.536 billion m3 in 1996 to 1.236 billion m3 in 2008.

6 It refers to the depth to groundwater monitored at the end of each year.

0

5

10

15

20

25

30

19

60

19

80

19

81

19

82

19

83

19

84

19

85

19

86

19

87

19

88

19

89

19

90

19

91

19

92

19

93

19

94

19

95

19

96

19

97

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

20

06

20

07

20

08

20

09

Dep

th t

o g

rou

nd

wat

er, m

Page 46: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

34

Figure 5.11 Amount of yearly wastewater discharge in the Beijing region, 1996-2009 (based on

data from BWA 1989-2010)

In order to alleviate the negative impacts of the increasing amount of wastewater

discharge, the Beijing government has put many efforts on wastewater collection and

disposal. As can be seen from Figure 5.12, the daily amount of wastewater discharge in

the region had increased from 6.6×104 m3 in 1954 to 361.9×104 m3 in 2008, though it

once decreased from 369.2×104 m3 in 1992 to 237.1×104 m3 in 2001. On the other hand,

the average annual wastewater treatment rate varied between 6.6% (in 1991) and 10.9%

(in 1982) from 1954 to 1991. The wastewater treatment rate of 1.2% was in 1992, due to

the highest amount of yearly wastewater discharge then. Before 1992, wastewater in

Beijing Municipality only was primarily treated, e.g. by means of stabilization ponds. With

an increasing awareness of public health risk from polluted water, wastewater treatment

plants construction was on the agenda of the Beijing government. Since then, the yearly

wastewater treatment rate had increased from 3.1% in 1993 to 78.9% in 2008.

Due to many efforts on wastewater treatment and pollution reduction, the total amount

of yearly COD (chemical oxygen demand) discharge keeps decreasing in recent years (see

Figure 5.13). The total amount of COD discharge was 17.85×104 m3 in 2000 and

9.88×104 m3 in 2009, with an average annual decreasing amount of 0.797×104 m3. The

amount of industrial COD discharge decreased from 4.93×104 m3 in 1998 to 0.5×104 m3

in 2008. Similarly, the amount of domestic COD discharge decreased from 15.7×104 m3

in 2000 to 9.63×104 m3 in 2008, though the amount of domestic wastewater kept

increasing in the period. Even so, the total amount of COD discharge in 2009 was still

higher than the theoretical annual maximum amount of COD carry capacity of 7.8×104

m3 (Ouyang et al. 2009), considering all river courses in the Beijing region.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

19

96

19

97

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

20

06

20

07

20

08

20

09

bill

ion

m3

Wastewater Discharge

domestic

industrial

total

Page 47: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

35

Figure 5.12 Daily wastewater discharge and yearly wastewater treatment rate in the Beijing

region, 1954-2008 (based on data from BMBS 2010)

Figure 5.13 Amount of COD discharge from different sectors in the Beijing region, 1998-

2009 (based on data from BWA 1997-2010; BMEPB 2001-2009; NBS & MEP 2009)

Another important characteristic of wastewater discharge is the uneven distribution in

the five main river basins. This characteristic can be observed in terms of the statistics of

the numbers of sewage outfall and the amount of wastewater discharge in 2003 (see

Figure 5.14). In general, there are three kinds of sewage outfall: domestic, industrial and

combined7. Among the five river basins, the Beiyun RB (BRB) has the largest numbers

7 A combined sewage system collects sanitary sewage and storm water runoff in one single pipe

system.

0

10

20

30

40

50

60

70

80

90

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

19

54

19

56

19

58

19

60

19

62

19

64

19

66

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

19

98

20

00

20

02

20

04

20

06

20

08

Wastew

ater treatmen

t rate, %

Dai

ly w

aste

wat

er d

isch

arge

, 104

m3

daily WW discharge WW treatment rate

0

2

4

6

8

10

12

14

16

18

20

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

20

06

20

07

20

08

20

09

10

,00

0 m

3 domestic

industrial

total

COD carryingcapacity

Page 48: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

36

for all of the three kinds of sewage outfall, and the Daqing RB (DRB) has only 1

domestic and 4 combined sewage outfall in 2003 (Dou & Zhao 2006). Correspondingly,

around 80% of the total amount of wastewater was discharged in the BRB in 2003.

Figure 5.14 Numbers of sewage outfall and amount of wastewater discharged in 2003 (based on

data from Dou & Zhao 2006)

Similarly to the uneven distribution of the sewage outfall and the amount of wastewater

discharge, the amount of pollutants discharge is also different in river basins (see Figure

5.15). The proportion of the total amount of pollutants discharged in 2003 was as

follows: COD accounted for 80.1%, nitrogen was 12.8%, ammonia-nitrogen was 5.7%,

and Phosphorous was 1.4% (Dou & Zhao 2006). For the five river basins, the Beiyun RB

(BRB) received around 86% of the total amount of pollutant discharged; and the Daqing

RB (DRB) had only 1.2% that was the least.

Figure 5.15 Amount of pollutants discharge in the five river basins in 2003 (based on data from

Dou & Zhao 2006)

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

450

500

Daqing RB Yongding RB Chaobai RB Beiyun RB Jiyun RB

Am

ou

nt o

f WW

disch

arge, millio

n m

3 N

um

ber

s o

f se

wag

e o

utf

all

domestic industrial combined sewage amount of WW discharged

0

20000

40000

60000

80000

100000

120000

140000

160000

Daqing RB Yongding RB Chaobai RB Beiyun RB Jiyun RB

Po

lluta

nts

, to

ns

N

P

NH3-N

COD

Page 49: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

37

For the non-point pollutants, the collected data in the present study only is the amount

of yearly fertilizer use. As can be seen from Figure 5.16, the amount of fertilizer use

increased fast in the 1960s and the 1970s. From 1961 to 1980, the amount of yearly

fertilizer use increased from 8,609 tons to 123,000 tons. Although it decreased to 82,000

tons in 1985, it increased to the highest amount of 197,000 tons in 1997. After 1997, it

had a decreasing trend and reached to 136,000 tons in 2008. Besides the point source

pollutant of COD from domestic and industrial wastewater, the non-point source

pollution from agriculture – e.g. using pesticide and fertilizer – are other contributors to

water pollution of both surface water and groundwater.

Figure 5.16 Amount of yearly fertilizer use in the Beijing region, 1949-2008 (based on data from

BMBS 2010)

5.3.2 Surface water quality

Due to a huge amount of wastewater and pollutants discharge, river water has gradually

been polluted since the 1980s. In recent years, water quality issues have received many

and more attentions. This may be reflected from the yearly increasing length of river

courses monitored by BWA. In 2001, there was only 952 km river courses monitored; but

it increased to 2,323.7 km in 2009. As can be seen from Figure 5.17, the fraction of river

water quality kept changing between 2001 and 2009 (BWA, 2002-2010). The most

obvious change was the river length classified as Grade I-III and Grade V worse. The

proportion of the river length classified as Grade I-III was 72.3% (788.6 km) in 2004,

which decreased to 47% (1,078.6 km) in 2009. On the contrary, the river length classified

as Grade V worse was 26.2% (286.1 km) in 2004, which increased to 45% (1,064.7 km) in

2009. During the same period, however, the percentage of the river length classified as

Grade IV and Grade V had changed very few.

Due to the centralized wastewater treatment and different water sources protection

strategies, water quality is largely different in the five main river basins (see Figure 5.18).

Regarding the four large-scale reservoirs in 2008, on the one hand, three of them –

Miyun, Huairou and Haizi – were classified as Grade II; but the Guanting Reservoir was

0

5

10

15

20

25

19

49

19

51

19

53

19

55

19

57

19

59

19

61

19

63

19

65

19

67

19

69

19

71

19

73

19

75

19

77

19

79

19

81

19

83

19

85

19

87

19

89

19

91

19

93

19

95

19

97

19

99

20

01

20

03

20

05

20

07

Am

ou

nt

of

fert

ilize

r u

se, 1

04

ton

s

Page 50: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

38

classified as Grade IV (BWA 2009). On the other hand, it is not surprising that most of

the river courses classified as Grade II or Grade III are in the upstream area of the

Beijing city, because they are of the water protection area so as to ensure surface water

supply with acceptable quality. However, most of the river courses in the BRB are

seriously polluted and classified as Grade V worse in recent years.

Figure 5.17 River water quality of the Beijing region, 2001-2009 (based on data from BWA

2002-2010)

Figure 5.18 Surface water quality of the Beijing Region in 2008 (after BWA 2009)

0

500

1000

1500

2000

2500

0

10

20

30

40

50

60

70

80

20

01

20

03

20

04

20

05

20

06

20

07

20

08

20

09

Length

of m

on

itored

river cou

rse, km

Frac

tio

n o

f ri

ver

cou

rse

qu

alit

y, %

monitoredriver course

Grade I-III

Grade IV

Grade V

Grade Vworse

Page 51: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

39

5.3.3 Groundwater quality

Due to the lower wastewater treatment rate for many years in the Beijing region,

groundwater has been polluted too. A large amount of wastewater has been directly

discharged into river courses and seepage wells. Moreover, there are a huge amount of

pollutants discharged by using fertilizer and pesticide in agriculture. As can be seen from

Figure 5.19, the groundwater quality is changing spatially; but those classified as Grade

IV and Grade V are located in the BRB and the downstream of the other river basins.

This kind of water quality situation also reflects the strong upstream-downstream

conflicts in river basins.

Figure 5.19 Groundwater quality of the Beijing region in 2004 (after BWA 2005)

In recent years, with increased rate of wastewater treatment, the proportion of seriously

polluted groundwater quality has decreased slightly (see Figure 5.20). For the shallow

aquifer (the depth of monitor well less than 150 m), those classified as Grade V had

decreased from 25% in 2003 to 22.7% in 2009, while those classified as Grade III also

decreased from 55% in 2003 to 52% in 2009 (BWA 2010). This is caused by a higher

value of hardness, ammonia-nitrogen and nitrate-nitrogen.

As a result of pollutants seepage and excessive groundwater withdrawals, shallow aquifer

and even deep groundwater in some areas, has been under higher risk of pollution for

years. Water quality of deep groundwater (the depth of monitor well between 150 m and

300 m) is better, compared with that of the shallow aquifer. In 2009, those classified as

Grade III and Grade IV-V was 84% and 16%, respectively. The main pollutants were

Page 52: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

40

ammonia-nitrogen and fluoride (BWA 2010). In 2006, however, deep groundwater

classified as Grade III and Grade IV-V was 85.6% and 14.4%, respectively, with higher

concentration of ammonia-nitrogen, iron and manganese (BWA 2007). This may show

that the deep groundwater is gradually under crisis, caused by a variety of pollutants

discharge.

Figure 5.20 Fraction of the shallow aquifer quality in the Beijing region, 2003-2009 (based on

data from BWA 1989-2010)

0

10

20

30

40

50

60

2003 2004 2005 2007 2008 2009

Frac

tio

n o

f gr

ou

nd

wat

erq

ual

ity

, %

Grade III

Grade IV

Grade V

Page 53: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

41

6 DISCUSSION

6.1 Water Quantity Changes

Within the scope of the present study, the water quantity system in the Beijing region is

affected by a variety of factors, both the internal factors (precipitation and the prevailing

water use pattern) and the external factors (upstream surface water inflow and inter-basin

water transfer). These factors vary at different spatial and temporal scales, which may be

similar to other countries in arid and semi-arid regions. However, water systems changes

must to be discussed in the specific socio-economic and ecological context at different

scales. Based on the results of the present study, we could conclude that both the internal

and external factors contributed to the current severe water situation in the Beijing

region; but human interventions may play a more important role than climate variations

in water quantity changes.

For climate and precipitation changes, their overall impacts on water systems in the

Beijing region is not very clear based on the evidence collected in the present study.

There are nine continuous drought years from 1999 to 2007, with a yearly precipitation

below the average value since 1956. However, one question is whether it is one of the

main contributors to the current water scarcity? Here, the following two points may aid

our understanding of the local water quantity environment employing a retrospective

perspective. Firstly, there were similar continuous drought years happened in history, e.g.

during the period 1728-1936 and 1739-1760. Secondly, the diversity of the annual

average precipitation is not large during the two periods 1724-1949 (603.4 mm) and

1950-2009 (588.7 mm). In this regard, perhaps we may conclude that the recent

continuous dry years seem normal in history; but the main difference is the environment

of human society in the past and now.

Compared to the „doubtful‟ impact of precipitation on the current water scarcity

situation, one fact without doubt is the total surface water inflows of the Beijing region

that has kept decreasing since the 1980s (cf. Figure 5.3). This is mainly due to the

upstream human intervention of excessive water withdrawals to meet rapid socio-

economic development. Here, the problem is how this kind of upstream-downstream

conflicts can be effectively addressed in the near future. In terms of the general

principles of IWRM, the best unit for water management is a river basin, with its

hydrological boundary. In practice, however, water resources are usually managed in

terms of its administrative boundary, e.g. a city, a region and a country. In this context,

the local/regional water planning mainly compete for more upstream surface water

inflows, while often neglecting its surface water outflows into the downstream region.

To some extent, we could say that we all live in both the upstream and downstream of a

river basin (cf. 3.1), depending on how to set out the systems boundary. However, we all

live on the same river in a river basin. The health of a river system depends on the

activities of all its upstream-downstream water users, and vice versa.

Page 54: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

42

This kind of upstream-downstream water allocation conflicts are not easy to negotiate

among different administrative regions in a river basin. Based on the institutional

framework for water resources management in China (Song et al. 2011b), the State

Council has the right to judge such regional water conflicts issues as those among

provinces. In order to alleviate water stress in Beijing Municipality, the State Council had

also issued a regulation in 2007 on ensuring the upstream surface water inflow of the

Guanting reservoir in the Yongding River Basin (State Council 2007). In terms of the

regulation on the minimum amount of surface water flowing into the Guanting reservoir,

the upstream Hebei province must ensure 300 million m3 of water during years with

normal precipitation and 60 million m3 of water during extremely drought years. This

regulation sounds rational; but the point is that Hebei province is also suffering from a

severe water supply crisis to meet its various socio-economic development water

demands. In brief, the question still doesn't change in essence: how to wisely manage the

limited water quantity in a river basin to meet the various socio-economic and ecological

water demands?

In a river basin, we to some extent agree that a clear river basin water allocation

plan/permit among the relevant region is helpful to ensure the downstream surface water

inflow of each region, even the minimum amount of water flow in the river. However,

this water supply management is probably not the best solution, compared to water

demand management. Even located in a semi-arid area, water stress in the Beijing region

may be alleviated if water conservation, together with a sustainable urban development

strategy, could be kept emphasizing. In this way, besides technological innovations,

tremendous efforts should be put on water resources planning and management, e.g.

shifting to water demand management, improving the rate of water/wastewater recycling

rate, and institutional capacity building for IWRM.

To move from water supply management to water demand management, first of all, the

historical water allocation and uses need to be investigated in different sectors. When

exploring the reasons for water scarcity in the Beijing region, one popular opinion is that

it is located in a semi-arid area with much less precipitation particularly in recent years.

This opinion is impartial from the perspective of system‟s inputs.

However, we may have another complementary opinion that a systems perspective is

required so as to investigate the „black box‟ of the system under investigation, e.g. with a

focus on specific water use sector. Here, we can take the historical agricultural water use

in the Beijing region as an example. As can be seen from Table 5.1, the amount of

agricultural water use keeps decreasing since 1980. However, it is not due to improved

agricultural irrigation efficiency in the all time. As can be seen from Figure 6.1, the total

arable land area in the Beijing region has decreased fast, e.g. from 413,000 hectares8 in

1991 to 236,000 hectares in 2004, with a relatively stable period between 1991-1995,

1996-2000 and 2004-2008. Figure 6.1 shows the other reason for the decreasing trend

8 A metric unit of area, 1 hectare = 10,000 m2

Page 55: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

43

particularly since 2000, i.e. the decreasing amount of arable land area and irrigation area.

In a similar way, the trend of domestic and industrial water uses also worth further

detailed investigation in order to have a more holistic picture of water quantity changes

in different sectors. This is prerequisite to find out more sustainable water resources

planning, development and management in the Beijing region.

Figure 6.1 Changes of arable land area and irrigation area in the Beijing region, 1949-2008

(based on data from BMBS 2010)

6.2 Water Quality Changes

Similar to the water quantity changes, the water quality issue is also affected by a variety

of contributors. Based on the results of the present study, the main factors can be

summarized as non-point pollutants from agriculture and the rate of wastewater

treatment. On the one hand, the total amount of COD discharge from industrial and

domestic wastewater keeps decreasing since 2000, as mentioned in Chapter 5. However,

only the point source pollutants (COD from industrial and domestic wastewater) was

higher than the total pollutants carry capacity of all rivers in the Beijing region (cf. Figure

5.13), though the wastewater treatment rate had reached 78.9% in 2008. This implicates

that the quality of treated wastewater also needs to be improved substantially in the

future. Moreover, the non-point pollutants from agricultural pesticide and fertilizer uses

deserve more attentions as well.

On the other hand, the present study finds that the location of polluted river reaches is

determined by the spatial distribution of wastewater discharge. The most polluted river

courses in the Beijing region are in the Beiyun River Basin, into which most of municipal

wastewater is discharged. Moreover, the spatial distribution groundwater quality is similar

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

19

49

19

52

19

55

19

58

19

61

19

64

19

67

19

70

19

73

19

76

19

79

19

82

19

85

19

88

19

91

19

94

19

97

20

00

20

03

20

06

Lan

d a

rea,

10

4 h

ecta

re

arable land area

irrigation area

Page 56: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

44

to that of surface water quality. The most polluted area of groundwater is located in the

downstream river courses, which is close to river courses flowing out of the Beijing

region.

In the near future, the Beijing region, along with its huge population and a fast

urbanizing rate, probably would continue facing up to tremendous challenges of

wastewater reduction and pollution prevention. Here, the question is whether wastewater

can be re-allocated among different river basins in the future? How to carry out water

sensitive planning in such a water-centric Overall Urban Planning (2004-2020), ensuring

adequate water supply with an acceptable water quality?

Considering the four stages of water use and pollution abatement (cf. Figure 3.5), Beijing

is not still at the second stage characterized as building of effluent treatment plants by

the public sector. Beijing may stay at the stage in the coming years to further improve its

overall wastewater treatment rate (around 80% at the moment) and the quality of treated

wastewater. On the other hand, Beijing is moving toward the third stage characterized as

reduction at source. Actually cleaner production techniques have been introduced in

China since the 1990s and the amount of industrial COD discharge keep decreasing in

recent years in the Beijing region. However, there are still many challenges to effectively

reduce pollutants discharged into nature, not only of nutrients like COD, Nitrogen and

Phosphorous but also other hazardous substances like heavy metals. Towards improved

water environment and more healthy ecosystems in the capital region, therefore, both

socio-technical systems innovation is required so as to reduce the quantity of water

use/wastewater, and to improve the quality of treated wastewater and of surface water

and groundwater.

6.3 Suggestions for Alleviating Water Stress in

Beijing Municipality

The emerging water crisis events in the Beijing region are caused by both water scarcity

and water pollution. Technological innovations – both on water conservation and

wastewater treatment – are crucial to achieving improved performances of water systems

in river basins. Considering the complexity of water systems, advances in technology

alone are not sufficient in many ways. Besides achieving socio-economic development,

humans should learn how to better live with rivers in a more harmonious way (ecological

sustainability). Absolutely, this requires a variety of efforts at all levels. Furthermore, the

South-to-North Water Transfer Project (SNWTP) may alleviate Beijing‟s water crisis in a

short time from the water quantity perspective; however, it can only be regarded as one

complementary measure, rather than a fundamental solution, in the long term.

Considering the current water situation and water management system, the following

three aspects of improvement are emphasized in the present study, including a promoted

water-centric value, institutional capacity building and employing economic principles for

Page 57: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

45

water resources management. Definitely, there are several other aspects that are equally

important but less discussed in the present study, such as effective upstream-downstream

conflicts resolution as well as balancing water between human society and nature.

To alleviate the water crisis in Beijing Municipality, first of all, there should be a better

understanding of water values for decision-making, main stakeholder and the public. For

a rather long time, the popular value is that “Water is of renewable natural resources, and

humans can withdraw and consume it randomly”. It works well but only under a much

lower level of socio-economic development. In this context, various (large-scale) dams

have been constructed so as to ensure water supply.

With the development of modern society, however, various human activities have

severely disturbed the natural water cycle as well as resulting in such more water stresses

as water scarcity and pollution. In this context, the former value should be shifted to

such a promoted water centric one as the first Dublin principles (GWP 2000b): “Fresh

water is a finite and vulnerable resource, essential to sustain life, development and the

environment”. Here, the challenge is how to improve the understanding of water

resources in developing countries. This holds true to decision-makers and water

managers in Beijing municipality. The point is to emphasize that knowing the general

principles of IWRM is just a starting point and acting guided by the principles is of the

most importance.

Besides a better understanding of catchment systems (e.g. water flows, pollutant flux, and

aquatic and terrestrial ecosystem transitions), water institutional capacity building is the

other key aspect towards improved practices of water resources management. (Jury &

Vaux 2005) summarize a series of deficiencies that water institutions tend to embody,

including a focus on narrow interests, artificial divisions between the management of

water quality and the management of water quantity, multiple and fragmented

management jurisdictions across fundamental hydrologic units such as basins and

watersheds, and an absence of institutions that are designed to deal with the fundamental

problems of water scarcity. Considering the multiple water problems in Beijing

Municipality, further water institutional reforms are required in the near future as to

having holistic approaches to address the emerging water crisis events. Only in this way,

partially optimized measures may be avoided at a river basin level.

Moreover, employing economic principles, such as cost-recovery of water services and

the polluter-pay-principle (Song et al. 2010), could further contribute to improved

performances of water systems in the region. The current water price and wastewater

treatment fee is still very low, including that of agricultural water use (Dou & Zhao 2006).

This has indirectly contributed to the increasing water demand trend especially since the

1980s. Developing effective economic measures, together with technological innovations,

to a large extent could reduce the amount of water used in different sectors and

pollutants discharge to the nature environment. However, one important aspect with

respect to a rational water price system is to subsidize people with a lower income. This

Page 58: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

46

aspect is very important to ensure everyone having access to the municipal water supply

system and the basic sanitation services, as well as to move towards a sustainable urban

development in the metropolitan region of Beijing.

Page 59: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

47

7 CONCLUSIONS

This thesis has attempted to provide a comprehensive picture of the water situation in

Beijing Municipality, with an emphasis on water quality and water quantity. In order to

address water systems changes in a systems perspective, a conceptual framework is

developed to aid in understanding various water flows and pollutant flux at a scale of

river basin. The results of the present study show that a variety of factors have

contributed to the emerging water crisis events in the Beijing region, both the

internal/local factors (hydrological variation and water use patterns) and the external

factors (upstream surface water inflow and inter-basin water transfer).

From the water quantity perspective, the current water deficits and decreasing

groundwater tables are caused mainly by the following factors: hydrological variation,

surface water inflow, and water supply and used in different sectors. The hydrological

variation is characterized as unevenly distributed precipitation spatially and temporally.

The decreasing trend of local precipitation since the 1980s is one contributing factor of

water scarcity.

However, the most important impact factors of the water quantity changes may be the

human-oriented intervention to the water systems both in the upstream area and in

Beijing Municipality. The upstream human activities have resulted in a decreasing amount

of surface water inflow of the Beijing region. This fact could be demonstrated by the

case of the Yongding River, according to the trends of upstream precipitation and the

surface water inflow of the Guanting reservoir. For water supply and water used in

Beijing Municipality, the available freshwater, both surface water and groundwater

resources, have been overly exploited to meet the vast amount of socio-economic water

demand in recent decades. Although the total amount of water use has a decreasing

trend since 2000, tremendous efforts are needed to offset the current water deficits and

to balance water allocation to meet all water demands. Moreover, the negative impacts of

the two main inter-basin water supply projects – the YWSC and the JWSC – on the

downstream river courses should be effectively addressed, so as to prevent river courses

running dry.

On the other hand, the water quality changes are mainly caused by the large amount of

pollutants discharge from different sectors. Both point and non-point source pollutants

have contributed to the decreasing water quality situation, for both the river systems and

groundwater. Although the wastewater treatment rate has been increased and the amount

of COD discharge have been decreasing in recent years, the total amount of COD

discharge in 2009 was still higher than the maximum annual carry capacity of the river

systems in the Beijing region. Moreover, the spatial distribution of wastewater discharge

should be re-balanced, considering environmental water demands with an acceptable

water quality.

To improve the water performances in the Beijing region, a variety of efforts are required

Page 60: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

48

in the near future from both the perspective of technological innovation and integrated

water resources management. Developing advanced technologies is important to water

conservation and pollution prevention. Moreover, a holistic institution approach is

crucial to facilitate the practices of integrated water resources management, including

employing economic principles. Finally, the various water stress problems in Beijing

Municipality must be addressed from the viewpoint of systems, which is prerequisite to

move towards a sustainable urban development in the metropolitan region of Beijing.

Page 61: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

49

REFERENCES

BMBS (Beijing Municipal Bureau of Statistics) (2010) Beijing 60 Years 1949-2009. China

Statistics Press, Beijing.

BMCUP (Beijing Municipal Commission of Urban Planning) (2005) Overall Urban

Planning (2004-2020) for Beijing (in Chinese). www.bjghw.gov.cn (accessed 10 January

2011).

BMEPB (Beijing Municipal Environmental Protection Bureau) (2001-2009) Beijing

Environmental Statement 2000-2008 (in Chinese). http://www.bjepb.gov.cn/

bjhb/publish/portal0/tab375/module445/page1.htm (accessed 6 February 2011).

BSIN (Beijing Statistics Information Network) (2010) Statistical Communiqué of Economic

and Social Development of Beijing in 2009 (in Chinese). http://www.ce.cn/ztpd/xwzt/

guonei/2010/09tjgb/df/yi/201002/22/t20100222_20993889.shtml (accessed 18

February 2011).

BWA (Beijing Water Authority) (2006) Basic Water Data in Beijing Municipality in 2005 (in

Chinese). Internal report. Beijing Water Authority, Beijing.

BWA (Beijing Water Authority) (1989-2010) Beijing Water Resources Bulletin 1986-2009

(in Chinese). http://www.bjwater.gov.cn/tabid/207/Default.aspx (accessed 5 March

2011).

Carpenter, S. R. & R. Biggs (2009) Freshwater: Managing Across Scales in Space and

Time. In F. S. I. Chapin, G. P. Kofinas & C. Folke (eds.), Principles of Ecosystem

Stewardship: Resilience-Based Natural Resource Management in a Changing World. Springer,

New York, pp. 197-220.

Cosgrove, W. J. & F. R. Rijsberman (2000) World Water Vision: Making Water Everybody's

Business. Earthscan London.

Dou, Y. & X. Zhao (2006) Investigation and assessment of surface water quantity in Beijing

Municipality (in Chinese). Project report of Water Resources Comprehensive

Planning in Beijing Municipality. Beijing Water Authority & Beijing Institute of

Water, Beijing.

Gao, Z., Z. Wang & Y. Ma (1987) A Brief Water History in Beijing (in Chinese). China

Water & Power Press, Beijing.

Gibson, J. E., W. T. Scherer & W. F. Gibson (2007) How to Do Systems Analysis. Wiley, New

Jersey.

GWP (Global Water partnership) (2000a) IWRM – AT A GLANCE. GWP TAC,

Stockholm, Sweden. http://www.gwp.org/Global/The%20Challenge/Resource%

20material/IWRM%20at%20a%20glance.pdf (accessed 1 March 2011).

GWP (Global Water partnership) (2000b) Integrated Water Resources Management. TAC

Background Papers, No. 4. GWP, Stockholm, Sweden.

Jiang, X. (2004) The 2004 Beijing Olympic Economics Report (in Chinese). Beijing Publishing

House Group, Beijing.

Jury, W. A. & H. Vaux (2005) The role of science in solving the world's emerging water

problems. Proceedings of the National Academy of Sciences of the United States of America

(PNAS), 102(44), 15715-15720.

Larsen, T. A. & W. Gujer (1997) The concept of sustainable urban water management.

Page 62: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

50

Water Science and Technology, 35(9), 3-10.

Lenton, R. (2004) IWRM Integration needs broad interpretation. Stockholm Water Front,

2004(4), p. 10.

Loucks, D. P. & J. S. Gladwell (1999) Sustainability Criteria for Water Resource Systems.

Cambridge University Press, Cambridge.

Lundin, L.-C., H. Linnér, B. Hultman, E. Levlin, E. Eriksson & S. Johansson (2000)

Water Resources and Water Supply. In L.-C. Lundin (ed.). Water Use and Management.

The Baltic University Programme, Uppsala University, Uppsala, pp. 17-24.

Lundqvist, J., A. Turton & S. Narain (2001) Social, institutional and regulatory issues. In

Č. Maksimović & J. A. Tejada-Guibert (eds.), Frontiers in Urban Water Management:

Deadlock or Hope. IWA Publishing, London, pp. 344-398.

Lundqvist, J. (2004) IWRM Not a Substitute for Sector Policies. A Critical View on

Integrated Water Resources Management: Definition, Implementation and Linkages

to Policy Reviewed. Stockholm Water Front, No. 4, December 2004, pp. 10-11.

Mayfield, C. I., V.I Grover, R.J. Daley & M. Dengo (2003) The U.N. water virtual learning

centre: a flexible distance learning programme for integrated water resource management.

http://www.bvsde.paho.org/bvsacd/wisirc/mayfi.pdf (accessed 1 March 2011).

Meadows, D. H. (2008) Thinking in Systems: A Primer. Earthscan, London.

NBS (National Bureau of Statistics of China) & MEP (Ministry of Environmental

Protection) 2009. China Environmental Statistics Yearbook 2009. Beijing: China Statistics

Press.

Novotny, V. (2009) Sustainable urban water management. In J. Feyen, K. Shannon & M.

Neville (eds.), Water and Urban Development Paradigms: Towards an Integration of

Engineering, Design and Management Approaches. CRC Press, London, pp. 19-31.

Novotny, V. & P. Brown (2007) Cities of the Future: Towards Integrated Sustainable

Water and Landscape Management. IWA Publishing, London.

Ouyang, Zhi, D. Ma, Y. Wang, F. Wang, Zh. Han, L. Han & B. Jiang (2009) Valuating

Water Ecosystem Services in Beijing (in Chinese). Project report, Beijing Institute of

Water & Research Centre for Eco-Environmental Sciences, Chinese Academy of

Sciences, Beijing.

Porto, M. (2000) Sustaining Urban Water Supplies: A Case Study from Sao Paulo, Brazil.

Stockholm Water Front, No. 2, April 2000, pp. 6-7.

Probe International Beijing Group 2008. Beijing‟s Water Crisis: 1949-2008 Olympics.

http://www.chinaheritagenewsletter.org/016/_docs/BeijingWaterCrisis1949-

2008.pdf (accessed 10 January 2011).

Skyttner, L. (2005) General Systems Theory: Perspectives, Problems, Practice. World Scientific

Publishing, New Jersey.

Song, X., B. Frostell, Zh. Zhang & J. Liu (2011a) Towards Improved Water Quantity

Management for Ecological River Restoration Using an Industrial Ecology-based

Framework: A Case Study of the Yongding River Basin, China. Manuscript submitted

to Water Resources Management.

Song, X., K. Mulder, B. Frostell, W. Ravesteijn & R. Wennersten (2011b) Transition in

public participation in Chinese water management. Proceedings of the Institution of Civil

Engineers, Engineering Sustainability, 164(1), 71-83.

Page 63: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

51

Song, X., W. Ravesteijn, B. Frostell & R. Wennersten (2010) Managing water resources

for sustainable development: the case of integrated river basin management in

China. Water Science and Technology, 61(2), 499-506.

State Council of the P.R. China (2007) Guo wu yuan guan yu yong ding he shui liang fen pei fang

an de pi fu (in Chinese). http://www.gov.cn/xxgk/pub/govpublic/mrlm/200803/

t20080328_32007.html, (accessed 22 December 2010).

UNESCO (United Nations Educational, Scientific and Cultural Organizations) (2003)

Water for People, Water for Life. The 1st UN World Water Development Report. Paris,

UNESCO Publishing.

UN (United Nations) (2007) World Urbanization Prospects: The 2007 Revision Population

Database. http://esa.un.org/unup/p2k0data.asp (accessed 22 November 2010).

UN 2004. World Population to 2300. United nations, New York. http://www.un.org/

esa/population/publications/longrange2/WorldPop2300final.pdf (accessed 15

January 2011).

Vairavamoorthy, K. (2008) Innovation in water management for the city of the future. In

J. Feyen, K. Shannon & M. Neville (eds.), Water and Urban Development Paradigms:

Towards an Integration of Engineering, Design and Management Approaches. CRC Press,

London, pp. 3-14.

WHO (World Health Organization) & UNICEF (United Nations Children's Fund) (2005)

Water for Life: Making it happen. http://www.who.int/water_sanitation_health/

waterforlife.pdf (accessed 3 March 2011).

World Commission On Environment and Development (1987) Our Common Future

Oxford University Press, Oxford.

Zhang, K. (2009) Lessons of Water Crisis in the Urbanizing Beijing Region (in Chinese).

http://finance.sina.com.cn/roll/20090218/03205867855.shtml (accessed 13

January 2011).

Page 64: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable
Page 65: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable
Page 66: Confronting the Water Crisis of Beijing Municipality in a ...kth.diva-portal.org/smash/get/diva2:578116/FULLTEXT01.pdf · various courses related to Industrial Ecology and Sustainable

TRITA-IM 2011:15 ISSN 1402-7615 Industrial Ecology, Royal Institute of Technology www.ima.kth.se