constraining cosmography with cluster lenses jean-paul kneib laboratoire d’astrophysique de...

37
Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

Upload: eunice-watts

Post on 13-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

Constraining Cosmography with Cluster Lenses

Jean-Paul Kneib

Laboratoire d’Astrophysique de Marseille

Page 2: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 2

PLAN

• Quick introduction of cluster strong lensing

• How to find multiple images ?• How do we constrain cosmology ?• Future prospects

Page 3: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 3

Historical Perspective

• 1986/1987: discovery of the giant luminous Arcs in Cl2244 and Abell 370

1987: CFHT1987: CFHT 1996: WFPC21996: WFPC2

Page 4: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 4

Lensing Theory

The Context:

Page 5: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 5

Cluster Cluster LensesLenses

Most massive clusters Einstein radius: 10-45”

Strong Lensing in the core,Weak lensing on large scale

Ned Wrigth, UCLA

Possible uses: Measure total mass distribution of cluster Study magnified distant sources Constrain Cosmography

Page 6: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 6

Lensing Equations

Notations:

cosmology

Page 7: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 7

Cluster Lens equations

Assumptions:

• Cosmological principle (homogeneous and isotropic)metric of the Universe (cosmography)

• Thin lens approximation

• Potential of the lens is slowly varying

• Small deflection:

Page 8: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 8

Lensing Equations

Lens Mapping:

: lensing potential

Link with catastrophe theory Purely geometrical: Achromatic effect

Lens Efficiency

Page 9: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 9

Redshift and Cosmology

Lens Efficiency:

For a fixed lens redshift, the lens efficiency increase with source redshift

Weak cosmology dependence

Page 10: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 10

Lensing Equations

Lens Mapping distortion (first order):

In polar coordinates:

Page 11: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 11

Lensing EquationsAmplification Matrix:

: convergence

: shear vector

Reduced shear:

Page 12: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 12

Lensing Equations

Definition: Critical linesLocus of the image plane where the determinant of the

(inverse) magnification matrix is zero:

Critical lines are closed curves and non over-lapping.

In general: 2 types of critical lines:- tangential (external)- radial (internal)

Page 13: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 13

Lensing Theory

Multiple image configurations for a non-singular elliptical mass distribution

Cusp arc

Fold arcEinstein cross

Radial arc

Single imageSource

Page 14: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 14

Strong LensingLensing equation can have multiple solution:

Finding source is easy!

Finding the images need solving a 2D equation (ray tracing)

Page 15: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 15

Lens Modeling with Multiple ImagesLens Modeling with Multiple Images• One system with N images:- # of constraints: 2N, 3N (image position+flux)

- # of unknown: 2, 3 (source position+flux)

- # of free parameter: 2(N-1), 3(N-1)

Double: 2, 3 Triple: 4, 6 Quad: 6, 9

systems of N images:- # of free parameters: 2(N-1), 3(N-1)- need to substract number of unknown redshift !!

30 triples: <120, <180 [A1689 with ACS => deep JWST observations] [A1689 with ACS => deep JWST observations]

parametric models favored Introduce other constraints:

critical line location and/or external constraints from

X-ray observations or velocities (of stars in central galaxy)

Page 16: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 16

How to identify multiple images ?How to identify multiple images ?

Extreme distortion: Giant arcs are the merging of 2 or 3 (or possibly more) multiple images

Giant arc in Cl2244-04, z=2.24,Septuple image

Page 17: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 17

How to identify multiple images ?How to identify multiple images ?

Morphology: Change of parity across a critical line.

Note: The lensing amplification is a gain in the angular size of the sources. Allow to resolve distant sources and study their size and morphologies.

Lensed pair in AC114, z=1.86

Critical Line

Page 18: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 18

How to identify multiple images ?How to identify multiple images ?

Example of a triple ERO system at z~1.6 (Smith et al 2002) lensed by Abell 68

Interest of magnification is to allow to resolved the morphology of these systems: showing the presence of disks in particular, thus understanding the Nature of ERO.

Extreme similar colors:

Abell 68: ERO triple image at z~1.6

R+K Color image

Page 19: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 19

How to identify multiple images ?How to identify multiple images ?

Color and Morphology:

Lens model can help for the identification when different solution are possible

Quintuple arc (z=1.67)inCl0024+1654 (z=0.39)

Page 20: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 20

Strong Galaxy-Strong Galaxy-Galaxy Lensing in Galaxy Lensing in

ClusterCluster

Cluster Galaxies are breaking arcs into smaller ones, adding new images of the lensed galaxy.

Abell 2218, arc at z=0.702, with 8 imagesidentified (the arc is the merging of 2 images)

Page 21: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 21

Strong Lensing modeling strategyCluster are complex systems with (at least) 3

different mass components: galaxies (stars and their DM halo), X-ray gas and Dark Matter

Small number of lensing constraints, better suited for parametric approach: e.g. Kneib et al 1996 (A2218), see also Tyson et al 1998 (Cl0024)

Non-parametric methods require either:– Prior on the mass distribution from the light

(Abdelsalam et al 1998)– (Rare) systems with many multiple images (Diego

et al 2005)

Page 22: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 22

Parametric maximum Likelihood method

• large scale cluster component+galaxy halo components (stars+DM):

• need to scale the galaxy halo components; for example for a PIEMD mass distribution:

• Hence:ConstantM/L

FP scaling

Kneib et al 1996

Page 23: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 23

Maximum Likelihood expressionsLikelihood of the image positions can be computed:

- in the source plane [easier no inversion needed]

- or in the image plane [better, because real error estimate possible]

Source plane:

Image plane:

Possible guess for :

Page 24: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 24

Best strong lensing data:Best strong lensing data: HubbleHubble (color) images (color) images

Abell 2218 at z=0.175

Page 25: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 25

Cluster Lens: Mass Reconstruction•Parameterized mass distribution, involving various multiple image system•Need to include galaxy scale mass component using scaling relations

Kneib et al 1996, Golse et al 2002

Page 26: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 26

Multiple Images and Cosmology

• Lensing depends on cosmology via the angular diameter distance

• system with many multiple image systems at different redshift can constrain cosmology

Page 27: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 27

Cosmography with clusters lenses

Lensing efficiency:

Lens equation:

Page 28: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 28

Cosmography with clusters lensesSingle multiple image system: degeneracy between the mass and the lens efficiency E:

Page 29: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 29

Cosmography with clusters lensesTWO multiple image systems at different redshift: one get rid of the mass normalisation,

but likely degeneracy between the mass profile and the lens efficiency E:

Page 30: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 30

Cosmography with clusters lensesTHREE or more multiple image systems at different redshift: should get rid of the mass profile degeneracy with the lens efficiency E.Better constraints if the redshifts span the different possible value of the

lens efficiency

Page 31: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 31

Cosmography with clusters lenses

Simulation with THREE multiple image systems at different redshift

Shape of contours may tell us about the Goodness of fit (case of a missing clump)

Page 32: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 32

Results from A2218 Results from A2218 & Prospects& Prospects

• 4 multiple image systems at z=0.7, 1.03, 2.55, 5.56 in Abell 2218• more potential as ~5 other multiples with no redshift yet• add more external constraints like velocity dispersion of galaxies• prospects more clusters available observed with deep ACS data, need redshift determinations!

Soucail, Kneib, Golse, 2004

Page 33: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 33

Critical requirements for cosmography with Cluster Lenses

• Many multiple images with Spectroscopic redshift (=>interest of IFS)

• Images with different redshifts Examples: A2218 (z=0.18): ~10 systems,

5 with z, A1689 (z=0.18) ~30 systems, a few with z, A370 (z=0.37): ~5 systems, 2 with z

New: Cl0152-05 (z=0.83): 8 systems, 1 with z

Page 34: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 34

A potentially interesting new cluster

Cl0152-05(z=0.83)

8 multiple images identified

Only one with spectroscopicredshift

Page 35: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 35

Noise in Lensing Cosmography• Distribution of mass along the line of sight needs proper modeling of all lensing planes

( with complete redshift survey) Needs different line of sight • Limitation from the (parametric) mass

distribution models: Include weak shear constraints and external

constraints like dynamical estimate or X-ray need a robust approach to find the best

models (MCMC approach)

Page 36: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

19 Sept. 2005 JP KNEIB -- Dark Universe 36

Conclusion

A potential new method for cosmography Need further tests of its usefulness (realistic

simulations + real clusters) Study in every possible details, a number of

clusters to check consistency. SNAP/DUNE will allow discoveries of many

systems & JWST will study them in details (imaging and spectroscopy)

Page 37: Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille

END