continuous optimization techinique

Upload: muhammad-ali-khan-awan

Post on 07-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 continuous optimization techinique

    1/32

    EPE-821

    1

    Dr. Muhammad Naeem

    Dr. Ashfaq Ahmed

    Continuous Optimization Techniques

  • 8/18/2019 continuous optimization techinique

    2/32

    2

     Outline

    Review of Math

    Basics of Optimization

    Power systems basics

    Review of Matab

    !"ampes of Optimization in Power systems

    #raphica Optimization

    Optimization $ypes %onstraint and &nconstraint

    Optimization Probem $ypes 'inear Non'inear etc

    'inear Optimization and Power (ystems Appications

    Non 'inear Optimization and Power (ystems Appications

    )nte*er and Mi"ed inte*er pro*rammin* and Power (ystems Appications

    %ompe"ity Anaysis

    +uiz ne"t wee,

  • 8/18/2019 continuous optimization techinique

    3/32

     Text%acuus and Anaytic #eometry By $homas and -inney th !dition

    )ntroduction of Optimum Desi*n By /asbir (. Arora

    (ome fi*ure from 0eb

    Applied Numerical Methods ith MAT!A"# $or En%ineers and

    &cientists 'rd Edition( &te)en C* Chapra

    http122www.ece.mcmaster.ca23"wu2part4.pdf 

    Noninear Optimization with -inancia Appications by Michae Barthoomew5

    Bi**s

    '

  • 8/18/2019 continuous optimization techinique

    4/32

    +

    Optimialit, Condition(uppose that - 6"7 is a continuousy differentiabe function of the scaar

    variabe "8 and that8 when " 9 ":8

    2

    20 0 (1)

    dF d F  and 

    dx dx= ≥

     Above two conditions are ,nown as optimaity conditions

    %onditions 6;7 impy that -6":7 is the smaest vaue of - in some re*ion

    near ": . )t may aso be true that - 6": 7 < - 6"7 for a " but condition 6;7

    does not *uarantee this.

    Definition )f conditions 6;7 hod at " 9 ": and if -6":7 = -6"7 for a "

    then ": is said to be the *oba minimum.

  • 8/18/2019 continuous optimization techinique

    5/32

    Necessar, and &ucient Conditions

    .

    Example1 )f a number is divisibe by 46ca this >78 then it is divisibe by ?

    6ca this %7. > impies % but % is not stron* enou*h to impy > for e"ampe

    @ is divisibe by ? but not by 4. $herefore % is necessary for > but notsufficient for >.

    Example: )n !ucidean *eometry8 a trian*e has equa sides 6ca this >7 if

    and ony if the trian*e has equa an*es 6ca this %7. $his means

    > if %1 > is necessary for % since % impies >

    > ony if %1 % is necessary for > since > impies %

    > if and ony if %1 > and % impy each other and are both necessary and

    sufficient conditions for each other.

  • 8/18/2019 continuous optimization techinique

    6/32

    Necessar, and &ucient Conditions

    /

    Example1 )f a number is divisibe by 46ca this >78 then it is divisibe by ?

    6ca this %7. > impies % but % is not stron* enou*h to impy > for e"ampe

    @ is divisibe by ? but not by 4. $herefore % is necessary for > but notsufficient for >.

    Example: )n !ucidean *eometry8 a trian*e has equa sides 6ca this >7 if

    and ony if the trian*e has equa an*es 6ca this %7. $his means

    > if %1 > is necessary for % since % impies >

    > ony if %1 % is necessary for > since > impies %

    > if and ony if %1 > and % impy each other and are both necessary and

    sufficient conditions for each other.

    )n the conte"t of smooth functions 6Differentiabe functions7 the condition f 6"7 is a necessary condition for a reative ma"imum or minimum. 6$his is

    not sufficient because zero sope may aso at infection point.

    )n the conte"t of smooth functions 6Differentiabe functions7 the condition

    f6"7 is a sufficient condition if f6"7 9 C.

  • 8/18/2019 continuous optimization techinique

    7/320

    irect search and %radient methods

    Both are iterative methods

    direct search techniques are based on simpe comparison of function

    vaues at tria points.

    *radient methods. $hese use derivatives of the obective function and can

    be viewed as iterative a*orithms for sovin* the noninear equation

    #radient methods tend to conver*e faster than direct search methods.

    $hey aso have the advanta*e that they permit an obvious conver*ence

    test 5 namey stoppin* the iterations when the *radient is near zero.

    0

    dF 

    dx =

  • 8/18/2019 continuous optimization techinique

    8/328

    Example

    (oution1

    -ind the minimum and ma"imum of for3 23 x x−   [ ]1, 4 x ∈ −

  • 8/18/2019 continuous optimization techinique

    9/32

    Example-ind the minimum and ma"imum of for

    3 23 x x−

    (oution1

    3 2

    2

    3

    3 6 0 0 2

    6 6

    (0) 0

    (2) 0

     F x x

     F x x at x and x

     F x

     F Local Maximum

     F Local Minimum

    = −

    ′ = − = ⇒ = =

    ′′ = −

    ′′   ≤

    ′′   ≥

    -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-15

    -10

    -5

    0

    5

    10

    15

    20

    25x3-3*x

    2

     

    Orig

    1st Derv.

    2nd Derv.

    [ ]1, 4 x ∈ −

  • 8/18/2019 continuous optimization techinique

    10/3213

    "isection Method to 4ind the 5oot

    Ony suitabe for functions that has ony one minimum2ma"imum in the ran*e Ea8 bF

    #iven a brac,eted root8 the method repeatedy haves the interva whie

    continuin* to brac,et the root and it wi conver*e on the soution.

  • 8/18/2019 continuous optimization techinique

    11/3211

    "isection Method to 4ind the 5oot1.Choose x

    l  and x

    u as two guesses for the root such

    that f ( xl ) f( x

    u) < 0, or in other words, f(x) changes

    sign between xl  and xu.2.Estimate the root , x

    m of the equation f (x)  0 as the

    mid!"oint between xl  and x

    u as

    3. #f  f ( xl ) f ( x

    m ) $ 0, then the root %ies between x

    l  and

     xm& then x

    l  = x

    l  ; x

    u = x

    m.

    E%se #f f( xl  ) f( x

    m) ' 0, then the root %ies between x

    and u& then x

    l  = x

    m; x

    u = x

    u.

    E%se #f  f (%) f(

    m) 0& then the root is x

    m.to" the

    a%gorithm if this is true.

    4. *et new estimate

    +. bso%ute -e%atie ""roimate Error 

    6. Chec/ if error is %ess than "re!s"ecified to%eranceor if maimum number of iterations is reached

    2

    l um

     x x x

      +=

     

     

    f()

    2l u

    m  x x x   +=100×

    −=∈

    new

    m

    old 

    m

    new

    a x

     x xm

    rootof estimatecurrent=new

    m x

    rootof estimate "reious=old m x

  • 8/18/2019 continuous optimization techinique

    12/3212

    "isection Method to 4ind the 5oot

  • 8/18/2019 continuous optimization techinique

    13/32

    1'

    "isection Method( )   423 10(3316+0   -.+ x.- x x  f     =

    Choose the 6rac7et

    ( )

    ( ) 4

    4

    10662.211.0

    103.30.011.0

    00.0

    −=

    ==

    =

     f 

     f  x

     x

    u

  • 8/18/2019 continuous optimization techinique

    14/32

    1+

    "isection Method

    0++.02

    11.00

    11.0,0

    =+

    =

    ==

    m

    u

     x

     x x

    ( )( )

    ( )   +

    4

    4

    106++.60++.0

    10662.211.0

    103.30

    =

    −==

     f 

     f 

     f 

    11.0

    0++.0

    =

    =

    u x

     x

    teration 91

  • 8/18/2019 continuous optimization techinique

    15/32

    1.

    "isection Methodteration 92

    33.33

    02+.02

    11.00++.0

    11.0,0++.0

    =∈

    =+

    =

    ==

    a

    m

    u

     x

     x x

    ( )

    ( )

    ( )02+.0,0++.0

    10(62216.102+.0

    10(662.211.0

    10(6++.60++.0

    4

    4

    +

    ==−=

    −=

    =

    u x x

     f 

     f 

     f 

  • 8/18/2019 continuous optimization techinique

    16/32

    1/

    "isection Methodteration 9'

    06+.02

    02+.00++.0

    02+.0,0++.0

    =+

    =

    ==

    m

    u

     x

     x x

    ( )

    ( )

    ( ) +

    4

    +

    10+632.+06+.0

    1062216.102+.0

    106++.60++.0

    20

    −=

    −=

    =

    =∈

     f 

     f 

     f 

    a

  • 8/18/2019 continuous optimization techinique

    17/32

    10

    "isection MethodCon)er%ence

    $abe ;1 Root of f6"79C as function of number of iterations for bisection method.

  • 8/18/2019 continuous optimization techinique

    18/32

    18

    "isection Method Advantages:

     Aways conver*ent

    $he root brac,et *ets haved with each iteration 5 *uaranteed. Disadvantages:

    (ow conver*ence

    )f one of the initia *uesses is cose to the root8 the conver*ence is sower

    )f a function f6"7 is such that it ust touches the "5a"is it wi beunabe to find the ower and upper *uesses.

    ( )   2 x x  f     =

    5;C 5G C G ;C

    C

    ?C

    4C

    @C

    HC

    ;CC

     

         y        (     x        )

     x

      y = x?

  • 8/18/2019 continuous optimization techinique

    19/32

    1

    "isection Method

    4unction chan%es si%n 6ut root does not exist

    ( ) x

     x  f    1=

    5C. 5C.@ 5C.I C.C C.I C.@ C.

    5;CC

    5HC

    5@C

    54C

    5?C

    C

    ?C

    4C

    @C

    HC

    ;CC

     

         y        (     x        )

     x

      y = 1/x 

  • 8/18/2019 continuous optimization techinique

    20/32

    23

    "isection method $or optimization-ind the minimum of for . Aso write matab code for

    verification.

    3 23 x x−   [ ]0,3 x ∈

    %an we appy the bisection method to

    find the minimum to this probemJ

  • 8/18/2019 continuous optimization techinique

    21/32

    21

    "isection method $or optimization-ind the minimum of for . . Aso write matab code for

    verification.

    3 23 x x−   [ ]1.+,3 x ∈

    %an we appy the bisection method tofind the root to this probemJ

    No. 0hyJ. >ow to use root findin* a*orithms for optimization

    -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-15

    -10

    -5

    0

    5

    10

    15

    20

    25x3-3*x

    2

     

    Orig

    1st Derv.

    2nd Derv.

  • 8/18/2019 continuous optimization techinique

    22/32

    i:erence 6eteen roots and optima

  • 8/18/2019 continuous optimization techinique

    23/32

    2'

    "isection method $or optimization-ind the minimum of for . Aso write matab code for

    verification.

    3 23 x x−   [ ]1.+,3 x ∈

    %an we appy the bisection method tofind the root to this probemJ

    No. 0hyJ. >ow to use root findin* a*orithms for optimization

    -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-15

    -10

    -5

    0

    5

    10

    15

    20

    25x3-3*x2

     

    Orig

    1st Derv.

    2nd Derv.

    $o *et the minimum we need to

    appy bisection method on the

    derivative of  x

    -x!

     otherwisewe wi *et the wron* answer.

    Root findin* a*orithms find the

    point where the function is zero.

    0e want to see where

    derivative is zero. 

  • 8/18/2019 continuous optimization techinique

    24/32

    2+

    &ecant method to ;nd rootEquation o$ a !ine $rom 2 Points

      ,

    2 1 

    2 1

      5 ,

    1 2 1 1 2 1

    2 11 1

    2 1

     

     F"om t#e definition of $lo%ewe can dete"mine t#e $lo%e in t#i$ ca$e a$

     y ym

     x x

     &lu''in' in t#i$ fo" m in $lo%e %oint fo"mula

     y y y y x x x x

     y y y y x x

     x x

    #i$ i$ called a$

    −=

    −−

    − −=− −

    −  ⇒ − = − ÷−    .two %oint fo"mula−

  • 8/18/2019 continuous optimization techinique

    25/32

    2.

    &ecant method to ;nd rooteri)ation o$ the method

    e then use this new a%ue of  x as  x!  and re"eat the "rocess

    using  x1  and  x!  instead of  x0  and  x1 . e continue this

     "rocess, so%ing for  x  ,  x  , etc., unti% we reach a

    sufficient%7 high %ee% of "recision (a sufficient%7 sma%%

    difference between  xn  and  xn-1  ).

  • 8/18/2019 continuous optimization techinique

    26/32

    2/

    &ecant method to ;nd root

    $he first two iterations of the secant method. $he red curve

    shows the function f and the bue ines are the secants. -or this

    particuar case8 the secant method wi not conver*e.

  • 8/18/2019 continuous optimization techinique

    27/32

    20

    &ecant method to ;nd root

    nitialize x1(

    x2( ε

  • 8/18/2019 continuous optimization techinique

    28/32

    28

    &ecant method $or Optimization

    nitialize x1(

    x2( ε

  • 8/18/2019 continuous optimization techinique

    29/32

    2

    &ecant method $or Optimization-ind the minimum of for . Aso write matab code for

    verification.

    3 23 x x−   [ ]1.+,3 x ∈

    -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-15

    -10

    -5

    0

    5

    10

    15

    20

    25x3-3*x

    2

     

    Orig1st Derv.

    2nd Derv.4 < x' - 'Dx2 F $unctiond4 < 'Dx2 - /Dx F eri)ati)e

    2 is 1.00000 and d8 is !1.00000

    2 is 1.2+1 and d8 is !0.41326+

    2 is 2.00264 and d8 is 0.042

    2 is 1.6+ and d8 is !0.00122 is 1. and d8 is !0.00000

    2 is 2.000000 and d8 is 0.000000

  • 8/18/2019 continuous optimization techinique

    30/32

    '3

    &ecant method $or Optimization-ind the minimum of for . Aso write matab code for

    verification.

    3 23 x x−   [ ]1.+,3 x ∈

    4 < x' - 'Dx2 F $unctiond4 < 'Dx2 - /Dx F eri)ati)e

    2 is 1.00000 and d8 is !1.00000

    2 is 1.2+1 and d8 is !0.41326+

    2 is 2.00264 and d8 is 0.042

    2 is 1.6+ and d8 is !0.00122 is 1. and d8 is !0.00000

    2 is 2.000000 and d8 is 0.000000

    0 0.5 1 1.5 2 2.5 3-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

     

    Orig

    1st Derv.

    Iter = 1

    Iter = 2

    Iter = 3

    Iter = 4

    Iter = 5

  • 8/18/2019 continuous optimization techinique

    31/32

    '1

    Neton-5aphson or Neton method

    -e"eat the "rocess unti% 9 f ( xi) 9 is

    sufficient%7 sma%%

    ( )  ( )

    1

    0ii

    i i

     f x f x  x x +

    −′   = −

    0hich can be rearran*e as

    ( )

    ( )1i

    i ii

     f x

     x x  f x+  = −

    Root

  • 8/18/2019 continuous optimization techinique

    32/32

    '2

    Neton-5aphson or Neton method

    -e"eat the "rocess unti% 9 f ( xi) 9 is

    sufficient%7 sma%%

    ( )  ( )

    1

    0ii

    i i

     f x f x  x x +

    −′   = −

    0hich can be rearran*e as

    ( )

    ( )1i

    i ii

     f x

     x x  f x+  = −

    Root

    Optimization( )

    ( )1

    i

    i i

    i

     f x x x

     f x+

    ′= −

    ′′