control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/fe/fe_pdf_with_bookmark/fe11... · control by l....

12
Funkcialaj Ekvacioj, 11 (1968), 39-50 Stabilizability and Optimal Control By Dahlard L. LUKES* (University of wisconsin) Abstract A stability-theoretic proof of the stabilizability of a completely controllable process is given. The stabilizability hypothesis is used to develop the optimal regulator theory of linear systems and is shown to be equivalent to the solvability of Kalman’s quad- ratic generalization of Lyapunov’s linear equation. This paper carefully redevelops the optimal regulator theory of linear syste- ms as a background for extending the theory to nonlinear systems. Paralleling the procedure used by Kalman [1] the existence, uniqueness and synthesis of the optimal regulator is analyzed as the limiting case of the problem on a finite time interval. Utilizing the maximum principle, the technique adopted reduces the problem to an analysis of the Riccati matrix differential equation which arises upon separation of variables in the Hamilton-Jacobi partial differential equation. Kalman’ assumption of the complete controllability of the process is relaxed to its stabilizability which is the essential hypothesis needed for exten- ding the theory to an infinite time interval for both linear and nonlinear sys- tems. We give a stability-theoretic proof, using LaSalle’s theorem, that every completely controllable process is stabilizable (but of course not conversely). We also prove that the stabilizability of the process is equivalent to the solva- bility of the quadratic Kalman matrix equation whose solution provides the op- timal closed-loop synthesis. Kalman’s quadratic equation is an extension of Lyapunov’s linear equation whose solvability provides a criterion for only the stability of the uncontrolled process. Notations: We study ordinary differential equations in finite -dimensional real number spaces , using the inner product and norm notations $ alpha cdot y=x_{1}y_{1}+x_{2}y_{2}+ cdots+x_{k}y_{k}$ and $|x|= sqrt{x cdot x}$ for $x=(X_{1}, X_{2}^{ }, cdots, X_{k})$ and $y=(y_{1},$ $y_{2}$ , $ cdots$ , $y_{k})$ in $R^{k}$ . The ordinary transpose of a real matrix $M$ is denoted by $M^{*}$ and * This work is the introductory part of the author’ Ph. D. thesis written under Law- rence Markus at the University of Minnesota. Formerly with Honeywell Inc., the au- thor is presently a visiting associate professor at the Mathematics Research Center, U. S. Army, University of Wisconsin. Sponsored by the Mathematics Research Center, United States Army, Madison, Wis- consin, under Contract No. : $ mathrm{D} mathrm{A}_{-}31-124- mathrm{A} mathrm{R} mathrm{O}- mathrm{D}-462$ .

Upload: others

Post on 01-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Funkcialaj Ekvacioj, 11 (1968), 39-50

Stabilizability and Optimal Control

By Dahlard L. LUKES*

(University of wisconsin)

Abstract A stability-theoretic proof of the stabilizability of a completely controllableprocess is given. The stabilizability hypothesis is used to develop the optimal regulator

theory of linear systems and is shown to be equivalent to the solvability of Kalman’s quad-

ratic generalization of Lyapunov’s linear equation.

This paper carefully redevelops the optimal regulator theory of linear syste-

ms as a background for extending the theory to nonlinear systems. Parallelingthe procedure used by Kalman [1] the existence, uniqueness and synthesis ofthe optimal regulator is analyzed as the limiting case of the problem on a finitetime interval. Utilizing the maximum principle, the technique adopted reducesthe problem to an analysis of the Riccati matrix differential equation whicharises upon separation of variables in the Hamilton-Jacobi partial differentialequation. Kalman’ $¥mathrm{s}$ assumption of the complete controllability of the processis relaxed to its stabilizability which is the essential hypothesis needed for exten-

ding the theory to an infinite time interval for both linear and nonlinear sys-

tems. We give a stability-theoretic proof, using LaSalle’s theorem, that everycompletely controllable process is stabilizable (but of course not conversely).

We also prove that the stabilizability of the process is equivalent to the solva-bility of the quadratic Kalman matrix equation whose solution provides the op-

timal closed-loop synthesis. Kalman’s quadratic equation is an extension ofLyapunov’s linear equation whose solvability provides a criterion for only thestability of the uncontrolled process.Notations: We study ordinary differential equations in finite $¥mathrm{k}$-dimensional realnumber spaces $¥mathrm{R}^{¥mathrm{k}}$ , using the inner product and norm notations$¥alpha¥cdot y=x_{1}y_{1}+x_{2}y_{2}+¥cdots+x_{k}y_{k}$ and $|x|=¥sqrt{x¥cdot x}$ for $x=(X_{1}, X_{2}^{ },¥cdots, X_{k})$ and $y=(y_{1},$ $y_{2}$ , $¥cdots$ ,$y_{k})$ in $R^{k}$ . The ordinary transpose of a real matrix $M$ is denoted by $M^{*}$ and

* This work is the introductory part of the author’ $¥mathrm{s}$ Ph. D. thesis written under Law-rence Markus at the University of Minnesota. Formerly with Honeywell Inc., the au-thor is presently a visiting associate professor at the Mathematics Research Center,U. S. Army, University of Wisconsin.

Sponsored by the Mathematics Research Center, United States Army, Madison, Wis-consin, under Contract No. : $¥mathrm{D}¥mathrm{A}_{-}31-124-¥mathrm{A}¥mathrm{R}¥mathrm{O}-¥mathrm{D}-462$ .

Page 2: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

40 D. L. LUKES

we use the matrix norm $||M||=¥sup_{|x|=1}|Mx|$ . The notation $M$ $>0$ $(M ¥geqq 0)$ denotes

that $M$ is a symmetric positive definite (semi-definite) real matrix. If $P(t)$ is amatrix valued function on a subinterval of $R^{1}$ we write $P(t)¥uparrow P_{0}$ as $t¥downarrow t_{0}$ to des-cribe the situation in which $||P(t)-P_{0}||$ converges to zero as $t$ monotonically

decreases to $t_{0}$ and $t_{1}¥leqq t_{2}$ implies $P(t_{1})-P(t_{2})¥geqq 0$ .

1. Optimal open-loop control on a finite time interval.Consider a control process in $R^{n}$

(1. 1) $i=A(t)x+B(t)u$

on the finite interval $t_{0}¥leqq t¥leqq t_{1}$ with $x(t_{0})=x_{0}$ where $A(t)$ and $B(t)$ are contin-uous real matrix valued functions of size $n¥times n$ and $n¥times r$ respectively. The spaceof open-loop controls $L_{2}(t_{0}, t_{1})$ denotes the familiar space of equivalence classesof Borel measurable functions on $[t_{0}, t_{1}]$ into $R^{r}$ satisfying

$¥int_{t_{0}}^{t_{1}}|u(t)|^{2}dt<¥infty$.

A cost functional is prescribed on $L_{2}(t_{0}, t_{1})$ by the formula

$C(u)=¥int_{t_{¥alpha}}^{t_{1}}G(t,x, u)dt+x(t_{1})¥cdot ¥mathfrak{G}x(t_{1})$

where the integration is along the trajectory of (1. 1) with $u=u(t)$ in $L_{2}(t_{0}, t_{1})_{¥sim}$

The integrand is a quadratic form$G(t, x, u)=x¥cdot ¥mathfrak{U}(t)x+2x¥cdot ¥mathfrak{C}(t)u+u¥cdot ¥mathfrak{B}(t)u$

defined on [$t_{0}$ , $t_{1}1¥times R^{n}¥times R^{r^{¥prime}}$ with the assumptions on the matrices $¥mathfrak{U}(t)$ , $¥mathfrak{B}(t)$ ,

$¥mathfrak{C}(t)$ , $¥mathfrak{G}$ :

$¥left(¥begin{array}{ll}¥mathfrak{A}(t) & ¥mathfrak{C}(t)¥¥¥mathfrak{C}^{*}(t) & ¥mathfrak{B}(t)¥end{array}¥right)¥geqq 0$, $¥mathfrak{B}(t)>0$

continuous and real on $[t_{0}, t_{1}]$ and $¥mathfrak{G}¥geqq 0$ . We remark that $C(u)$ is well-definedand real valued on $L_{2}(t_{0},t_{1})$ . An open-loop control element u* in $L_{2}(t_{0}, t_{1})$ iscalled optimal if it minimizes $C(u)$ .

We find it useful to study the symmetric nonlinear Kalman-Riccati differen-tial equation

(1. 2) $-¥dot{P}=$ $(¥mathfrak{U}-¥mathfrak{C}¥mathfrak{B}^{-1}¥mathfrak{C}^{*}(+P(A-B¥mathfrak{B}^{-1}¥mathfrak{C}^{*})+(A-B¥mathfrak{B}^{-1}¥mathfrak{C}^{*})^{*}P-P(B¥mathfrak{B}^{-1}B^{*})P$.

in the linear manifold of symmetric $n¥times n$ real matrices, $S_{n}$ .

Lemma 1. 1 Let $P(t)$ be a symmetric solution to (1. 2) on $[a, b]¥subseteq[t_{0}, t_{1}]$

and dPfine $c(t, x)=x¥cdot P(t)x$ . Then the inequality

(1. 3) $c_{t}(t, x)+[A(t)x+B(t)u]¥cdot c_{x}(t, x)+G(t, x, u)¥geqq 0$

holds for $alf(t, x, ¥mathrm{u})$ in $[a, b]¥times R^{n}¥times R^{r}$ and equality holds when and only $u¥prime hen$

$u=-¥mathfrak{B}^{-1}(t)[¥mathfrak{C}^{*}(t)+B^{*}(t)P(t)]x$. Elementary but long calculations show thatfor each fixed $(t, x)$ in $[a, b]¥times R^{n}$ the left-hand side of (1. 3) as a function of$u$ on $R^{r}$ and its gradient are zero when $u=-¥mathfrak{B}^{-1}(t)$ $[¥mathfrak{C}^{*}(t)+¥mathfrak{B}^{*} (t)P(t)]x$ and

Page 3: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Stabilizability and Optimal Control 41

the Hessian is 2 $¥mathfrak{B}>0$ . This proves the lemma.Lemma 1. 2 For every $¥mathfrak{G}¥geqq 0$ there exists a solution $P(t)¥geqq 0$ to the Kalman-

Riccati equation (1. 2) on $[t_{0}, t_{1}]$ satisfying the final condition $P(t_{1})=¥mathfrak{G}$.By the well-known existence theory of differential equations [2] there ex-

ists a solution $P(t)$ of (1. 2) satisfying the boundary condition $P(t_{1})=¥mathfrak{G}$ whichis either defined on $[t_{0}, t_{1}]$ or else on some maximal subinterval $I=$ $(¥delta,$ $t_{1}]$ , $ t_{0}¥leqq$

$¥delta<t_{1}$ . We now assume the latter case and show it leads to a contradiction.

Let $¥hat{t}_{0}$ be arbitrary in I and $u(t)$ be arbitrary in $L_{2}(t_{0}, t_{1})$ . There exists a

corresponding unique absolutely continuous solution to (1. 1) on $[¥hat{t}_{0}, t_{1}]$ with $x(¥hat{t}_{0})$

$=x_{0}$ which according to Lemma 1. 1 satisfies

$¥frac{d}{dt}[x(t)¥cdot P(t)x(t)-]+G(t, x(t), u(t))¥geqq 0$

for $¥mathrm{a}.¥mathrm{e}$ . $t¥in[¥hat{t}_{0}, t_{1}]$ and all $x_{0}¥in R^{n}$ . By integration,

(1. 4) $x_{0}¥cdot P(¥hat{t}_{0})x_{0}¥leqq¥int_{¥hat{t}_{0}}^{t_{1}}G(t, x(t), u(t))dt+x(t_{1})¥cdot ¥mathfrak{G}x(t_{1})$

By the continuity of $P(t)$ there is also a unique absolutely continuous solution$¥hat{x}(t)$ to the system in $R^{n}$

(1. 5) $¥hat{x}.=¥hat{A}(t)¥hat{x}$

on $[¥hat{t}_{0}, t_{1}]$ with $¥hat{x}(¥hat{t}_{0})=x_{0}$ where we define A $(t)=A(t)-B(t)¥mathfrak{B}^{-1}(t)$ $[¥mathfrak{C}^{*}(t)+B^{*}(t)$

$P(t)]$ . From Lemma 1. 1 we see

$¥frac{d}{dt}[¥hat{x}(t)¥cdot P(t)¥hat{x}(t)]+G$ ($t,¥hat{x}(t)$ , u(t))=0

for all $t¥in[¥hat{t}_{0}, t_{1}]$ and all $x_{0}¥subset-R^{n}$ where we define $¥hat{u}(t)¥cdot=-¥mathfrak{B}^{-1}(t)[¥mathfrak{C}^{*}(t)+¥mathrm{B}^{*}(t)P$

$(t)]¥hat{x}(t)$ and by integration have

(1. 6) $x_{0}¥cdot P(¥hat{t}_{0})x_{0}=¥int_{t_{0}}^{t_{1}}¥mathrm{A}G$ ($t,¥hat{x}(t),$ u(t)) $dt+¥hat{x}(t_{1})¥cdot ¥mathfrak{G}¥hat{x}(t_{1})$ .

Since $G¥geqq 0$ and $¥mathfrak{G}¥geqq 0$, (1. 6) implies$0¥leqq x_{0}¥cdot P(¥hat{t}_{0})x_{0}$ .

Write the solution of (1. 1) with $u(t)¥equiv 0$ in terms of the fundamental matrix$X(¥cdot, ¥cdot)$ for which $X(¥hat{t}_{0},¥hat{t}_{0})=I_{n}$ ,

(1. 7) $x=X(¥hat{t}_{0}, t)x_{0}$

and note the continuity of $X$ to be used below. Using this solution to set $u(t)$

$¥equiv 0$ in (1. 4) we obtain the inequality

(1. 8) $x_{0}¥cdot P(¥hat{t}_{0})x_{0}¥leqq x_{0}¥cdot¥hat{P}(¥hat{t}_{0})x_{0}$

where $¥hat{P}$ is symmetric and $||¥hat{P}(t)||$ is continuous and hence bounded on $[t_{0}, t_{1}]$ .

From (1. 7) and (1. 8) it follows that$||P(¥hat{t}_{0})||¥leqq||¥hat{P}(¥hat{t}_{0})||$ and since $¥hat{t}_{0}$ was arbitrary in I we conclude that $||P(t)||$ is boun-

Page 4: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

42 D. L. LUKES

$¥mathrm{d}¥mathrm{e}¥mathrm{d}$ on $I$. But this contradicts the known unbounded behavior of solutions onfinite maximal intervals [3].

Hence we have shown that the required solution $P(t)$ of (1. 2) exists on$[t_{0}, t_{1}]$ and we can replace $t_{0}¥mathrm{A}$ by $t_{0}$ in all the above calculations.

Theorem 1. 3 The control process in $R^{n}$

$¥mathfrak{L})$ $¥dot{x}=A(t)x+B(t)u$

operating on a finite interval $[t_{0}, t_{1}]$ with $x(t_{0})=x_{0}$ and cost functional$C(u)=¥int_{t_{0}}^{t_{1}}G(t, x, u)dt+x(t_{1})¥cdot ¥mathfrak{G}x(t_{1})$

has a unique optimal control $u_{*}¥in L_{2}(t_{0}, t_{1})$ of class $C^{0}$ . The optima cost is givenby $C(u_{*})=x_{0}¥cdot P(t_{0})x_{0}$ where $P(t)$ is the solution of (1. 2) for which $P(t_{1})=¥mathfrak{G}$ .Finally, $u_{*}$ can be synthesized by the closed-loop control $D_{*}(t)x$ where $D_{*}(t)=$

$-¥mathfrak{B}^{-1}(t)[¥mathfrak{C}^{*}(t)+B^{*}(t)P(t)]$. That is, $u_{*}(t)=D_{*}(t)x(t)$ where $x(t)$ solves $¥mathfrak{L}$ ) with$u=D_{*}(t)x$ .

The theorem, except for the uniqueness, is a direct consequence of Lemma1. 2 which permits us to replace $t¥wedge 0$ by $t_{0}$ in (1. 4) and (1. 6). To prove unique-ness suppose that for some initial condition $x_{0}¥in R^{n}$ there exists another optimalcontrol $u_{*}$ in $L_{2}(t_{0},t_{1})$ . Therefore the set $[t|u_{*}(t)¥neq¥tilde{u}_{*}(t)]$ has positive measure.Denote the trajectory of $¥mathfrak{L}$) corresponding to $¥tilde{u}_{*}$ by $¥tilde{x}_{*}(t)$ . By Lemma 1. 1,

$0¥leqq¥frac{d}{dt}[¥tilde{x}_{*}(t)¥cdot P(t)¥tilde{x}_{*}(t)]+G(t,¥tilde{x}_{*}(t),¥tilde{u}_{*}(t))$

where strict inequality holds on the set $[t|¥tilde{u}_{*}(t)¥neq D_{*}(¥tilde{t})x_{*}(t)]$. But suppose thisset had zero measure. This would imply $¥tilde{u}_{*}(t)=D_{*}(t)¥tilde{x}_{*}(t)¥mathrm{a}.¥mathrm{e}$ . so $¥overline{x}_{*}(t)$ wouldsatisfy

$¥overline{x}_{*}.=A(t)¥tilde{x}_{*}+B(t)¥tilde{u}_{*}(t)^{¥mathrm{a}.¥mathrm{e}}=$ .$[A(t)+B(t)D_{*}(t)]¥tilde{x}_{*}$

$x_{*}(t_{0})=x_{0}$

on $[t_{0}, t_{1}]$ . But by the uniqueness of the solution to this equation we conclude$¥tilde{x}_{*}(t)=x_{*}(t)$ on $[t_{0}, t_{1}]$ . Hence

$¥tilde{u}_{*}(t)=D_{*}(t)¥tilde{x}_{*}(t)=D_{*}(t)x_{*}(t)=u_{*}(t)$

$¥mathrm{a}.¥mathrm{e}$ . on $[t_{0}, t_{1}]$ which is a contradiction. Therefore$0¥leqq¥frac{d}{dt}[¥tilde{x}_{*}(t)¥cdot P(t)¥tilde{x}_{*}(t)]+G(t,¥tilde{x}_{*}(t),¥tilde{u}_{*}(t))$

on $[t_{0}, t_{1}]$ and strict inequality holds on a subset of positive measure. Integra-tion provides the inequality $0<C$ $(¥tilde{u}_{*})-C(u_{*})$ which contradicts the optimalityof $¥tilde{u}_{*}$ .

2. Stabilizability and solvability of the Kalman matrix equation.The classical stability theory of differential equations calls a real nXn mat-

Page 5: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Stabilizability and Optimal Control 43

$¥mathrm{r}¥mathrm{i}¥mathrm{x}$ a stability matrix if all its eigenvalues have negative real parts. The namecomes from the well-known theorem which states that the origin is an asypto-

tically stable solution to the linear differential equation in $R^{n}$

$¥dot{x}=Ax$

if and only if $A$ is a stability matrix. A theorem of the classical Lyapunov the-ory says $A$ is a stability matrix if and only if for $Q>0$ there is a correspond-ing $P>0$ which satisfies Lyapunov’s linear matrix equation

$Q+A^{*}P+PA=0$ .Control theory introduces a more general stability concept and covers the classi-cal theorem as a special case.

If for the control process(2. 1) $¥dot{x}=Ax+Bu$

in which $A$ and $B$ are constant matrices there exists a constant matrix $D$ forwhich $A+BD$ is a stability matrix, then the process is called stabilizable. $¥mathrm{I}¥mathrm{I}¥mathrm{L}$

other words the linear control function $u=Dx$ stabilizes (2. 1). We now showthis property is characterized by the Kalman matrix equation

(2. 2) $(¥mathfrak{U}-¥mathfrak{C}¥mathfrak{B}^{-1}¥mathfrak{C}^{*})+(A-B¥mathfrak{B}^{-1}¥mathfrak{C}^{*})^{*}P+P(A-B¥mathfrak{B}^{-1}¥mathfrak{C}^{*})-P(B¥mathfrak{B}^{-1}B^{*})P=0$

obtained by equating the right-hand side of the differential equation (1. 2) $¥mathrm{t}¥sigma$

zero. This is clearly a generalization of Lyapunov’s equation. We assume thatall the matrices which appear in the coefficients are constant and satisfy

$¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)¥geqq 0$ and $¥mathfrak{B}>0$ .

Theorem 2. 1 If the linear process in $R^{n}$

$¥mathfrak{L})$ $¥dot{x}=Ax+Bu$

is stabilizable then there exists a matrix solution $P_{¥infty}¥geqq 0$ to the Kafman matrixequation (2. 2). $P(t)¥uparrow P_{¥infty}$ as $ t¥downarrow-¥infty$ where $P(t)$ is the solution of the Kalman-

Riccati differential equation (1. 2) for which $P(0)=0$. If we assume $¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)>0$

then $P_{¥infty}>0$ and $P_{¥infty}$ is the unique positive definite solution. Conversely, if $¥int_{¥mathfrak{C}^{*}}^{¥mathrm{I}}{}^{¥mathrm{t}}¥mathfrak{B}¥mathfrak{C})$

$>0$ and (2. 2) has a solution $P_{¥infty}>0$ then system $¥mathfrak{L}$ ) is stabilizable.Assume $¥mathfrak{L}$ ) is stabilized by the matrix $D_{s}$ and consider the control $u_{s}(t)=$

$D_{s}x_{s}(t)$ where $x_{s}(t)$ is the solution in $R^{n}$ to the system$i_{s}=[A+BD_{s}]x_{s}$

on $(-¥infty, ¥infty)$ with $x_{s}(t_{0})=x_{0}$ . By Theorem 1. 3 in which we set $¥mathfrak{G}=0$ and $t_{1}=(¥}$

we have

$0¥leqq x_{0}¥cdot P(t_{0})x_{0}¥leqq¥int_{t_{0}}^{0}G(x_{s}, u_{s})dt$

$¥leqq¥int_{t_{0}}^{¥infty}G(x_{s}, u_{s})dt=x_{0}¥cdot P_{s}x_{0}$

Page 6: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

44 D. L. LUKES

where $P_{s}$ can be computed as the convergent integral

$P_{s}=¥int_{0}^{¥infty}e^{A_{¥epsilon}^{*}t}2¥mathrm{I}_{s}e^{A_{¥epsilon}t}dt$

where $A_{S}=A+BD_{s}$

$¥mathfrak{A}_{s}=¥mathfrak{U}+¥mathfrak{C}D_{s}+D_{s}^{*}¥mathfrak{C}^{*}+D_{s}^{*}¥mathfrak{B}D_{s}$

and we note $P_{s}$ is independent of $t_{0}$ . By the stationarity of $A$, $B$, $¥mathfrak{U}$, $¥mathfrak{B}$ and $¥mathfrak{C}$

we have for every $t_{0}¥leqq 0$ , $¥delta¥geqq 0$ and $x_{0}¥in R^{n}$

$0¥leqq x_{0}¥cdot P(t_{0})x_{0}=¥min_{L_{2}(t_{0}.0)}¥int_{t_{0}}^{0}Gdt$

$=¥min_{L_{2}(t_{0}.¥delta)}¥int_{t_{0}}^{0}Gdt¥leqq¥min_{L_{2}(t_{0},¥delta)}¥int_{t_{0}}^{¥delta}Gdt$

$=x_{0}¥cdot P(t_{0}-¥delta)x_{0}$.Hence we have shown that $0¥leqq P(t)¥leqq P_{s}$ on ( $-¥infty$ , 0] and that $P(t)$ is mono-tone increasing with decreasing $t$ . It follows that $P_{¥infty}=¥lim_{t¥rightarrow-¥infty}P(t)$ exists [33 and

$P_{¥infty}¥geqq 0$. If $¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)$ $>0$ the same argument shows $P_{¥infty}>0$ . Let $P(t, P_{0})$ be the

solution of (1. 2) for which $P(0, P_{0})=P_{0}$ defined in an open neighborhood of (0,$P_{¥infty})$ in $R^{1}¥times S_{n}$ taken small enough so that the solution is continuous there. Bythe continuity and the uniqueness of the solutions

$P(t, P_{¥infty})=¥lim_{¥tau¥rightarrow-¥infty}P(t, P(¥tau))$

$=¥tau¥rightarrow¥tilde{1}-¥infty 1¥mathrm{m}P(.t+¥tau)=P_{¥infty}$

for all $t$ in a neighborhood of zero. This implies that $P_{¥infty}$ solves (1. 2) and$¥backslash (2.2)$ .

Suppose (2. 2) has a solution $P_{¥infty}>0$ . Then (2. 2) may be rewritten as(2. 3) $A_{s}^{*}P_{¥infty}+P_{¥infty}A_{s}=-[(¥mathfrak{U}-¥mathfrak{C}¥mathfrak{B}^{-1}¥mathfrak{C}^{*})+P_{¥infty}(B¥mathfrak{B}^{-1}B^{*})P_{¥infty}]<0$

where $A_{s}=A+B$ $[-¥mathfrak{B}^{-1}(¥mathfrak{C}^{*}+B^{*}P_{¥infty})]$

and the inequality holds if we assum $¥mathrm{e}¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)>0$ . But (2. 3) is Lyapunov’s linear

stability equation which can be shown to have only stability matrix solutions.Hence the matrix $D=-¥mathfrak{B}^{-1}(¥mathfrak{C}^{*}+B^{*}P_{¥infty})$ stabilizes $¥mathfrak{L}$ ). The proof of the unique-ness is postponed to a remark following Theorem 4. 1.

3. Stabilizability and controllability.A linear control process in $R^{n}$ is called completely controllable on $[t_{0}, t_{1}]$ if

for each pair of points $x_{0}$ , $x_{1}$ in $R^{n}$ there exists a control element $u$ in $L_{2}(t_{0}, t_{1})$

steering $x(t_{0})=x_{0}$ to $x(t_{1})=x_{1}$ . Kalman [1] and others have investigated thisconcept which has drawn a considerable interest in the literature. It is wellknown that for a stationary process in $R^{n}$

Page 7: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Stabilizability and Optimal Control 45

$¥mathfrak{L})$ $¥dot{x}=Ax+Bu$

complete controllability on one interval implies complete controllability on every

finite interval and is equivalent to each of the conditions:(1) rank [$B$, AB, $A^{2}B$, $¥cdots$ , $A^{n-1}B$] $=n$

(2) $¥int_{0}^{¥epsilon}e^{-At}BB^{*}e^{-A^{*}t}dt>0$

for some $¥mathrm{e}>0$ .It is also well-known that complete controllability of $¥mathfrak{L}$) implies its stabilizabi-lity but not conversely (take $A=-I$ and $B=0$). We now give a stability-theoretic proof.

Theorem 3. 1 If the linear stationary process in $R^{n}$

$¥mathfrak{L})$ $¥dot{x}=Ax+Bu$

is completely controllable then it is stabilized by each of the following closedloop controls

$u_{e}(x)=-B^{*}(¥int_{0}^{¥mathrm{g}}e{}^{-At}BB^{*}e^{-A^{*}t}dt)^{-1}x$

for each $¥epsilon>0$ and each corresponding stabilized system has the Lyapunov

function$v_{¥epsilon}(x)=x$ . $(¥int_{0}^{¥epsilon}e^{-}{}^{At}BB^{*}e^{-A}{}^{*t}dt)^{-1}x$ .

We assume complete controllability and note that since

$¥int_{0}^{¥epsilon}e{}^{-At}BB^{*}e^{-A^{*}t}dt>0$

for some $¥epsilon>0$ in view of condition (2) the inequality holds for all $¥epsilon>0$. De-fine

$A_{¥mathrm{e}}=A-BB^{*}(¥int_{0}^{¥epsilon}e^{-At}BB^{*}e^{-A^{*}t}dt)^{-1}$

and use Lyapunov’s linear stability equation to note that verifying $v_{¥mathrm{g}}(x)$ is aLyapunov function for $¥mathfrak{L}$) is equivalent to verifying

$v_{¥epsilon}^{*}(x)=x$ . $(¥int_{0}^{¥epsilon}e^{-At}BB^{*}e^{-A^{*}t}dt)x$

is a Lyapunov function for the system

$¥mathfrak{L}^{*})$ $¥dot{x}=A_{¥epsilon}^{*}x$ .

Differentiating along the trajectories of $¥mathfrak{L}^{*}$ ) we can verify

$¥frac{dv_{8}^{*}(x)}{dt}=-[|B^{*}x|^{2}+|B^{*}¥mathrm{e}^{-¥epsilon A^{*}}x|^{2}]$.

Let $¥delta>0$ be fixed and consider the set in $R^{n}$

$E=[x:v_{¥epsilon}^{*}(x)¥leqq¥delta,$ $¥frac{dv_{¥mathrm{e}}^{*}(x)}{dt}=0]$ .

Page 8: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

46 D. L. LUKES

Note $E$ is a compact set containing the origin. Let $E_{0}$ denote the maximal posi-tive invariant set in $E$ . Note that $E_{0}$ contains the origin and let $x_{0}$ be in $E_{0}$ .

Thus$e^{tA_{¥epsilon}^{*}}x_{0}¥in^{-}E_{0}¥subseteq E$ for all $t¥geqq 0$ .

Therefore $B^{*}e^{tA_{¥epsilon}^{*}}x_{0}=0$ for $t¥geqq 0$ . Differentiating and setting $t=0$ we get $B^{*}x_{¥theta}$

$=0$ , $B^{*}A_{8}^{*}x_{0}=0$ , $¥cdots$ , $B^{*}A_{8}^{*n-1}x_{0}=0$. That is, $x_{0}$ is orthogonal to the columns

of $[B, A_{¥epsilon}B, ¥cdots, A_{¥epsilon}^{n-1}B]$ . Note that since $x_{0}$ is orthogonal to the columns of $B$ itis orthogonal to the columns of every matrix of the form $BM$ where $M$ is any

matrix. Expanding $A_{¥mathrm{e}}^{k}B$ we have $A_{g}=A-BM_{¥mathit{0}}$ , hence$A_{¥mathit{8}}B=AB-BM_{1}$

$A_{8}^{2}B=(A-BM_{0})(A_{¥mathrm{g}}B)=A^{2}B-(AB)M_{1}-BM_{2}$

$A_{¥mathrm{e}}^{3}B=(A-BM_{0})(A_{¥mathrm{e}}^{2}B)$

$=A^{3}B-(A^{2}B)M_{1}-(AB)M_{2}-BM_{3}$...$A_{¥mathrm{g}}^{n-1}=(A-BM_{0})(A_{¥epsilon}^{n-2}B)$

$=A^{n-1}B-(A^{n-2}B)M_{1}-¥cdots-(AB)M_{n2}¥_-BM_{n1}¥_$

where the form of the matrices $M_{0}$ , $M_{1}$ , $¥cdots,M_{n1}¥_$ is apparent.Since $x_{0}$ is orthogonal to the columns of $A_{¥mathrm{g}}B$ and $BM_{1}$ it is orthogonal to

the columns of AB. By induction we conclude $x_{0}$ is orthogonal to the columnsof [$B$, AB, $¥cdots$ , $A^{n-1}B$] and in view of our complete controllability assumptionand condition (1) we conclude $x_{0}=0$ . But $x_{0}$ was arbitrary in $E_{0}$ , hence $E_{0}=$

$¥{0¥}$ . By LaSalle’s theorem [4] all the trajectories in $E$ converge to $E_{0}$ as $ t¥rightarrow$

$¥infty$ which concludes the proof.

4. Optimal open-loop control on a semi-infinite interval.In order to state the analogue of Theorem 1. 3 on $[0, ¥infty]$ we make the follo-

wing simplifying assumptions and definitions. The control process in $R^{n}$

(4. 1) $¥dot{x}=Ax+Bu$

with $x(0)=x_{0}$ is assumed to be stationary and stabilizable. For the system ope-

rating on $[0, t_{1}]$ we consider the cost functional

$C^{t_{1}}(u)=¥int_{0}^{t_{1}}¥left(¥begin{array}{l}x¥¥u¥end{array}¥right)¥cdot¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)¥left(¥begin{array}{l}x¥¥u¥end{array}¥right)dt$

for $u¥subset-L_{2}(0, t_{1})$ where we allow $ t_{1}¥leqq¥infty$ but requir $¥mathrm{e}¥left(¥begin{array}{ll}¥mathfrak{U} & ¥mathfrak{C}¥¥¥mathfrak{C}^{*} & ¥mathfrak{B}¥end{array}¥right)>0$ and stationary.

For $ t_{1}<¥infty$ we let $u_{*}^{t_{1}}(t)$ and $x_{*}^{t_{1}}(t)$ denote the optimal control and corresponding

trajectory of (4. 1) described by Theorem 1. 3. In terms of the matrix $P_{¥infty}$ ofTheorem 1. 1 we define matrices $D_{*}^{¥infty}=-¥mathfrak{B}^{-1}[¥mathfrak{C}^{*}+B^{*}P_{¥infty}]$ and $A_{*}^{¥infty}=A+BD_{*}^{¥infty}$ .

Page 9: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Stabilizability and Optimal Control 47

Theorem4.1 For a stationary, stabilizable system in $R^{n}$

$¥mathfrak{L})$ $i=Ax+Bu$

on [0, $¥infty$) with $x(0)=x_{0}$ :

(1) There exists a unique optimal open-loop control $u_{*}^{¥infty}(t¥mathrm{j}$ in $L_{2}(0,¥infty)$ ofclass $C^{¥omega}$ given by the formula

$u_{*}^{¥infty}(t)=D_{*}^{¥infty}e^{tA_{*}^{¥infty}}x_{0}$,

(2) $u_{*}^{¥infty}(t)$ can be synthesized by the closed-loop control $D_{*}^{¥infty}x$ -that is, $u_{*}^{¥infty}(t)$

$=D_{*}^{¥infty}x_{*}^{¥infty}(t)$ where $x_{*}^{¥infty}(t)$ is the solution of $¥mathfrak{L}$) with $u=D_{*}^{¥infty}x$,

(3) $A_{*}^{¥infty}$ is a stability matrix and the optimal value of the cost functional is

given by the positive definite quadratic form $C^{¥infty}(u_{*}^{¥infty})=x_{0}¥cdot P_{¥infty}x_{0}$ which pro-vides a corresponding Lyapunov function, and

(4) on every finite intervd $[0, T]$ , $|u_{*}^{¥infty}(t)-¥mathrm{u}_{*}^{t_{1}}(t)|¥rightarrow 0$ and $|x_{*}^{¥infty}(t)-x_{*}^{t_{1}}(t)|¥rightarrow 0^{¥mathrm{J}}$

both uniformly as $ t_{1}¥rightarrow¥infty$ and $C^{t_{1}}(u_{*}^{t_{1}})¥uparrow C^{¥infty}(u_{*}^{¥infty})$ .

We pointed out in the proof of Theorem 2. 1 that $A_{*}^{¥infty}$ is a stability matrix. It

follows that the control function $u_{*}^{¥infty}(t)$ defined in (1) is in $L_{2}(0,¥infty)$ . To prove

$|x_{*}^{¥infty}(t)-x_{*}^{t_{1}}(t)|¥rightarrow 0$ uniformly on a finite interval $[0, T]$ as $ t_{1}¥rightarrow¥infty$ we recall the $¥cdot$

differential equations defining $x_{*}^{¥infty}(t)$ and $x_{*}^{t_{1}}(t)$ ,

$¥dot{x}_{*}^{¥infty}(t)=A_{*}^{¥infty}x_{*}^{¥infty}(t)$

$i_{*}^{t_{1}}(t)=A_{*}^{t_{1}}(t)x_{*}^{t_{1}}(t)$

where $A_{*}^{¥infty}=A-B¥mathfrak{B}^{-1}[¥mathfrak{C}^{*}+B^{*}P_{¥infty}]$

$A_{*}^{t_{1}}(t)=A-B¥mathfrak{B}^{-1}[¥mathfrak{C}^{*}+B^{*}P^{t_{1}}(t)]$

and $P^{t_{1}}(t)$ solves (1. 2) with $P^{t_{1}}(t_{1})=0$. Note that $||A_{*}^{¥infty}-A_{*}^{t_{1}}(t)||¥leqq||B¥mathfrak{B}^{-1}B^{*}||$

$||P_{¥infty}-P^{t_{1}}(t)||$ . From Theorem 2. 1, $P^{t_{1}}(t)¥uparrow P_{¥infty}$ as $ t¥downarrow-¥infty$ and by the autonom-

ous nature of (1. 2) it follows that $P^{t_{1}}(t)¥uparrow P_{¥infty}$ as $ t_{1}¥uparrow¥infty$ and hence $||P^{¥infty}-P^{t_{1}}(t)||$

$¥downarrow 0$ on $[0, T]$ as $ t_{1}¥uparrow¥infty$ . By Dini’s theorem [5] we conclude $||P_{¥infty}-P^{t_{1}}(t)||$ andhence $||A_{*}^{¥infty}-A_{*}^{t_{1}}(t)||$ converge to zero both uniformly on $[0, T]$ as $ t_{1}¥rightarrow¥infty$ . Using

the fundamental inequality [2] to estimate $|x_{*}^{¥infty}(t)-x_{*}^{t_{1}}(t)|$ we can verify that

$|x_{*}^{¥infty}(t)-x_{*}^{t_{1}}(t)|¥rightarrow 0$ uniformy on $[0, T]$ as $ t_{1}¥rightarrow¥infty$ . Then the easily attained es-

timate$|¥mathrm{u}_{*}^{¥infty}(t)-u_{*}^{t_{1}}(t)|¥leqq||D_{*}^{¥infty}|||x_{*}^{¥infty}(t)-x_{*}^{t_{1}}(t)|$

$+||¥mathfrak{B}^{-1}B^{*}||||P_{¥infty}-P^{t_{1}}(t)|||x^{t_{1}}(t)|$

Page 10: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

48 D. L. LUKES

shows that $|u_{*}^{¥infty}(t)-u_{*}^{t_{1}}(t)|¥rightarrow 0$ uniformly on $[0, T]$ as $ t_{1}¥rightarrow¥infty$ .

To prove that $C^{t_{1}}(u_{*}^{t_{1}})¥uparrow C^{¥infty}(u_{*}^{¥infty})$ as $ t_{1}¥uparrow¥infty$ and that $u_{*}^{¥infty}(t)$ is optimal, 1$u¥in L_{2}(0, ¥infty)$ be arbitrary except for the restriction that $ C^{¥infty}(u)<¥infty$ . Denote $¥mathrm{t}^{7}$

corresponding solution of $¥mathfrak{L}$) by $x(t)$ .

$¥int_{0}^{t_{1}}|u(¥tau)|^{2}d¥tau<¥infty$ for every $t_{1}>0$ and by Theorem 1. 3

$0¥leqq x_{0}¥cdot P^{t_{1}}(0)x_{0}=¥int_{0}^{t_{1}}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt¥leqq¥int_{0}^{t_{1}}G(x, u)dt$.

Since the limit of each term exists

$0¥leqq x_{0}¥cdot P_{¥infty}x_{0}=¥lim_{t_{1}¥rightarrow¥infty}¥int_{0}^{t_{1}}G(x_{*}^{t_{1}}, u_{*}^{i_{1}})dt$ $¥leqq¥int_{0}^{¥infty}G(x, u)$ $ dt=C^{¥infty}(u)<¥infty$ .

Thus to see $u_{*}^{¥infty}(t)$ is optimal and that $x_{0}¥cdot P_{¥infty}x_{0}=C^{¥infty}(u_{*}^{¥infty})=P_{1}¥varliminf_{¥infty}C^{t_{1}}(u_{*}^{t_{1}})$ all

need do is show that

$¥lim_{t_{1}¥rightarrow¥infty}¥int_{0}^{l_{1}}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt=¥int_{0}^{¥infty}G(x_{*}^{¥infty}, u_{*}^{¥infty})dt$.

By the optimality of $u_{*}^{t_{1}}(t)$ on $[0, t_{1}]$

$¥int_{0}^{t_{1}}G(x_{*}^{t_{1}},u_{*}^{t_{1}})dt¥leqq¥int_{0}^{t_{1}}G(x_{*}^{¥infty}u_{*}^{¥infty})dt$ .Hence

$¥lim_{t_{1}¥rightarrow¥infty}¥int_{0}^{t_{1}}G(x_{*}^{t_{1}},u_{*}^{t_{1}})dt¥leqq¥int_{0}^{¥infty}G(x_{*}^{¥infty}, u_{*}^{¥infty})dt$ .

Te verify the reverse inequality consider $0¥leqq T¥leqq t_{1}$ . Then

$¥int_{0}^{t_{1}}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt$ $¥geqq¥int_{0}^{T}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt$

and since $G(x_{*}^{t_{1}}, u_{*}^{t_{1}})$ is uniformly convergent on $[0, T]$

$¥int_{0}^{T}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt$ $¥rightarrow¥int_{0}^{T}G(x_{*}^{¥infty}u_{*}^{¥infty})dt$

$.¥mathrm{a}¥mathrm{s}t_{1}¥rightarrow¥infty$ with $T$ fixed. Next letting $ T¥rightarrow¥infty$ we have

$¥lim_{t_{1}¥rightarrow¥infty}¥int_{0}^{t_{1}}G(x_{*}^{t_{1}}, u_{*}^{t_{1}})dt$ $¥geqq¥int_{0}^{¥infty}G(x_{*}^{¥infty}, u_{*}^{¥infty})dt$ .

This completes the proof of the optimality of $u_{*}^{¥infty}$ and the equations

$x_{0}¥cdot P_{¥infty}x_{0}=C^{¥infty}(u_{*}^{¥infty})=¥lim_{t_{1}¥rightarrow¥infty}C^{t_{1}}(u_{*}^{t_{1}})$ .

The monotone convergence follows from the formula$C^{t_{1}}(u_{*}^{t_{1}})=x_{0}¥cdot P^{t_{1}}(0)x_{0}$

and the fact $P^{t_{1}}(¥mathrm{O})¥uparrow P_{¥infty}$ as $ t_{1}¥uparrow¥infty$ discussed above. The formula in (1) caneasily verified using the equations of (2).

We now establish the uniqueness. By Lemma 1. 1

Page 11: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

Stabilizability and Optirnal Control 49

$0¥leqq[Ax+Bu]¥cdot¥frac{¥partial}{¥theta x}[x¥cdot P_{¥infty}x]+G(x, u)$

for all $(x, u)¥in R^{n}¥times R^{r}$ and strict inequality holds precisely on the subset of $R^{n}$

$¥times R^{r}$ , $[(x, u):u¥neq D_{*}^{¥infty}x]$ . Suppose for some initial $x_{0}$ there exists another opti-

mal control $¥tilde{¥mathrm{u}}_{*}^{¥infty}$. in $L_{2}(0, ¥infty)$ and then the subset in [0, $¥infty$ ), $[t:u_{*}^{¥infty}(t)-¥tilde{u}_{*}^{¥infty}(t)¥neq 0¥mathrm{J}^{¥mathrm{I}}$

has positive measure. We denote the corresponding trajectory by $¥tilde{x}_{*}^{¥infty}(t)$ .In particular

$0¥leqq[A¥tilde{x}_{*}^{¥infty}+B¥tilde{u}_{*}^{¥infty}]¥cdot¥frac{¥partial}{¥partial¥tilde{x}_{*}^{¥infty}}[¥tilde{x}_{*}^{¥infty}¥cdot P_{¥infty}¥tilde{x}_{*}^{¥infty}]+G$ $(¥tilde{x}_{*}^{¥infty},¥tilde{u}_{*}^{¥infty})$

where strict inequality holds precisely on the subset of [0, $¥infty$), $[t:¥tilde{u}_{*}^{¥infty}(t)¥neq D_{*}^{¥infty}$

$¥tilde{x}_{*}^{¥infty}$. $(t)]$ . By the same argument used in the uniqueness proof of Theorem 1. 3this set can be shown to have positive measure. Therefore integration of theinequality shows

$0<¥int_{0}^{¥infty}¥{¥frac{d}{dt}[¥tilde{x}_{*}^{¥infty}¥cdot P_{¥infty}¥tilde{x}_{*}^{¥infty}]+G(¥overline{x}_{*}^{¥infty},¥tilde{u}_{*}^{¥infty})¥}dt$.

But $ 0¥leqq¥int_{0}^{¥infty}G(¥tilde{x}_{*}^{¥infty},¥tilde{u}_{*}^{¥infty})dt<¥infty$ since $¥tilde{u}_{*}^{¥infty}$ is optimal and $ C^{¥infty}(u_{*}^{¥infty})<¥infty$ . Therefore

$¥int_{0}^{¥infty}¥frac{d}{dt}[¥tilde{x}_{*}^{¥infty}¥cdot P_{¥infty}¥tilde{x}_{*}^{¥infty}]dt$

exists and is finite, hence,

$0<¥lim_{t_{1}¥rightarrow¥infty}¥tilde{x}_{*}^{¥infty}(t_{1})¥cdot P_{¥infty}¥tilde{x}_{*}^{¥infty}(t_{1})-x_{0}¥cdot P_{¥infty}x_{0}+¥int_{0}^{¥infty}G$$(¥tilde{x}_{*}^{¥infty},¥tilde{u}_{*}^{¥infty})dt$

which says $C^{¥infty}(u_{*}^{¥infty})<¥lim_{t_{1}¥rightarrow¥infty}¥tilde{x}^{¥infty}(t_{1})¥cdot P_{¥infty}¥tilde{x}^{¥infty}(t_{1})+C^{¥infty}(¥tilde{u}_{*}^{¥infty})$. $¥mathrm{S}¥overline{¥mathrm{l}}¥mathrm{n}¥mathrm{c}¥mathrm{e}¥tilde{u}_{*}^{¥infty}$ and $u_{*}^{¥infty}$ are both

optimal $C^{¥infty}(u_{*}^{¥infty})=C^{¥infty}(¥tilde{u}_{*}^{¥infty})$ and since $P_{¥infty}>0,¥lim_{t_{1}¥rightarrow¥infty}¥tilde{x}_{*}^{¥infty}(t_{1})¥neq 0$ . But this implies

$G$ $(¥tilde{x}_{*}^{¥infty}(t), ¥tilde{u}_{*}^{¥infty}(t))$ does not converge to zero as $ t¥rightarrow¥infty$ but it does converge. We

conclude that $ C^{¥infty}(¥tilde{u}_{*}^{¥infty})=¥infty$ which is a contradiction and the uniqueness is estab-

lished.Remark. We can now prove the uniqueness part of Theorem 2. 1. Suppose

there is another symmetric positive definite solution $¥tilde{P}_{¥infty}$ to the Kalman matrixequation. Define

$¥overline{A}_{*}^{¥infty}=A-B¥mathfrak{B}^{-1}[¥mathfrak{C}^{*}+B^{*}¥tilde{P}_{¥infty}]$

$¥tilde{D}_{*}^{¥infty}=-¥mathfrak{B}^{-1}[¥mathfrak{C}+B^{*}¥tilde{P}_{¥infty}]$ .

For each $x_{0}¥in R^{n}$ let $¥tilde{u}_{*}^{¥infty}(t)=¥tilde{D}_{*}^{¥infty}¥tilde{x}^{¥infty}(t)$ where $¥tilde{x}^{¥infty}(t)$ solves

Page 12: Control - fe.math.kobe-u.ac.jpfe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE11... · Control By L. Dahlard LUKES* (University of wisconsin) Abstract A stability-theoretic proof of

50 D. L. $¥mathrm{L}¥dot{¥mathrm{U}}¥mathrm{K}¥mathrm{E}¥mathrm{S}$

$¥tilde{x}^{¥infty}.=¥tilde{A}_{*}^{¥infty}¥tilde{x}^{¥infty}=A¥tilde{x}^{¥infty}+B(¥tilde{D}_{*}^{¥infty}¥tilde{x}^{¥infty})$

$¥tilde{x}^{¥infty}(0)=x_{0},0¥leqq t<¥infty$ .Using the same arguments used in proving Theorem 4. 1 we can prove that$¥tilde{u}_{*}^{¥infty}(t)$ is optimal and that $x_{0}¥cdot¥tilde{P}_{¥infty}x_{0}=C^{¥infty}(¥tilde{u}_{*}^{¥infty})$ . Therefore $x_{0}¥cdot¥tilde{P}_{¥infty}x_{0}=x_{0}¥cdot P_{¥infty}x_{0}¥mathrm{f}¥mathrm{o}¥dot{¥mathrm{r}}$ all

$x_{0}¥in R^{n}$ which implies $¥tilde{P}_{¥infty}=P_{¥infty}$.References

[1] Kalman, R. E., “Contributions to the theory of optimal control”, Bol. Soc. Mat.Mexicana, 1960, pp, 102-119.

[2] Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations,McGraw-Hill, New York, 1955.

[3] Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964.[4] LaSalle, J. and Lefschetz, S., Stability by Liapunov’s Direct Method, Academic

Press, New York, 1961.[5] Apostol, T. M., Mathematical Analysis, Addison-Wesley, Reading, Massachuse-

tts, 1957.(Ricevita la 15-an de februaro, 1968)