control of a mls using fast derivative estimation

30
INRIA 2005 Control of a magnetic levitation system using fast derivative estimation Johann Reger [email protected] Institut f¨ ur Meß- und Automatisierungstechnik Control of a magnetic levitation system using fast derivative estimation — 1/1

Upload: mariangeorge

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 1/30

INRIA 2005 ◭ ◮

Control of a magnetic levitation system usingfast derivative estimation

Johann Reger

[email protected]

Institut fur Meß- und Automatisierungstechnik

Control of a magnetic levitation system using fast derivative estimation — 1/1

Page 2: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 2/30

INRIA 2005 ◭ ◮

Contents 

1. Simplified system model

2. Flatness-based tracking controller

3. Trajectory planning

4. An estimate for the velocity

5. Closed-loop dynamics

6. Simulations

Control of a magnetic levitation system using fast derivative estimation — 2/1

Page 3: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 3/30

INRIA 2005 ◭ ◮

References 

We refer to some results exposed in

E. Delaleau, “Differential Flatness in Electrical Drives and Power

Electronics”, Tutorial at the 1st International Conference on

Electrical and Electronics Engineering and 10th

Conference onElectrical Engineering, September, 2004.

J. Levine, J. Lottin, and J.-C. Ponsart, “A Nonlinear Approach to the

Control of Magnetic Bearings”, IEEE Transactions on Control SystemTechnology, Vol. 4., No. 5, September, 1996.

H. Sira Ramırez and M. Fliess, “On the output feedback control of a

synchronous generator”, Proc. 43

rd

IEEE CDC, December, 2004.

J. Reger, H. Sira Ramırez, and M. Fliess, “On non-asymptotic

observation of nonlinear systems”, submitted to 44th IEEE CDC,

December, 2005.

Control of a magnetic levitation system using fast derivative estimation — 3/1

Page 4: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 4/30INRIA 2005 ◭ ◮

Simplified system model 

Consider the simplified model of a magnetic levitation system

h = v ,

v =k

m„ i

c − h«2

− g

Control of a magnetic levitation system using fast derivative estimation — 4/1

Page 5: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 5/30INRIA 2005 ◭ ◮

Simplified system model 

Consider the simplified model of a magnetic levitation system

h = v ,

v =k

m„ i

c − h«2

− g

with

h > 0: vertical position of the center of mass — (measured) output,

v: vertical velocity of the center of mass,

i > 0: coil current — input,

g: gravity constant,

c: minimal air gap,

m: mass to be lifted,

k: konstant (air gap permeability, core reluctance, . . . ).

Control of a magnetic levitation system using fast derivative estimation — 4/1

Page 6: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 6/30INRIA 2005 ◭ ◮

Flatness-based tracking controller 

We design a controller for stabilizing the output reference h = h#(t).

Control of a magnetic levitation system using fast derivative estimation — 5/1

Page 7: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 7/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

We design a controller for stabilizing the output reference h = h#(t).

The output h is flat since

v = h ,

i = (c − h)

r m

k(h + g) .

Control of a magnetic levitation system using fast derivative estimation — 5/1

Page 8: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 8/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

We design a controller for stabilizing the output reference h = h#(t).

The output h is flat since

v = h ,

i = (c − h)

r m

k(h + g) .

In accordance with Delaleau/Hagenmeyer  the reference h = h#(t)

may be tracked by a feedforward linearizing controller

i = (c − h#)

s m

k

„h# + λ2(h# − h) + λ1(h# − h) + λ0

Z t0

(h# − h)dτ  + g

«

which is a feedforward of h# enhanced with a PID-controller.

Control of a magnetic levitation system using fast derivative estimation — 5/1

Page 9: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 9/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

We design a controller for stabilizing the output reference h = h#(t).

The output h is flat since

v = h ,

i = (c − h)

r m

k(h + g) .

In accordance with Delaleau/Hagenmeyer  the reference h = h#(t)

may be tracked by a feedforward linearizing controller

i = (c − h#)

s m

k

„h# + λ2(h# − h) + λ1(h# − h) + λ0

Z t0

(h# − h)dτ  + g

«

which is a feedforward of h# enhanced with a PID-controller.

It enforces the error dynamics

h# − h + λ2(h# − h) + λ1(h# − h) + λ0Z t0

(h# − h)dτ  = 0 .

Control of a magnetic levitation system using fast derivative estimation — 5/1

Page 10: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 10/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

Differentiating once wrt. time we obtain the third order dynamics

...h# −

...h + λ2(h

# − h) + λ1(h# − h) + λ0(h

# − h) = 0 .

Control of a magnetic levitation system using fast derivative estimation — 6/1

Page 11: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 11/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

Differentiating once wrt. time we obtain the third order dynamics

...h# −

...h + λ2(h

# − h) + λ1(h# − h) + λ0(h

# − h) = 0 .

Consequently, we may set the error dynamics

...e + λ2 e + λ1 e + λ0 e = 0

of the error e = h# − h

Control of a magnetic levitation system using fast derivative estimation — 6/1

Page 12: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 12/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

Differentiating once wrt. time we obtain the third order dynamics

...h# −

...h + λ2(h

# − h) + λ1(h# − h) + λ0(h

# − h) = 0 .

Consequently, we may set the error dynamics

...e + λ2 e + λ1 e + λ0 e = 0

of the error e = h# − h by choosing the coefficients λi such that

s3 + λ2s

2 + λ1s + λ0

is a Hurwitz polynomial.

Control of a magnetic levitation system using fast derivative estimation — 6/1

Page 13: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 13/30

INRIA 2005 ◭ ◮

Flatness-based tracking controller 

Differentiating once wrt. time we obtain the third order dynamics...h# −

...h + λ2(h

# − h) + λ1(h# − h) + λ0(h

# − h) = 0 .

Consequently, we may set the error dynamics

...e + λ2 e + λ1 e + λ0 e = 0

of the error e = h# − h by choosing the coefficients λi such that

s3 + λ2s

2 + λ1s + λ0

is a Hurwitz polynomial.

A possible choice is

λ2 = 400, λ1 = 30000, λ0 = 90000 .

Control of a magnetic levitation system using fast derivative estimation — 6/1

Page 14: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 14/30

INRIA 2005 ◭ ◮

Trajectory planning 

For the reference h# we specify a stationary set point change

h#(t0) = h0 → h

#(t1) = h1 .

Control of a magnetic levitation system using fast derivative estimation — 7/1

Page 15: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 15/30

INRIA 2005 ◭ ◮

Trajectory planning 

For the reference h# we specify a stationary set point change

h#(t0) = h0 → h

#(t1) = h1 .

The reference may be chosen as

h# = h0 + (h1 − h0) B(τ )

with the Bezier polynomial

B(τ ) = τ 5(252− 1050 τ  + 1800 τ 

2 − 1575 τ 3 + 700 τ 

4 − 126 τ 5), τ  =

t − t0

t1 − t0

Control of a magnetic levitation system using fast derivative estimation — 7/1

Page 16: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 16/30

INRIA 2005 ◭ ◮

Trajectory planning 

For the reference h# we specify a stationary set point change

h#(t0) = h0 → h

#(t1) = h1 .

The reference may be chosen as

h# = h0 + (h1 − h0) B(τ )

with the Bezier polynomial

B(τ ) = τ 5(252− 1050 τ  + 1800 τ 

2 − 1575 τ 3 + 700 τ 

4 − 126 τ 5), τ  =

t − t0

t1 − t0

which guarantees that

B(0) = 0, B(1) = 1 anddi

dτ iB(τ )

˛τ =0

=di

dτ iB(τ )

˛τ =1

= 0, i = 1, 2, 3, 4 .

Control of a magnetic levitation system using fast derivative estimation — 7/1

Page 17: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 17/30

INRIA 2005 ◭ ◮

An estimate for the velocity 

The chosen feedback

i = (c − h#)

s m

k

„h# + λ2(h# − h) + λ1(h# − h) + λ0

Z t0

(h# − h)dτ  + g

«

requires knowledge about the velocity h.

Control of a magnetic levitation system using fast derivative estimation — 8/1

Page 18: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 18/30

Page 19: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 19/30

INRIA 2005 ◭ ◮

An estimate for the velocity 

The chosen feedback

i = (c − h#)

s m

k

„h# + λ2(h# − h) + λ1(h# − h) + λ0

Z t0

(h# − h)dτ  + g

«

requires knowledge about the velocity h.

For instants t > tr we obtain a velocity estimate resorting to the formula

h(i)(t) = (k + i − 1)!i! (k − i − 1)! 1(t − tr)i h(t) i = 1, . . . , d ≤ k − 1

+i

Xj=1

k + i − j − 1

i− j

!(k − j − 1)!

(k − i − 1)!

1

(t− tr)k+i−jzj(k, t)

with

zj(k, t) =

k

 j + 1

!2(−1)−j( j + 1)! (t − tr)k−j−1

h(t) + zj+1(k, t), j = 1, . . . , k −

zk−1(k, t) = k! (−1)1−k

h(t) and zj(k, tr) = 0, j = 1, . . . , k − 1 .

Control of a magnetic levitation system using fast derivative estimation — 8/1

Page 20: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 20/30

INRIA 2005 ◭ ◮

An estimate for the velocity 

We choose the 4-th order estimate

˙h = 12

1

t − trh +

1

(t − tr)4z1 ,

¨h

= 60

1

(t− tr)2h

+ 8

1

(t − tr)5z1 +

1

(t − tr)4z2

Control of a magnetic levitation system using fast derivative estimation — 9/1

Page 21: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 21/30

INRIA 2005 ◭ ◮

An estimate for the velocity 

We choose the 4-th order estimate

˙h = 12

1

t − trh +

1

(t − tr)4z1 ,

¨h

= 60

1

(t− tr)2h

+ 8

1

(t − tr)5z1 +

1

(t − tr)4z2

with the filter

z1 = −72 (t− tr)2 h + z2 ,

z2 = 96 (t − tr) h + z3 ,

z3 = −24 h

subject to the homogeneous initial values

z1(0) = 0, z2(0) = 0, z3(0) = 0 .

Control of a magnetic levitation system using fast derivative estimation — 9/1

Page 22: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 22/30

INRIA 2005 ◭ ◮

Closed-loop dynamics 

In the closed loop, we may have to deal with a noisy feedback hn(t).

Control of a magnetic levitation system using fast derivative estimation — 10/1

Page 23: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 23/30

INRIA 2005 ◭ ◮

Closed-loop dynamics 

In the closed loop, we may have to deal with a noisy feedback hn(t).

Therefore, the closed-loop dynamics reads

h = v ,

v =

„c− h#

c− h

«2 “

h# + λ2(h

# −˙hn) + λ1(h

# − hn) + λ0ζ  + g”− g ,

ζ  = h# − hn

Control of a magnetic levitation system using fast derivative estimation — 10/1

Page 24: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 24/30

INRIA 2005 ◭ ◮

Closed-loop dynamics 

In the closed loop, we may have to deal with a noisy feedback hn(t).

Therefore, the closed-loop dynamics reads

h = v ,

v =

„c− h#

c− h

«2 “

h# + λ2(h

# −˙hn) + λ1(h

# − hn) + λ0ζ  + g”− g ,

ζ  = h# − hn

with the estimate

˙hn = 12

1

t − trhn +

1

(t − tr)4z1(t)

and the filterz1(t) = −72 (t − tr)2 hn + z2(t), z1(0) = 0 ,

z2(t) = 96 (t − tr) hn + z3(t), z2(0) = 0 ,

z3(t) = −24 hn, z3(0) = 0 .

Control of a magnetic levitation system using fast derivative estimation — 10/1

Page 25: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 25/30

INRIA 2005 ◭ ◮

Simulations 

We tackle the estimator singularity at t = tr by using the extrapolation

˙h ≈ h(t

r ) + h(t−

r )(t − tr)

¨h ≈ h(t

r )

whenever t ∈ [tr, tr + ε).

Control of a magnetic levitation system using fast derivative estimation — 11/1

Page 26: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 26/30

INRIA 2005 ◭ ◮

Simulations 

We tackle the estimator singularity at t = tr by using the extrapolation

˙h ≈ h(t

r ) + h(t−

r )(t − tr)

¨h ≈ h(t

r )

whenever t ∈ [tr, tr + ε).

We retain the estimation accuracy by reinitializing the estimator either

Control of a magnetic levitation system using fast derivative estimation — 11/1

Page 27: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 27/30

INRIA 2005 ◭ ◮

Simulations 

We tackle the estimator singularity at t = tr by using the extrapolation

˙h ≈ h(t

r ) + h(t−

r )(t − tr)

¨h ≈ h(t

r )

whenever t ∈ [tr, tr + ε).

We retain the estimation accuracy by reinitializing the estimator either

at equidistant, small time intervals or

Control of a magnetic levitation system using fast derivative estimation — 11/1

Page 28: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 28/30

INRIA 2005 ◭ ◮

Simulations 

We tackle the estimator singularity at t = tr by using the extrapolation

˙h ≈ h(t

r ) + h(t−

r )(t − tr)

¨h ≈ h(t

r )

whenever t ∈ [tr, tr + ε).

We retain the estimation accuracy by reinitializing the estimator either

at equidistant, small time intervals orby calculation of a next reset time t′r being the first time when

e(t) = |hn(t)− h(t)| > δ ,

i. e., an absolute error bound is passed. The output estimate

h(t) = h(t−

r ) +˙h(t

r )(t− tr) +1

2¨h(t

r )(t− tr)2 .

accounts for deviations from polynomial evolution.

Control of a magnetic levitation system using fast derivative estimation — 11/1

Page 29: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 29/30

INRIA 2005 ◭ ◮

Simulations 

In the following simulations we assume a set point change from

h#(t0) = h0 = 1 → h

#(t1) = h1 = 5

within the time interval [t0, t1] = [0, 1].

Moreover, we used the normalized systems parameters

k = 58, c = 0.11, g = 981, m = 0.084 .

Control of a magnetic levitation system using fast derivative estimation — 12/1

Si l ti

Page 30: Control of a MLS Using Fast Derivative Estimation

7/31/2019 Control of a MLS Using Fast Derivative Estimation

http://slidepdf.com/reader/full/control-of-a-mls-using-fast-derivative-estimation 30/30

INRIA 2005 ◭ ◮

Simulations 

In the following simulations we assume a set point change from

h#(t0) = h0 = 1 → h

#(t1) = h1 = 5

within the time interval [t0, t1] = [0, 1].

Moreover, we used the normalized systems parameters

k = 58, c = 0.11, g = 981, m = 0.084 .

We close with some Matlab-Simulations.

Control of a magnetic levitation system using fast derivative estimation — 12/1