control of spatial correlations: experimental implementation ......mf correlation, doc 0 50 100 150...

1
L A T E X Tik Zposter Control of spatial correlations: Experimental implementation and its role on open quantum system dynamics and two-photon imaging Omar Calder´ on-Losada, Paul Diaz, Juan A. Urrea, Daniel F. Urrego and Alejandra Valencia Laboratorio de ´ optica cu´ antica, Universidad de los Andes, Bogot´ a, Colombia Control of spatial correlations: Experimental implementation and its role on open quantum system dynamics and two-photon imaging Omar Calder´ on-Losada, Paul Diaz, Juan A. Urrea, Daniel F. Urrego and Alejandra Valencia Laboratorio de ´ optica cu´ antica, Universidad de los Andes, Bogot´ a, Colombia Introduction The control of correlations of paired photons in different degrees of freedom has been of interest for its role in practical applications. In this work, we report the experimental control of the spatial correlations of paired photons and exploit this capability to study the effects of having different spatial correlations on open quantum systems and imaging procedures: Experimentally, we control the spatial correlations of paired photons produced by spon- taneous parametric down conversion (SPDC) by using the waist of the pump beam as the tuning parameter. Two-photon imaging: we take advantage of the experimental capability of controlling the spatial correlations in a unique setup and observe the effects of different types of spatial correlations on ghost images. Open quantum system dynamics: we propose an all-optical setup in which a pair of entangled polarization photons is coupled with their transverse momentum degree of freedom, that plays the role of a bosonic environment, to simulate an open quantum system dynamic. We have found that controlling the initial transverse correlations, the evolution of the central system can exhibit a Markovian or non-Markovian behaviour. The Source: Type II Non-colinear SPDC APD CC APD The state at the output face of the crystal |ψ i∝ X σ6=σ 0 Z dq s dq i Z dΩ s dΩ i × Φ σσ 0 (q s , Ω s , q i , Ω i ) |q s , Ω s ; σ 0 i|q i , Ω i ; σ 0 i with polarizations σ, σ 0 = {H, V }. Mode function Φ σσ 0 (q s , Ω s , q i , Ω i )= N β s , Ω i )× exp " - w 2 p 2 0 2 1 ) 4 - γ Δ k L 2 2 + i Δ k L 2 # Phase matching conditions Δ 0 = q x s + q x i , Δ 1 = q y s cos φ s + q y i cos φ i - N s Ω s sin φ s + N i Ω i sin φ i - ρ s q x s sin φ s , Δ k = N p s s ) - N s Ω s cos φ s - N i Ω i cos φ i - q y s sin φ s + q y i sin φ i + ρ p Δ 0 - ρ s q x s cos φ e . Spatial-Type-II-SPDC quantum state |Ψi∝ X σ6=σ 0 Z dq s Z dq i ˜ Φ σσ 0 (q s , q i ) |q s ; σ i|q i ; σ 0 i , ˜ Φ σσ 0 (q s , q i )= Z dΩ s dΩ i f s s )f i i σσ 0 (q s , Ω s , q i , Ω i ) = N exp - 1 4 q | Aq + ib | · q Mode Function and Correlation control Degree of correlation: κ % = C % si p C % ss C % ii , C % uv = hq % u q % v i-hq % u ihq % v i , (% = x, y ) 0 50 100 150 200 - 1.0 - 0.5 0.0 0.5 1.0 w p [μm] y -MF Correlation, DOC 0 50 100 150 200 - 1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 w p [μm] x-MF Correlation, DOC Mode function orientation: The angle between the major axis of the biphoton ellipse and the corresponding horizontal axis. o/e e/o 0 50 100 150 200 - 45 0 45 w p [μm] y -MF Orientation Angle [°] o/e e/o 0 50 100 150 200 - 80 - 60 - 40 - 20 0 w p [μm] x-MF Orientation Angle [°] Lens-less Ghost Imaging Propagated MF ˜ Φ σσ 0 (ρ A , ρ B )= Z d 2 q s Z d 2 q i g s (q s , ρ A ,z A )g i (q i , ρ B ,z B ) ˜ Φ σσ 0 (q s , q i ), with the Green function for a 2f -system g ν (q μ , ρ j , 2f )= Z d 2 ρ Z d 2 ρ c h ω (ρ j - ρ ,f )L f (ρ )h ω (ρ - ρ c ,f )e iq μ ·ρ c = C e λf ρ 2 j e - iλf 4π q 2 μ δ q μ - 2π λf ρ j , that propagates the SPDC photons with a transverse momentum q μ from the source to a plane located at a distance 2f . The Ghost Image GI σσ 0 (ρ A ) Z d 2 ρ B T (ρ B ) ˜ Φ σσ 0 2π λf ρ A , 2π λf ρ B 2 . where T (ρ) denotes the transfer function for the object to be imaged. Quantum Dynamic - Markovian vs non-Markovian Horizontal Biphoton as an initial system-environment state: Considering ˜ Φ σσ 0 (q y s ,q y i )= ˜ Φ σσ 0 (q x s =0,q y s ,q x i =0,q y i ), the SPDC state reduces to |Ψi∝ X σ6=σ 0 Z dq y s Z dq y i ˜ Φ σσ 0 (q y s ,q y i ) |q y s ; σ i|q y i ; σ 0 i ≡|Ψi S +E = |Ψ in i , where ˜ Φ VH (q y s ,q y i )= N exp [-(q y ) | Bq y + iv | · q y ] and ˜ Φ HV (q y s ,q y i )= ˜ Φ VH (q y i ,q y s ). Local Evolution operator: ˆ U (ξ s i )= ˆ U s (ξ s ) ˆ U i (ξ i ), with ˆ U (ξ ) |q y ; H i = e -q y |q y ; H i ˆ U (ξ ) |q y ; V i = e i(ξ q y +ϕ) |q y ; V i where = {s, i}, ξ is the evolution parameter for each mode, and ϕ is a constant polarization-dependent phase-shift. Reduced polarization density matrix: ˆ ρ S = tr E n ˆ U (ξ s i ) |Ψ in ihΨ in | ˆ U (ξ s i ) o = |α| 2 |V,H ihV,H | + Λ(ξ s i ) |V,H ihH, V | * (ξ s i ) |H, V ihV,H | + |β | 2 |H, V ihH, V | with |α| 2 + |β | 2 = 1, and Λ(ξ s i ;w p )= Z dq y s dq y i ˜ Φ VH (q y s ,q y i ;w p ) ˜ Φ * HV (q y s ,q y i ;w p )e -2i ( ξ i q y i -ξ s q y s ) being the decoherence factor. Purity evolution: P (ξ s i ;w p )= 1 2 +2|Λ(ξ s i ;w p )| 2 Trace distance: For two initial states ˆ ρ S ± the trace distance evolves as D(ξ s i ;w p )=2|Λ(ξ s i ;w p )| cos (arg Λ(ξ s i ;w p )) Purity and Purification Trace distance evolution: Final Remarks We have experimentally showed how DOC and orientation of MF exhibit different behaviors depending on the pump beam waist and the direction in which the correlation is been studied. The momentum distribution is also affected by the polarization post-selection. ALGO SOBRE GHOST By controlling the initial correlations, the evolution of the central system can exhibit a Markovian or non-Markovian behaviour, inducing a non-local quantum memory effect that allows to recover the purity (and entanglement) in the central system when this has been degraded by local interactions. References [1] G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, Appl. Phys. Lett. 83, 5560 (2003) [2] T. B. Pittman, Y. H. Shih, D. V. Strekalov and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995). [3] O. Calder´ on-Losada, J. Fl´ orez, J. P. Villabona-Monsalve, and A. Valencia, Opt. Lett. 41, 1165 (2016). [4] D. R. Guido, A. B. U’Ren, Opt. Comm. 285, 6, 1269 (2012). [5] Zhong, M., Xu, P., Lu, L. et al. Sci. China Phys. Mech. Astron. 59, 670311 (2016) [6] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 108, 210402 (2012). [7] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016) [8] S. Cialdi, D. Brivio, E. Tesio, and M. G. A. Paris, Phys. Rev. A 83, 042308 (2011) Email: [email protected] Webpage: http://opticacuantica.uniandes.edu.co

Upload: others

Post on 06-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of spatial correlations: Experimental implementation ......MF Correlation, DOC 0 50 100 150 200-1.0-0.9-0.8-0.7-0.6-0.5 w p [m] x-MF Correlation, DOC Mode function orientation:

LATEX TikZposter

Control of spatial correlations: Experimental implementation and its role on open quantum systemdynamics and two-photon imaging

Omar Calderon-Losada, Paul Diaz, Juan A. Urrea, Daniel F. Urrego and Alejandra ValenciaLaboratorio de optica cuantica, Universidad de los Andes, Bogota, Colombia

Control of spatial correlations: Experimental implementation and its role on open quantum systemdynamics and two-photon imaging

Omar Calderon-Losada, Paul Diaz, Juan A. Urrea, Daniel F. Urrego and Alejandra ValenciaLaboratorio de optica cuantica, Universidad de los Andes, Bogota, Colombia

Introduction

The control of correlations of paired photons in different degrees of freedom has been of interestfor its role in practical applications. In this work, we report the experimental control of the spatialcorrelations of paired photons and exploit this capability to study the effects of having differentspatial correlations on open quantum systems and imaging procedures:

• Experimentally, we control the spatial correlations of paired photons produced by spon-taneous parametric down conversion (SPDC) by using the waist of the pump beam as thetuning parameter.

• Two-photon imaging: we take advantage of the experimental capability of controllingthe spatial correlations in a unique setup and observe the effects of different types of spatialcorrelations on ghost images.

• Open quantum system dynamics: we propose an all-optical setup in which a pair ofentangled polarization photons is coupled with their transverse momentum degree of freedom,that plays the role of a bosonic environment, to simulate an open quantum system dynamic.We have found that controlling the initial transverse correlations, the evolution of the centralsystem can exhibit a Markovian or non-Markovian behaviour.

The Source: Type II Non-colinear SPDC

1

APD

CC

APD

• The state at the output face of the crystal

|ψ〉 ∝∑σ 6=σ′

∫dqsdqi

∫dΩsdΩi×

Φσσ′(qs,Ωs,qi,Ωi) |qs,Ωs;σ′〉 |qi,Ωi;σ

′〉

with polarizations σ, σ′ = H,V .

• Mode function

Φσσ′(qs,Ωs,qi,Ωi) = Nβ(Ωs,Ωi)×

exp

[−

w2p(∆

20 + ∆2

1)

4− γ

(∆kL

2

)2

+ i∆kL

2

]

• Phase matching conditions

∆0 = qxs + qxi ,

∆1 = qys cosφs + qyi cosφi−NsΩs sinφs + NiΩi sinφi − ρsqxs sinφs,

∆k = Np(Ωs + Ωs)−NsΩs cosφs −NiΩi cosφi− qys sinφs + qyi sinφi + ρp∆0 − ρsqxs cosφe.

• Spatial-Type-II-SPDC quantum state

|Ψ〉 ∝∑σ 6=σ′

∫dqs

∫dqi Φσσ′(qs,qi) |qs;σ〉 |qi;σ′〉 ,

Φσσ′(qs,qi) =

∫dΩsdΩifs(Ωs)fi(Ωi)Φσσ′(qs,Ωs,qi,Ωi)

= N exp

[−1

4qᵀAq + ibᵀ · q

]

Mode Function and Correlation control

• Degree of correlation:

κ% =C%si√

C%ssC

%ii

, C%uv = 〈q%uq%v〉 − 〈q%u〉 〈q%v〉 , (% = x, y)

0 50 100 150 200-1.0

-0.5

0.0

0.5

1.0

wp [μm]

y-MFCorrelation,DOC

0 50 100 150 200-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

wp [μm]

x-MFCorrelation,DOC

• Mode function orientation: The angle between the major axis of the biphoton ellipse and the correspondinghorizontal axis.

o/e

e/o

0 50 100 150 200

-45

0

45

wp [μm]

y-MFOrientationAngle

[°]

o/e

e/o

0 50 100 150 200

-80

-60

-40

-20

0

wp [μm]

x-MFOrientationAngle

[°]

Lens-less Ghost Imaging

• Propagated MF

Φσσ′(ρA,ρB) =

∫d2qs

∫d2qi gs(qs,ρA, zA)gi(qi,ρB, zB)Φσσ′(qs,qi),

with the Green function for a 2f -system

gν(qµ,ρj, 2f ) =

∫d2ρ`

∫d2ρchω(ρj − ρ`, f )Lf(ρ`)hω(ρ` − ρc, f )eiqµ·ρc

= Ceiπλf ρ

2je−

iλf4π q

2µδ

(qµ −

λfρj

),

that propagates the SPDC photons with a transverse momentum qµ from the source to a plane located ata distance 2f .

• The Ghost Image

GIσσ′(ρA) ∝∣∣∣∣∫ d2ρBT (ρB)Φσσ′

(2π

λfρA,

λfρB

)∣∣∣∣2 .where T (ρ) denotes the transfer function for the object to be imaged.

Quantum Dynamic - Markovian vs non-Markovian

• Horizontal Biphoton as an initial system-environment state: ConsideringΦσσ′(q

ys , q

yi ) = Φσσ′(q

xs = 0, qys , q

xi = 0, qyi ), the SPDC state reduces to

|Ψ〉 ∝∑σ 6=σ′

∫dqys

∫dqyi Φσσ′(q

ys , q

yi ) |q

ys ;σ〉 |q

yi ;σ

′〉

≡ |Ψ〉S+E = |Ψin〉 ,

where

ΦV H(qys , qyi ) = N exp [−(qy)ᵀBqy + ivᵀ · qy] and ΦHV (qys , q

yi ) = ΦV H(qyi , q

ys).

• Local Evolution operator: U(ξs, ξi) = Us(ξs)⊗ Ui(ξi), with

U`(ξ`) |qy` ;H〉 = e−iξ`qy` |qy` ;H〉

U`(ξ`) |qy` ;V 〉 = ei(ξ`qy`+ϕ) |qy` ;V 〉

where ` = s, i, ξ` is the evolution parameter for each mode, and ϕ is a constantpolarization-dependent phase-shift.

• Reduced polarization density matrix:

ρS = trE

U(ξs, ξi) |Ψin〉 〈Ψin| U †(ξs, ξi)

= |α|2 |V,H〉 〈V,H| + Λ(ξs, ξi) |V,H〉 〈H,V |

+ Λ∗(ξs, ξi) |H,V 〉 〈V,H| + |β|2 |H,V 〉 〈H, V |

with |α|2 + |β|2 = 1, and

Λ(ξs, ξi; wp) =

∫dqysdq

yi ΦV H(qys , q

yi ; wp)Φ

∗HV (qys , q

yi ; wp)e

−2i(ξiqyi−ξsqys)

being the decoherence factor.

• Purity evolution:

P(ξs, ξi; wp) =1

2+ 2|Λ(ξs, ξi; wp)|2

• Trace distance: For two initial states ρS± the trace distance evolves as

D(ξs, ξi; wp) = 2|Λ(ξs, ξi; wp)| cos (arg Λ(ξs, ξi; wp))

• Purity and Purification

• Trace distance evolution:

Final Remarks

• We have experimentally showed how DOC and orientation of MF exhibit different behaviors depending on the pump beam waist andthe direction in which the correlation is been studied. The momentum distribution is also affected by the polarization post-selection.

• ALGO SOBRE GHOST

• By controlling the initial correlations, the evolution of the central system can exhibit a Markovian or non-Markovian behaviour, inducing anon-local quantum memory effect that allows to recover the purity (and entanglement) in the central system when this has been degradedby local interactions.

References

[1] G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, Appl. Phys. Lett. 83, 5560 (2003)

[2] T. B. Pittman, Y. H. Shih, D. V. Strekalov and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).

[3] O. Calderon-Losada, J. Florez, J. P. Villabona-Monsalve, and A. Valencia, Opt. Lett. 41, 1165 (2016).

[4] D. R. Guido, A. B. U’Ren, Opt. Comm. 285, 6, 1269 (2012).

[5] Zhong, M., Xu, P., Lu, L. et al. Sci. China Phys. Mech. Astron. 59, 670311 (2016)

[6] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 108, 210402 (2012).

[7] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

[8] S. Cialdi, D. Brivio, E. Tesio, and M. G. A. Paris, Phys. Rev. A 83, 042308 (2011)

Email: [email protected]

Webpage: http://opticacuantica.uniandes.edu.co