control, optimization, and functional analysis

90
In The Heltonian Era Control, Optimization, and Functional Analysis

Upload: saima

Post on 24-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Control, Optimization, and Functional Analysis. In The Heltonian Era. The Heltonian Era. 1970 From Dark Ages to Birth of Enlightenment 1980 Robust control, operator theory 1990 Matrix inequalities, convex optimization 2000 Nonlinear control, algebraic geometry 2010 ?? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Control, Optimization, and Functional Analysis

In The Heltonian Era

Control, Optimization, and Functional Analysis

Page 2: Control, Optimization, and Functional Analysis

The Heltonian Era

• 1970 From Dark Ages to Birth of Enlightenment• 1980 Robust control, operator theory• 1990 Matrix inequalities, convex optimization• 2000 Nonlinear control, algebraic geometry• 2010 ??

– Networks, sparsity, structure– Mixed boolean & real algebra/geometry– Expansion of applications in basic science and

infrastructure

Page 3: Control, Optimization, and Functional Analysis

Robust control, operator theory

Matrix inequalities,

convex optimization

Doyle(t) and Helton(t)

Nonlinear control,

algebraic geometry

Page 4: Control, Optimization, and Functional Analysis

Multiscale physics Biology

MedicineEcology

Geophysics

Internet

Smartgrid

Economics

Page 5: Control, Optimization, and Functional Analysis

Biology

Medicine

Page 6: Control, Optimization, and Functional Analysis

Control, Optimization, and Functional Analysis

Na Li, John Doyle, and a cast of thousands (including Ben Recht and Marie Csete)

Caltech

Cardiovascular

Page 7: Control, Optimization, and Functional Analysis

Robust FragileHuman complexity

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Page 8: Control, Optimization, and Functional Analysis

Robust FragileMechanism?

Metabolism Regeneration & repair Healing wound /infect

Fat accumulation Insulin resistance Proliferation Inflammation

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

Page 9: Control, Optimization, and Functional Analysis

Robust FragileWhat’s the difference?

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Accident or necessity?

Fat accumulation Insulin resistance Proliferation Inflammation

Fluctuating energy

Static energy

Page 10: Control, Optimization, and Functional Analysis

Robust FragileWhat’s the difference?

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

ControlledDynamic

UncontrolledChronic

Low meanHigh variability

High meanLow variability

Page 11: Control, Optimization, and Functional Analysis

Robust Fragile

Restoring robustness

ControlledDynamic

UncontrolledChronic

Low meanHigh variability

High meanLow variability

Page 12: Control, Optimization, and Functional Analysis

Robust Yet FragileHuman complexity

Metabolism Regeneration & repair Microbe symbionts Immune/inflammation Neuro-endocrine Complex societies Advanced technologies Risk “management”

Obesity, diabetes Cancer Parasites, infection AutoImmune/Inflame Addiction, psychosis… Epidemics, war… Catastrophes Obfuscate, amplify,…

Accident or necessity?

Page 13: Control, Optimization, and Functional Analysis

Robust Fragile Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

• Fragility Hijacking, side effects, unintended… • Of mechanisms evolved for robustness • Complexity control, robust/fragile tradeoffs• Math: New robust/fragile conservation laws

Accident or necessity?Both

Page 14: Control, Optimization, and Functional Analysis

Robust Metabolism Regeneration & repair Healing wound /infect

• Fragility Hijacking, side effects, unintended… • Of mechanisms evolved for robustness • Complexity control, robust/fragile tradeoffs• Math: New robust/fragile conservation laws

Page 15: Control, Optimization, and Functional Analysis

Robust Metabolism Regeneration & repair Healing wound /infect

Fat accumulation Insulin resistance Proliferation Inflammation

Fluctuating energy

ControlledDynamicLow meanHigh variability

Mechanism?

Page 16: Control, Optimization, and Functional Analysis

Brain

Heart

Muscle

Liver

GI

GluTriglyc

Fat

Glyc

Glyc

FFA

Glycerol

Oxy

Lac/ph

Food

Out

fast slow

high

low

prio

rity

dynamics

Control?

• Energy• Inflammation• Coagulation

Evolved for large energy variation and

moderate trauma

Page 17: Control, Optimization, and Functional Analysis

Brain

Heart

Muscle

Glyc

Oxy

Out

fast

high

low

prio

rity

dynamics

Control?

Essential starting point?

Page 18: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

“grey box”

Plumbing and

chemistry

Page 19: Control, Optimization, and Functional Analysis

Robust/Health

Fragile/Illness

Persistent mystery

Low meanHigh variability

High meanLow variability

Page 20: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 35040

60

80

100

120

140

HR

HR datatime(sec)

High mean, low variability

Low mean, high variability

The persistent mystery

Two experiments with same subject

Heart rate data

Page 21: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

Our approach

Physiology!an ancient art

Page 22: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

Other views1. Molecular genetics2. Creation science3. New sciences of- complexity- networks

What gene?

Page 23: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

watts

watts

time(sec)

Data: Watts and HR

Two experiments with same subject

Page 24: Control, Optimization, and Functional Analysis

Data: Watts

W

0

50

100

150

+100w

Two experiments

On recumbent Lifecycle

Page 25: Control, Optimization, and Functional Analysis

Data: Watts and HR

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

W

time(sec)

wattsHR data

Page 26: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

data

W

model

time(sec)

watts

1st order linear model

Page 27: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

data

W

model

time(sec)

watts

same 1st order linear model

Page 28: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

time(sec)

Model and HR

same 1st order linear model

Page 29: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

time(sec)

Model and HR

1st order linear models(different parameters)

Page 30: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

W

time(sec)

Explain differences between models

??

?

Page 31: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR HR dataW

time(sec)

Explain differences between models and data

Page 32: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

100breath and HR at 0 watts

inhale

HR 2nd order linear model

Page 33: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

100

Page 34: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

100190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

Page 35: Control, Optimization, and Functional Analysis

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

• “resting” HR• ~40 bpm fluctuations at ~10s period• 100% fluctuations!• Frequency sweep in breathing• Fit well with 2nd order model

Page 36: Control, Optimization, and Functional Analysis

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100

Page 37: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

1000

50

100

@100 w

@0 w

datamodel

Page 38: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

WattsHR data

Explain differences between • models • model and data

Different subject, 3 data sets

Page 39: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

HR High mean, low variability

Low mean, high variability

The persistent mysteryYoung, fit, healthy more extreme

Page 40: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Optimal control

What can we say with this model?

Page 41: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

VE

Plumbing and chemistry(aerobic)

Page 42: Control, Optimization, and Functional Analysis

Organized complexity, circa 1972

Plumbing and chemistry

Page 43: Control, Optimization, and Functional Analysis

Conservation laws:Energy and material (small moieties)

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral Lungs, Fp , Rp

Qr Ql

H

VE

Page 44: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Conservation laws:Energy and material

Page 45: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

“grey box”

Page 46: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Optimal control

Consequences?

Page 47: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Conservation laws

1

ln 0

S T

S d

Page 48: Control, Optimization, and Functional Analysis

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errorsO2BPpHGlucoseEnergy storeBlood volume…

infectiontrauma

energy

Homeostasis

internal noise

heart beatbreath

Page 49: Control, Optimization, and Functional Analysis

errors

BrainO2BPpHGlucoseEnergy storeBlood volume…

Page 50: Control, Optimization, and Functional Analysis

controls

Brainheart rateventilationvasodilationcoagulationinflammationdigestionstorage…

Page 51: Control, Optimization, and Functional Analysis

external disturbances

infectiontrauma

energy

Page 52: Control, Optimization, and Functional Analysis

sensornoise

controls

internal noise

heart beatbreath

errorsImplementation

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

O2BPpHGlucoseEnergy storeBlood volume…

Page 53: Control, Optimization, and Functional Analysis

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errorsO2BPpHGlucoseEnergy storeBlood volume…

infectiontrauma

energy

Homeostasis

internal noise

heart beatbreath

Page 54: Control, Optimization, and Functional Analysis

2SpO

BP

watts

tissue

arterial

errors

O2t

Narrow focusControl

Plant

errors

Page 55: Control, Optimization, and Functional Analysis

EV

Control

Plant

2SpO

BP HR

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

controls

Page 56: Control, Optimization, and Functional Analysis

EV

Control

Plant

2SpO

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

Close these loops

Page 57: Control, Optimization, and Functional Analysis

EV

Control

Plant

2SpO

BP HR

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

controls

Focus

Page 58: Control, Optimization, and Functional Analysis

Control

Plant

BP HR

watts

tissue

arterial

O2t

Initial focus

Page 59: Control, Optimization, and Functional Analysis

, 2 ,BP O t F w HR

Static model

Brain

Body

BP

HRwatts

O2t

Page 60: Control, Optimization, and Functional Analysis

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

, 2 ,BP O t F w HR

Static model

( )HR h w

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

Page 61: Control, Optimization, and Functional Analysis

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

, 2 ,BP O t F w HR

( )HR h w

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

Page 62: Control, Optimization, and Functional Analysis

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

( )HR h w

, 2 ,BP O t F w HR

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

Page 63: Control, Optimization, and Functional Analysis

0 50 100 150 20050

100

150

200

Watts

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

( )HR h w

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

2 2

( )2min

h wq O t r HR

Penalize BP and HR more

Metabolism only

Page 64: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRW

time(sec)

Explain differences between models

??

0.04 0.08 0.12 0.1680

120

160

200BP

O2t Static model

Page 65: Control, Optimization, and Functional Analysis

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

2 2

( )2min

h wq O t r HR

Brain

Body

BP

HRwatts

O2t

Use same weights but put back in dynamics

Page 66: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Optimal control

What can we say with this model?

Page 67: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400020406080100120140160

HR-simBP-sim[O2]v-sim*1000

HR-measurewatt

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

Data and model

Page 68: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400020406080100120140160

HR-simBP-sim[O2]v-sim*1000

HR-measure

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

O2t

HR watts

Mechanistic explanation for differences between models

Page 69: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400020406080100120140160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

O2t

HR watts

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

Penalize BP and HR more

Page 70: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400020406080100120140160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

HR

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

High mean, low variability

Low mean, high variability

Mechanistic explanation for differences between models

Page 71: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400020406080100120140160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

HR

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

Penalize BP and HR more

Explain differences between models and data?

Page 72: Control, Optimization, and Functional Analysis

Control

Plant

HR

breath

EV

Later

internal noise

Page 73: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

100

HR

breath

breath

HR

Page 74: Control, Optimization, and Functional Analysis

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100 2nd order linear model

Page 75: Control, Optimization, and Functional Analysis

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

• “resting” HR• Frequency sweep in breathing• Fit well with 2nd order model• Not a mechanistic model

Page 76: Control, Optimization, and Functional Analysis

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100

Page 77: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 3000

50

1000

50

100 @100 w

@0 w

data2nd order linear model

Penalize BP and HR more?

Page 78: Control, Optimization, and Functional Analysis

Control

Plant

HRbreath

EV

internal noise

Mechanism?

Need mechanical

coupling

Page 79: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

WattsHR

Different subject, 3 data sets

Page 80: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

WattsHR 1st order linear model

Page 81: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

HR 1st order linear model

Page 82: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

1st order linear models(different parameters)

Page 83: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

1st order linear models(different parameters)

Explain differences between • models • model and data

Page 84: Control, Optimization, and Functional Analysis

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

Explain differences between • models • model and data

Anaerobic

Breathing

Page 85: Control, Optimization, and Functional Analysis

Aside on gas variables• Gas exchange variables are also

predictable with simple models• VO2 is simplest and most predictable

• VCO2-VO2 is most complex and we don’t have first principles model

• Also HR model is bad at high watt levels

Page 86: Control, Optimization, and Functional Analysis

0 10 20 300

2

4

0 10 20 30

80

120

160

100

200

300

400HR

dataWattsHR

model

Time(min)

2VO

JP data

Page 87: Control, Optimization, and Functional Analysis

0 10 20 30

-1

0

1 2 2VCO VO

• Aerobic models can be way off at high watts• (predict this signal should be constant)• Can still fit with simple “black box” models, but…• Need nonlinear dynamics• Mechanistic models?

• Need anaerobic mechanisms• Control of arterial pH is critical (and hard to model)

aerobic model

2nd order nonlinear fit

Page 88: Control, Optimization, and Functional Analysis

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infectiontrauma

energy

Homeostasis

internal noise

heart beatbreath

Page 89: Control, Optimization, and Functional Analysis

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related StatesVE

Conservation laws

1

ln 0

S T

S d

Conservation laws

Page 90: Control, Optimization, and Functional Analysis

Persistent mysteries• Physiological variability and homeostasis• Cryptic variability from cells to organisms to

ecosystems to economies• Statistical mechanics and thermodynamics• Turbulence (coherent structures in shear flows)• Network (cell, brain, Internet,…) architecture• Unified communications, controls, computing

Poor treatment of dynamics, robustness, complexity