control systems bode plots l. lanari

31
Control Systems Bode plots L. Lanari preliminary version Monday, November 3, 2014

Upload: ngoque

Post on 01-Feb-2017

228 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Control Systems Bode plots L. Lanari

Control Systems

Bode plotsL. Lanari

prelim

inary

versio

n

Monday, November 3, 2014

Page 2: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 2

Outline

• Bode’s canonical form for the frequency response

• Magnitude and phase in the complex plane

• The decibels (dB)

• Logarithmic scale for the abscissa

• Bode’s plots for the different contributions

Monday, November 3, 2014

Page 3: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 3

Frequency response

The steady-state response of an asymptotically stable system P(s)

to a sinusoidal input is given byu(t) = sin ω̄t

yss(t) = |P (jω̄)| sin(ω̄t+ ∠P (jω̄))

gain curve

(or magnitude)

phase curve

|P (jω)|

∠P (jω)

Frequency response P (jω)

P(j!) is the restriction of the transfer function to the imaginary axis P(j!)|s = j!

ω ∈ R+ = [0,+∞)for

Monday, November 3, 2014

Page 4: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 4

F (s) = K � 1

sm

�k(s− zk)

��(s

2 + 2ζ�ωn�s+ ω2n�)�

i(s− pi)�

z(s2 + 2ζzωnzs+ ω2

nz)

Bode canonical form

pole/zero representation of the transfer function

with m such that

• m = 0 if no pole or zero in s = 0

• m < 0 if m zeros in s = 0

• m > 0 if m poles in s = 0

remarks

• numerator and denominator are by hypothesis coprime

• denominator is monic

• K’ is not the system gain

Monday, November 3, 2014

Page 5: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots

• the terms and are relative to

‣ complex conjugate zeros (in )

‣ complex conjugate poles (in )

5

Bode canonical form

s = α� ± jβ�

(s2 + 2ζ�ωn�s+ ω2n�) (s2 + 2ζzωnzs+ ω2

nz)

s = αz ± jβz

ωn∗ =�

α2∗ + β2

ζ∗ = −α∗/ωn∗ = −α∗/�α2∗ + β2

with

• the terms (s - zk) and (s - pi) are relative to

‣ real zeros (in s = zk)

‣ real poles (in s = pi)

‣ natural frequency

‣ damping coefficient

Monday, November 3, 2014

Page 6: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 6

s− zk = −zk(1− 1/zks) = −zk(1 + τks) with τk = −1/zk

s− pi = −pi(1− 1/pis) = −pi(1 + τis) with τi = −1/pi

F (s) = K � 1

sm

�k(−zk)

��(ω

2n�)

�k(1 + τks)

��(1 + 2ζ�/ωn�s+ s2/ω2

n�)�i(−pi)

�z(ω

2nz)

�i(1 + τis)

�z(1 + 2ζz/ωnzs+ s2/ω2

nz)

F (s) = K1

sm

�k(1 + τks)

��(1 + 2ζ�/ωn�s+ s2/ω2

n�)�i(1 + τis)

�z(1 + 2ζz/ωnzs+ s2/ω2

nz)

K = [smF (s)]s=0 for any m � 0K = K ��

k(−zk)�

�(ω2n�)�

i(−pi)�

z(ω2nz)

Bode canonical form

factoring out the constant terms

with ¿i and ¿k being time constants

defining

Bode canonical form

how to compute K

Monday, November 3, 2014

Page 7: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 7

Ks = F (s)���s=0

= F (0)

K = Ks ⇔ m = 0

Gains

K = [smF (s)]s=0 for any m � 0generalized gain

Note that

• for a system with no poles (i.e. m negative or zero) we have defined as dc-gain (or static gain)

if m < 0 (zeros in s = 0) we have F(0) = 0

• static and generalized gain coincide only when m = 0

• for an asymptotically stable system, the step response tends to the static gain Ks = F(0)

F (s) = K1

sm

�k(1 + τks)

��(1 + 2ζ�/ωn�s+ s2/ω2

n�)�i(1 + τis)

�z(1 + 2ζz/ωnzs+ s2/ω2

nz)

= 1 for s = 0

Monday, November 3, 2014

Page 8: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 8

F (s) =s− 1

2s2 + 6s+ 4=

s− 1

2(s+ 1)(s+ 2)= −1

2

1− s

(1 + s)(1 + s/2)

K = Ks = −1

2

F (s) = =s(s− 1)

2(s+ 1)2(s+ 2)= −1

2

s(1− s)

(1 + s)2(1 + s/2)

K = −1

2Ks = 0

F (s) =s− 1

2s(s+ 1)(s+ 2)= −1

2

1− s

s(1 + s)(1 + s/2)

K = −1

2� Ks

Bode canonical form

Examples

Monday, November 3, 2014

Page 9: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 9

F (jω) = K1

(jω)m

�k(1 + jωτk)

��(1 + 2ζ�jω/ωn� + (jω)2/ω2

n�)�i(1 + jωτi)

�z(1 + 2ζzjω/ωnz + (jω)2/ω2

nz)

Bode canonical form

has 4 elementary factors

1. constant K (generalized gain)

2. monomial j! (zero or pole in s = 0)

3. binomial 1 + j!¿ (non-zero real zero or pole)

4. trinomial 1 + 2³(j!)/!n + (j!)2/!n2 (complex conjugate pairs of zeros or poles)

frequency response

so first check which kind of root you have and then factor it out

Monday, November 3, 2014

Page 10: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 10

F (jω) = Re[F (jω)] + jIm[F (jω)]

Bode diagrams

magnitude of the frequency response as a function of the angular frequency !

angle or phase of the frequency response as a function of the angular frequency !

|F (jω)|

∠F (jω)

for any real value of the angular frequency ! the frequency response F(j!) is a complex number

|F (jω)|

∠F (jω)

F(j!)

F (jω) = |F (jω)|ej∠F (jω)

|F (jω)| =�

Re[F (jω)]2 + Im[F (jω)]2 ∠F (jω) = atan2(Im[F (jω)],Re[F (jω)])

Im[F(j!)]

Re[F(j!)]

Monday, November 3, 2014

Page 11: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 11

Phase

Phase[F.G] = Phase[F ] + Phase[G]

Phase

�F

G

�= Phase[F ]− Phase[G]

Phase�1G

�= −Phase[G]

the phase of a product is the sum of the phases

the phase of a ratio is the difference of the phases

and therefore

since

very useful since we can find the contribution to the

phase of each term and then just do an algebraic sum

Monday, November 3, 2014

Page 12: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 12

atan2(β,α) =

arctan�

βα

�if α > 0 (I & IV quadrant)

arctan�

βα

�+ π if β ≥ 0 and α < 0 (II quadrant)

arctan�

βα

�− π if β < 0 and α < 0 (III quadrant)

π2 sign(β) if α = 0 and β �= 0

undefined if α = 0 and β = 0

Phase

|F (jω)|

∠F (jω)

F(j!)Im[F(j!)]

Re[F(j!)]

principal argument takes on values

in (- ¼, ¼ ] and is implemented by

the function with two arguments

atan2

P = ® + j ¯

for

III

III IV

Monday, November 3, 2014

Page 13: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 13

|F (jω)|dB = 20 log10 |F (jω)|

|F.G|dB = |F |dB + |G|dB

����1

F

����dB

= − |F |dB

|F |dB � +∞ if |F | � ∞

|F |dB � −∞ if |F | � 0

|0.1|dB = −20 dB

|1|dB = 0dB

|10|dB = 20 dB |100|dB = 40 dB

��√2��dB ≈ 3 dB

Magnitude

in order to have the same property we need to go through some logarithmic function

decibels (dB)

same nice properties

as phase

Monday, November 3, 2014

Page 14: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 14

10!3

10!2

10!1

100

101

!60

!40

!20

0

20

20

log

10(|

x|)

x in logarithmic scale

10!3

10!2

10!1

100

101

0

5

10

|x|

x in logarithmic scale

1 2 3 4 5 6 7 8 9 10!60

!40

!20

0

20

20

log

10(|

x|)

x in linear scale

Logarithmic scale

we use a logarithmic (log10) scale for the abscissa (angular frequency !)

a decade corresponds to multiplication by 10

log10(!) becomes a straight line

if ! is in a logarithmic scale

very useful when we add

different contributions

Monday, November 3, 2014

Page 15: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 15

0 2 4 6 8 100

100

200

300

|F(j

!)|

linear scale

1 2 3 4 5 6 7 8 9 10!20

0

20

40

60

|F(j

!)|

dB

linear scale

10!1

100

101

!20

0

20

40

60

|F(j

!)|

dB

logarithmic scale

Logarithmic scale

advantages

• quantities can vary in large range (both ! and magnitude)

• easy to build the magnitude plot in dB of a frequency response given in its Bode canonical

form from the magnitudes of the single terms

• easy to represent series of systems

same data

different scales

for abscissa and

ordinates

Monday, November 3, 2014

Page 16: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 16

Bode diagrams

magnitude in dB of the frequency response as a function of the angular

frequency ! with logarithmic scale for !

angle or phase of the frequency response as a function of the angular

frequency ! with logarithmic scale for !∠F (jω)

|F (jω)|dB

we need to find the magnitude (in dB) and phase for the 4 elementary factors

1. constant K (generalized gain)

2. monomial j! (zero or pole in s = 0)

3. binomial 1 + j!¿ (non-zero real zero or pole)

4. trinomial 1 + 2³(j!)/!n + (j!)2/!n2 (complex conjugate pairs of zeros or poles)

ω ∈ R+ = [0,+∞)for

Monday, November 3, 2014

Page 17: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 17

Constant

magnitude

phase

Re

Im

K

20 log10 |K|

∠K

K1 =√10K3 = −

√10

K2 = 0.5

10!2

10!1

100

101

102

!10

!6

0

10

20

frequency (rad/s)

Magnitude (dB)

|K1|dB, |K3|dB

|K2|dB

10!2

10!1

100

101

102

!180

!150

!100

!50

0

frequency (rad/s)

Phase (deg)

! K1, ! K2

! K3

|0.5|dB ≈ −6 dB

|√10|dB = 10dB

|−√10|dB = 10dB

∠−√10 = −180◦ = −π

∠√10 = 0◦

∠0.5 = 0◦

Monday, November 3, 2014

Page 18: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 18

Monomial - Numerator

Re

Im

j!j!

90°|jω|dB = 20 log10 ω

|jω|dB = 20x

magnitude

log scale

phase

10!2

10!1

100

101

102

!40

!20

0

20

40

frequency (rad/s)

Magnitude (dB)

10!2

10!1

100

101

102

0

20

40

60

8090

frequency (rad/s)

Phase (deg)

20 dB/dec

Monday, November 3, 2014

Page 19: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 19

Monomial - Denominator

magnitude

phase

from properties of log and phase

10!2

10!1

100

101

102

!40

!20

0

20

40

frequency (rad/s)

Magnitude (dB)

10!2

10!1

100

101

102

!90!80

!60

!40

!20

0

frequency (rad/s)

Phase (deg)

-20 dB/dec

Monday, November 3, 2014

Page 20: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 20

Binomial - Numerator

|1 + jωτ |dB = 20 log10�

1 + ω2τ2

�1 + ω2τ2 ≈

1 if ω � 1/|τ |

√ω2τ2 if ω � 1/|τ |

1/|τ |

|1 + jωτ |dB ≈

0 dB if ω � 1/|τ |

20 log10 ω + 20 log10 |τ | if ω � 1/|τ |

ω∗ = 1/|τ | |1 + jτ/|τ | |dB = 20 log10√2 ≈ 3 dB

magnitude

approximation wrt the cutoff frequency (corner frequency)

and therefore

at the cutoff frequency

two half-lines approximation: 0 dB until the cutoff frequency, + 20dB/decade after

1 + j!¿

Monday, November 3, 2014

Page 21: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 21

Binomial - Numerator

phase depends on the sign of ¿

Re

Im

1

1 + j!¿

j!¿

¿ > 0

ReIm

1

j!¿

¿ < 0

see how the phase changes as ! increases

Monday, November 3, 2014

Page 22: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 22

Binomial - Numerator phase depends on the sign of ¿

case ¿ > 0

case ¿ < 0

∠(1 + jωτ) ≈

0 if ω � 1/|τ |

π2 if ω � 1/|τ | and τ > 0

∠(1 + jωτ) ≈

0 if ω � 1/|τ |

−π2 if ω � 1/|τ | and τ < 0

the two asymptotes are connected by a segment starting a decade before (0.1/| ¿ | ) the cutoff

frequency and ending a decade after (10/| ¿ |). The approximation is a broken line.

ω∗ = 1/|τ |at the cutoff frequency ∠(1 + jτ/|τ |) =

π4 if τ > 0

−π4 if τ < 0

1 + j!¿

0

¼/2

-¼/2

1/| ¿ |

Monday, November 3, 2014

Page 23: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 23

Binomial - numerator1 + j!¿

magnitude

phase¿ > 0

!10

03

10

20

30

40

frequency (rad/s)

Magnitude (dB)

!90

!45

0

frequency (rad/s)

Phase (deg)

0

45

90

frequency (rad/s)

Phase (deg)

1/| ¿ |

0.1/| ¿ | 10/| ¿ |

phase¿ < 0

0.1/| ¿ | 10/| ¿ |1/| ¿ |

Monday, November 3, 2014

Page 24: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 24

Binomial - denominator

1 /(1 + j!¿)

!40

!30

!20

!10

!30

10

frequency (rad/s)

Magnitude (dB)

!90

!45

0

frequency (rad/s)

Phase (deg)

0

45

90

frequency (rad/s)

Phase (deg)

magnitude

phase¿ > 0

1/| ¿ |

0.1/| ¿ | 10/| ¿ |

phase¿ < 0

0.1/| ¿ | 10/| ¿ |1/| ¿ |

Monday, November 3, 2014

Page 25: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 25

Trinomial

����1 + 2ζ

ωn(jω) +

(jω)2

ω2n

���� =

����1−ω2

ω2n

+ j2ζω

ωn

����

=

��1− ω2

ω2n

�2

+

�4ζ2

ω2

ω2n

|TRINOMIAL| ≈

1 if ω � ωn

��ω2

ω2n

�2=

ω2

ω2n

if ω � ωn

|TRINOMIAL|dB ≈

0 dB if ω � ωn

40 log10 ω − 20 log10 ω2n if ω � ωn

magnitude

approximation wrt !n

Monday, November 3, 2014

Page 26: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 26

Trinomial

|ζ| 0 0.5 1/√2 ≈ 0.707 1

|TRIN |dB in ωn −∞ 0 dB 3 dB 6 dB

in ! = !n the magnitude | TRINOMIAL | is equal to 2 | ³ |

large variation of the magnitude in ! = !n depending upon the value of the damping coefficient ³

no approximation around the natural frequency !n

Monday, November 3, 2014

Page 27: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 27

Trinomial

∠�1 + 2

ζ

ωn(jω) +

(jω)2

ω2n

�=

0 if ω � ωn

π if ω � ωn and ζ ≥ 0

−π if ω � ωn and ζ < 0

Phase

transition between - ¼ and ¼ is symmetric wrt !n and becomes more abrupt as | ³ |

becomes smaller. When ³ = 0 the phase has a discontinuity in !n

!"

#$# %

#

! !

&'

!#()

!

#

(

)"

"

"

"

"" " "How does a generic complex root

varies in the plane as a function of !

Monday, November 3, 2014

Page 28: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 28

Trinomial - numerator

!40

!20

0

20

40

60

frequency (rad/s)

Magnitude (dB)

0

1

0.30.1

0.5

0.7

0.30.1

0.5

0.7

0

45

90

135

180

frequency (rad/s)

Phase (deg)

01

0.1

0.3

0.5

0.7

0.1

0.3

0.5

0.7

!180

!135

!90

!45

0

frequency (rad/s)

Phase (deg) 0.01

1

magnitude

phase

phase

ζ ≥ 0

ζ < 0

0.1 !n 10 !n!n

0.1 !n 10 !n!n

Monday, November 3, 2014

Page 29: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 29

Trinomial - denominator

!60

!40

!20

0

20

40

frequency (rad/s)

Magnitude (dB) 0

1

!180

!135

!90

!45

0

frequency (rad/s)

Phase (deg) 0

1

0

45

90

135

180

frequency (rad/s)

Phase (deg)

0.011

magnitude

phase

phase

ζ ≥ 0

ζ < 0

0.1 !n 10 !n!n

0.1 !n 10 !n!n

Monday, November 3, 2014

Page 30: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 30

Trinomial

roots =

� −ωn if ζ = 1

ωn if ζ = −1

When | ³ | = 1 the trinomial reduces to a product of identical binomials (real roots)

�1 + 2

ζ

ωns+

s2

ω2n

ζ=±1

=

�1± s

ωn

�2

and therefore the magnitude and phase coincides with that of a double binomial with corner

frequency1

|τ | = ωn

2× (3 dB) = 6dB (numerator)

2× (−3 dB) = −6 dB (denominator)

that is in ! = !n when | ³ | = 1

example: MSD system with critical value for the damping (µ2 = 4km)

Monday, November 3, 2014

Page 31: Control Systems Bode plots L. Lanari

Lanari: CS - Bode plots 31

Trinomial

|F (jωr)| =1

2|ζ|�1− ζ2

ωr = ωn

�1− 2ζ2

|ζ| < 1/√2 ≈ 0.707if the magnitude of a trinomial factor at the denominator has a peak

at the resonance frequency

resonance

peak

(similarly for the anti-resonance peak)

!20

15

14

34

frequency (rad/s)

Magnitude (dB)

0.01

!40

!20

0

20

frequency (rad/s)

Magnitude (dB)

0.01

0.3

0.1

0.5

resonancepeak

anti-resonancepeak

Monday, November 3, 2014