control systems engineering lecture

Upload: mpho-senior

Post on 14-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Control Systems Engineering Lecture

    1/14

    Lecture4

    ControlSystemsIV

    CSY401T

    A.A.Yusuff

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    2/14

    DesignviaFrequencyResponse

    Gainadjustmentforcesustouseatransient

    responseandessforthepointsontheRL

    CascadecompensatorchangetheRL

    FrequencyresponsedesignusesBodeplots

    insteadofRL

    2

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    3/14

    ComparisonB/WRL&Freq.Resp.

    3

    Frequencyresponsemethod RootLocusmethod

    *Neednocomputertodesign

    *Usesasympto9cBodeplot

    *Computerisonlyusedforverifica9on

    *Notasintui9veasRL-methods

    (somewhatofanart)*Reshapeopenloopresponsetomeet

    bothPM(%OS)andBW(Ts,Tp)requirements

    * Can design deriva9ve compensa9on to

    speed up the design (Lead design)& atthe

    same 9me get Ess to be met by lead

    compensatoralone.*Essisbuiltintothecompensatordesign

    *Requiresacomputerduringdesign

    *Repeatedtrialsneededtofinda

    goodsolu9on

    *Caniden9fyspecificloca9onof

    rootsgivingustherequired

    specifica9on

    *Aninfinitenumberofsolu9onis

    possibleforleadcompensatordesign

    *Requiresnumeroustriestoget

    requiredEss

    PMisrelatedto%OS BWisrelatedto,dampingra9o,Ts,Tp

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    4/14

    UnderlyingConcepts

    4

    Stability,Transientresponse,Steadystateerror

    %OSIncreasingPM

    IncreasesspeedofresponseBW

    Ess Whenlowfreq.magresponseisincreased,

    evenifhighfreq.responseisaenuated

    Lagcompensa9onLeadcompensa9on

    Lag-Leadcompensa9on

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    5/14

    5

    Transientresponseviagainadjustment

    %OSischangedbyvaryingthePM.Fora

    desired%OS.Weonlyhavetomakea

    gainadjustment

    Procedurefordetermininggainto

    meet%OSrequirement

    Welluseopenloopfreq.response.

    Weassumedominant2ndorderpoles.

    DesignProcedure

    (1)DrawBodemagnitudeandphaseplot

    forconvenientvalueofgain(2)DeterminerequiredPMfrom%OS

    (3)FindonBodephasediagramthat

    yieldsrequiredPM

    (4)ChangegainbyABtoforce

    magnitudecurvetogothrough0dBat

    GainABisrequiredgaintoenforce

    requiredPM

    = ln(%OS/100)q2 + ln2(%OS/100)

    m = atan1

    0

    @2

    q2+p1 + 44

    1

    ADesign via Frequency Response

    M(dB)

    \ ARequiredincrease in gain

    Phase (degrees)i.

    * M

    **

    1 D\

    logo

    log (o

    -180

    Bod e plots showing gain adjustment for a desired phase margin

    628 Chapter 11 Design via Frequency ResponseM(dB)

    \ ARequired

    increase in gainPhase (degrees)

    i.

    * M

    **

    1 D\

    logo

    log (o

    -180FIGURE 11.1 Bo de plots show ing gain adju stm ent for a desire d phas e marg inWednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    6/14

  • 7/27/2019 Control Systems Engineering Lecture

    7/14

    7

    LagCompensa9on

    WhatdoesalagCompensatordo?

    1.Improvesthesta9cerrorconstant

    byincreasingonlythelowfrequencygainwithoutcrea9nginstability

    2.IncreasesPMtoyielddesired

    transientresponse

    *UncompensatedsystemisunstablesinceM>0

    @-180deg.

    *Lagcompensatorreduceshighfrequencygain

    andleaveslowfrequencygainunchanged*Lowfrequencygaincanbemadelargew/o

    instability

    *Stabiliza9oneffectisduetogain

  • 7/27/2019 Control Systems Engineering Lecture

    8/14

    8

    . . . , . = . -poles. Equation (10.73) yields a 59.2 phase margin for a damping ratio of 0.6.

    Desiredpositionff(.v)

    Preamplifier

    - * * K

    Poweramplifier100(s + 100)

    Motorandload1(s + 36)

    Shallvelocity1s

    Shaltpositioncm

    FIGURE 11. 2 System for Ex am ple 11.1%OS=.5 tenfold improvement in steady-state error

    K=583

    0dB

    -24.2dB,@.61

    .61rad/s

    0.61rad/s

    -20dB/dec

    w1

    -24.2dB,0.61rad/s

    -20dB/dec=(0dB-(-24.2dB))/(log(w1)-log(0.61))

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    9/14

    Gc(s) = s +1

    T

    s + 1T

    , > 1

    |Gc(s)| = 1

    9

    DesignProcedureforlagcompensator

    1.Choosegaintosa9sfyEssspecifica9onandplotBodeplotforthevalueofgain

    2.Findthefreq.wherePMis15-12deggreaterthanPMthatyieldsdesiredtransient

    response.(The5-12degcompensatesforthelagcompensatorphasecontribu9onatthePM

    freq.)

    3.ChooselagcompensatorforwhichcompositeBodediagramgoesthrough0dBatthefreqin

    (2)asfollows:

    (a)Drawcompensatorhigh.freq.asymptotestoyield0dBatfreq.foundin(2)

    (b)Selectupperbreakfreq.onedecadelowerthanfreq.foundin(2)

    (c)Selectlowfreq.asymptotestobe0dB(d)Connectthecompensatorhighandlowfreq.asymptoteswith-20dB/declinetolocate

    lowerbreakfreq.

    4.ResetsystemgainKtocompensateforaenua9oninlagnetworksoastokeepsta9cerror

    constantthatsameasthatfoundinstep(1)

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    10/14

    0dB MagdB

    log(!1) log(!s)= 20dB/decade

    Lag

    10

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    11/14

    11

    LeadCompensa9on

    WhendesigningleadcompensatorwithBodeplotswewanttochangethephasediagram

    sothatforanincreaseinPMwereduce%OSandincreasingthesystemgaincrossover

    freq.whichresultsinafastertransientresponse.

    Visualizingleadcompensa9on

    *LeadcompensatorincreasesBWbyincreasingthe

    gaincrossoverfreq.

    *Atthesame9methephasediagramisraisedat

    higherfreq.

    *ThisresultsinincreasingPMandahigherPMfreq.

    *Inthe9medomain%OSdecreases(PMincreases)

    withsmallerTp(PMfreq.increases)results.

    -UncompensatedsystemhassmallPMand

    lowPMfreq.

    -Usingphaseleadcompensator,weraisedphaseplotathigherfreq.

    -Atthesame9megaincrossoverfreq.inthe

    magnitudeplotincreases

    -ThisyieldalargerPM,ahigherPMfreq.and

    BWincreases

    636 Chapter 11 Design via Frequency ResponseMfdB)

    Phase (degrees)0

    CompensatorCompensatedC system *- logoUncompensatedsystemCompensator

    CompensatedsystemUncompensatedsystem

    -270

    FIGURE 11.7 Visualizing lead compensationLead Compensator Frequency Response

    Wednesday, August 21, 13

  • 7/27/2019 Control Systems Engineering Lecture

    12/14

    !max =1

    Tp

    |Gc(j!max)| =1p

    max = sin1

    1

    1 +

    12

    Advantagesoff-responsedesignoverRLdesign

    *WecanimplementaEssandthendesignforthetransientresponse

    *Specifica9onoftransientresponsewithEssconstraintiseasiertoimplementwith

    f-responsetechniquesthanwithRL.

    *No9cethatini9alsloperemainsunaffectedbytransientdesign(Ini9alslope

    determineEss)

    *Peakofphasecurvevaryinmaximumangle,andinfreq.wheremaximumangleoccurs.

    *DCgainissettounitybyfactor

    11.4 Lead Com pensat ion 6 3 720181614

    5 12j ? 106420

    / > .,^y* *H-^*ffr

    i i i ! ^^ -p - C i .**

    ^/3=0.2

    " /3=0.3"/3=0.4 " " = 0.5

    0.1 10 100

    60504030 ., ^

    /3=0/ "

    \ ^ -

    A)

    Jj=t'**iz?A

    3=).3

    ).2 ,\ N

    S

    11.4 Lead Com pensa tion 6 3 7201816145 12j ? 106420

    / > .,^y* *H

    -^*ffr

    i i i ! ^^ -p - C i .**^

    /3=0.2"/3=0.3"

    /3=0.4 " " = 0.5

    0.1 10 100

    6050403020100 ^

    d*j^= 1^L

  • 7/27/2019 Control Systems Engineering Lecture

    13/14

    |Gc(j!max)| =1p

    !max =1

    Tp

    c(s) = 1

    s +1

    T

    s + 1T

    13

    DesignProcedureofLeadcompensator

    max = sin1

    1

    1 +

    Wednesday, August 21, 13 in Eq. (11.2) and th e quanti ty ft for the lead network in Eq. (11.6). For our design, a. . . . . ,

  • 7/27/2019 Control Systems Engineering Lecture

    14/14

    Gc(s) = Glead(s)Glag(s) =

    s + 1

    T1

    s + T1

    !s + 1 1

    T2

    s + 1T2

    !

    14

    LagLeadCompensa9on

    *Firsttermproducesleadcompensa9on.Secondtermproduceslagcompensa9on

    *Constraintfollowedhereisthatsinglevaluereplacesthequan9tyforthelag

    networkandthequan9tyfortheleadnetwork

    *Forourdesignandmustbereciprocalofeachother

    and f3 must be reciprocals of each other. An example of the frequency response ofthe passive lag-lead is shown in Figure 11.11.We are now ready to enumerate a design procedure.

    o- 5

    - 1 0* - M

    - 2 5- 3 0- 3 5

    X : \: \ / = 1> :;^SNN3Q\ 4 0 X5 U V0vX*= 2: : ^ *

    $'/

    / ^

    ,. /0.001 0.01 0.1 1

    Frequency (rad/s)10 100

    0.001 0.01 0.1 1Frequency (rad/s)IGURE 11.11 Sam ple frequency response curves for a lag-lead compen sator, Gc{s) = [(s + l)(s + 0.1)]/ Gr+y)(*+^i

    Wednesday, August 21, 13