copy of rectangular tapered footing.xls

15
F 1 0.300 0.450 0.300 0.450 0.500 0.650 2.100 2.100 0.450 0.250 0.000 2.679 0.050 0.050 0.400 0.400 2.500 1.800 500 Wt. of footing (t) = 3.747 25 Wt. of soil over footing (t) 17.152 10.0 20.899 14.8222 = 26.723 Node 6 = 1.808 Load Case 6 = 0.035 47.621 = 1.5 0 11.99 9.65 11.95 9.60 4.74 M (t-m) = 4.95 5.17 7.42 7.75 0.928 0.745 0.223 0.178 447 462 V (t) = 6.24 6.38 9.36 9.57 1.162 1.194 0.317 0.325 0.153 0.153 0.038 0.037 733 751 38.15 0.461 1.250 Hence OK DESIGN OF FOOTING MARKED :- cl (m) = cb (m) = l (m) = b (m) = l' (m) = b' (m) = L (m) = B (m) = D1 (m) = D2 (m) = Dp (m) = Depth of foundation 'DF' below G.L (m) = clear cover cx to R/F for forces about X-axis (m) = clear cover cy to R/F for forces about Y-axis (m) = effective depth 'd1' for forces about X-axis (m) = effective depth 'd2' for forces about Y-axis (m) = Unit wt. of Conc.'gc' Unit wt. of Soil. 'gs' Self wt. of footing and weight of soil on footing : fy (N/mm 2 ) = fck (N/mm 2 ) = Net Bearing Capacity 'qnet' (t/m 2 ) = Footing Wt.+Soil Wt.= (P1 )(t Gross Bearing Capacity 'qgross' =(qnet+DF x gs ) (t/m 2 ) = Static case : P (t) Mx (t-m) My (t-m) Total Load(PT = P + P1 ) (t) partial safety fact percent increase in qnet /qgros Pressure under footing (t/m 2 ) = PT /(L x B) + Mx x 6 /(L x B 2 ) + My x 6 /(B x L 2 ) Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m 2 ) = Taking average of pressure and calculating moment at the face of pedestal : About 1-1 : About 2-2 : Mu = (fs x M)(t-m) = ku (N/mm 2 ) = Mu /(l' x d1 2 ) = Mu /(b' x d2 2 ) = pt = A st (mm 2 ) = pt x l' x d1 /100 = pt x b' x d2/100 = Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal : At 'd 1' from 1-1 : At 'd 2' from 2-2 : Vu =(fs x V)(t) = tv(N/mm 2 ) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm 2 ) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)} where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b where b2'=[b'+2x{d2-(l'-l)/2}x( d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/ d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2 tv(N/mm 2 ) = pt = A st (mm 2 ) = pt x Agross1 = pt x Agross2 = Check for two-way Shear at "d/2" from the face of pedestal : V(t) = {LxB-(l+d)x(b+d)}xqnet = tv = Vu /(po x d) (N/mm 2 ) where po = ( l+b+2d ) tv(N/mm 2 ) = (ksx0.25x(fck) 1/2 ) (N/mm 2 ) = where ks=(1+E/F)but> 1.0 (a+b)/2 (c+d)/2 DF D1 D2 a b c da cl cb X X Y Y Mx Mx My My (b+d)/2 (a+c)/2 2 2 1 1 P a b c d a L l ' b B l b' Dp (a+b)/2 (c+d)/2 DF D1 D2 a b c da cl cb X X Y Y Mx Mx My MZ (b+d)/2 (a+c)/2 2 2 1 1 P a b c d a L l ' b B l b' Dp

Upload: sukanta-mondal

Post on 19-Dec-2015

226 views

Category:

Documents


4 download

TRANSCRIPT

F 1 0.300

0.450

0.3000.450

0.500

0.650

2.100

2.100

0.450

0.250

0.000

2.679

0.050

0.050

0.400

0.400

2.500

1.800

500

Wt. of footing (t) = 3.747 25

Wt. of soil over footing (t) = 17.152 10.0

20.899 14.8222

= 26.723 Node 6

= 1.808 Load Case 6

= 0.035

47.621

= 1.5

0

11.99 9.65 11.95 9.60

4.74

M (t-m) = 4.95 5.17

7.42 7.75

0.928 0.745

0.223 0.178

447 462

V (t) = 6.24 6.38

9.36 9.57

1.162 1.194

0.317 0.325

0.153 0.153

0.038 0.037

733 751

38.15

0.461 1.250

Hence OK

DESIGN OF FOOTING MARKED :- cl (m) =

cb (m) =

l (m) =b (m) =

l' (m) =

b' (m) =

L (m) =

B (m) =

D1 (m) =

D2 (m) =

Dp (m) =

Depth of foundation 'DF' below G.L (m) =

clear cover cx to R/F for forces about X-axis (m) =

clear cover cy to R/F for forces about Y-axis (m) =

effective depth 'd1' for forces about X-axis (m) =

effective depth 'd2' for forces about Y-axis (m) =

Unit wt. of Conc.'gc' (t/m3) =

Unit wt. of Soil. 'gs' (t/m3) =

Self wt. of footing and weight of soil on footing: fy (N/mm2) =

fck (N/mm2) =

Net Bearing Capacity 'qnet'

(t/m2) =

Footing Wt.+Soil Wt.= (P1 )(t) =

Gross Bearing Capacity 'qgross'

=(qnet+DF x gs )(t/m2) =

Static case :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=

d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

My

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

MZ

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

Node 6L/C 9

= 28.688

= 1.929

= 3.931

49.587

= 1.5

25

15.04 12.54 9.95 7.45

4.74

M (t-m) = 5.31 7.08

7.96 10.62

0.995 1.021

0.240 0.247

481 642

V (t) = 6.70 8.87

10.04 13.30

1.162 1.1940.317 0.325

0.164 0.213

0.044 0.075

733 751

38.15

0.461 1.250

Hence OK

Seismic/Wind case in X-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

a b c d a

a b c d a

Node 6L/C 8

= 27.658

= 7.790

= 0.045

48.557

= 1.5

25

16.09 5.99 16.03 5.93

4.74

M (t-m) = 7.14 5.35

10.72 8.03

1.340 0.772

0.330 0.184

660 479

V (t) = 9.19 6.61

13.79 9.91

1.162 1.1940.317 0.325

0.226 0.158

0.086 0.040

733 751

38.15

0.461 1.250

Hence OK

R/F REQD 733.47 751.03

R/F PROVIDED 1373.75 1373.75Provided 10 dia @ 120 Provided 10 dia @ 120

Ast = 654 Ast = 654

Seismic/Wind case in Y-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

mm2/m mm2/m

a b c d a

a b c d a

F 2 0.450

0.300

0.4500.300

0.650

0.500

2.400

2.400

0.600

0.300

0.000

2.679

0.050

0.050

0.550

0.550

2.500

1.800

500

Wt. of footing (t) = 6.186 25

Wt. of soil over footing (t) = 21.050 10.0

27.236 14.8222

= 36.074 Node 11

= 0.214 Load Case 6

= 1.658

63.310

= 1.5

0

11.80 11.62 10.36 10.18

4.73

M (t-m) = 8.37 7.74

12.56 11.61

0.639 0.768

0.151 0.183

541 504

V (t) = 7.60 6.99

11.41 10.49

1.479 1.477

0.408 0.396

0.126 0.119

0.025 0.022

1087 1059

49.10

0.362 1.250

Hence OK

DESIGN OF FOOTING MARKED :- cl (m) =

cb (m) =

l (m) =b (m) =

l' (m) =

b' (m) =

L (m) =

B (m) =

D1 (m) =

D2 (m) =

Dp (m) =

Depth of foundation 'DF' below G.L (m) =

clear cover cx to R/F for forces about X-axis (m) =

clear cover cy to R/F for forces about Y-axis (m) =

effective depth 'd1' for forces about X-axis (m) =

effective depth 'd2' for forces about Y-axis (m) =

Unit wt. of Conc.'gc' (t/m3) =

Unit wt. of Soil. 'gs' (t/m3) =

Self wt. of footing and weight of soil on footing: fy (N/mm2) =

fck (N/mm2) =

Net Bearing Capacity 'qnet'

(t/m2) =

Footing Wt.+Soil Wt.= (P1 )(t) =

Gross Bearing Capacity 'qgross'

=(qnet+DF x gs )(t/m2) =

Static case :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=

d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

My

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

MZ

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

Node 11L/C 9

= 41.862

= 0.257

= 7.649

69.098

= 1.5

25

15.43 15.20 8.79 8.56

4.73

M (t-m) = 9.72 11.05

14.58 16.58

0.741 1.096

0.177 0.266

632 732

V (t) = 8.83 10.20

13.24 15.30

1.479 1.4770.408 0.396

0.146 0.173

0.034 0.049

1087 1059

49.10

0.362 1.250

Hence OK

Seismic/Wind case in X-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

a b c d a

a b c d a

Node 11L/C 10

= 36.880

= 3.536

= 1.687

64.116

= 1.5

25

13.40 10.33 11.93 8.86

4.73

M (t-m) = 9.91 7.91

14.86 11.87

0.756 0.785

0.180 0.187

645 516

V (t) = 9.14 7.15

13.71 10.72

1.479 1.4770.408 0.396

0.151 0.121

0.037 0.023

1087 1059

49.10

0.362 1.250

Hence OK

R/F REQD 1087.48 1058.97

R/F PROVIDED 1884.00 1884.00Provided 10 dia @ 100 Provided 10 dia @ 100

Ast = 785 Ast = 785

Seismic/Wind case in Y-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

mm2/m mm2/m

a b c d a

a b c d a

F 3 0.380

0.600

0.3800.600

0.580

0.800

2.700

2.700

0.600

0.300

0.000

2.679

0.050

0.050

0.550

0.550

2.500

1.800

500

Wt. of footing (t) = 7.872 25

Wt. of soil over footing (t) = 26.427 10.0

34.299 14.8222

= 45.522 Node 3

= 1.306 Load Case 6

= 0.092

79.821

= 1.5

0

11.38 10.58 11.32 10.52

4.70

M (t-m) = 9.73 11.38

14.60 17.07

0.832 0.705

0.199 0.168

636 738

V (t) = 8.87 10.32

13.30 15.48

1.584 1.607

0.408 0.423

0.131 0.148

0.027 0.035

1216 1256

62.21

0.408 1.250

Hence OK

DESIGN OF FOOTING MARKED :- cl (m) =

cb (m) =

l (m) =b (m) =

l' (m) =

b' (m) =

L (m) =

B (m) =

D1 (m) =

D2 (m) =

Dp (m) =

Depth of foundation 'DF' below G.L (m) =

clear cover cx to R/F for forces about X-axis (m) =

clear cover cy to R/F for forces about Y-axis (m) =

effective depth 'd1' for forces about X-axis (m) =

effective depth 'd2' for forces about Y-axis (m) =

Unit wt. of Conc.'gc' (t/m3) =

Unit wt. of Soil. 'gs' (t/m3) =

Self wt. of footing and weight of soil on footing: fy (N/mm2) =

fck (N/mm2) =

Net Bearing Capacity 'qnet'

(t/m2) =

Footing Wt.+Soil Wt.= (P1 )(t) =

Gross Bearing Capacity 'qgross'

=(qnet+DF x gs )(t/m2) =

Static case :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=

d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

My

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

MZ

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

Node 3L/C 7

= 45.058

= 1.380

= 7.684

79.357

= 1.5

25

13.65 12.81 8.96 8.12

4.70

M (t-m) = 9.66 14.26

14.49 21.40

0.826 0.884

0.198 0.212

631 934

V (t) = 8.81 13.17

13.21 19.75

1.584 1.6070.408 0.423

0.130 0.189

0.027 0.058

1216 1256

62.21

0.408 1.250

Hence OK

Seismic/Wind case in X-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

a b c d a

a b c d a

Node 3L/C 8

= 48.828

= 15.569

= 0.103

83.127

= 1.5

25

16.18 6.69 16.12 6.63

4.70

M (t-m) = 15.20 12.21

22.80 18.31

1.300 0.757

0.319 0.181

1018 794

V (t) = 14.26 11.07

21.39 16.61

1.584 1.6070.408 0.423

0.211 0.159

0.074 0.040

1216 1256

62.21

0.408 1.250

Hence OK

R/F REQD 1215.87 1256.10

R/F PROVIDED 2543.40 2543.40Provided 12 dia @ 120 Provided 12 dia @ 120

Ast = 942 Ast = 942

Seismic/Wind case in Y-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

mm2/m mm2/m

a b c d a

a b c d a

F 4 0.600

0.380

0.6000.380

0.800

0.580

3.200

3.000

0.600

0.300

0.000

2.679

0.050

0.050

0.550

0.550

2.500

1.800

500

Wt. of footing (t) = 10.248 25

Wt. of soil over footing (t) = 35.072 10.0

45.320 14.8222

= 65.952 Node 14

= 0.367 Load Case 6

= 2.418

111.272

= 1.5

0

12.14 11.99 11.20 11.04

4.72

M (t-m) = 19.01 18.29

28.52 27.43

1.178 1.564

0.288 0.390

1265 1244

V (t) = 16.85 16.27

25.27 24.41

1.693 1.487

0.438 0.438

0.200 0.208

0.067 0.072

1513 1405

85.31

0.559 1.250

Hence OK

DESIGN OF FOOTING MARKED :- cl (m) =

cb (m) =

l (m) =b (m) =

l' (m) =

b' (m) =

L (m) =

B (m) =

D1 (m) =

D2 (m) =

Dp (m) =

Depth of foundation 'DF' below G.L (m) =

clear cover cx to R/F for forces about X-axis (m) =

clear cover cy to R/F for forces about Y-axis (m) =

effective depth 'd1' for forces about X-axis (m) =

effective depth 'd2' for forces about Y-axis (m) =

Unit wt. of Conc.'gc' (t/m3) =

Unit wt. of Soil. 'gs' (t/m3) =

Self wt. of footing and weight of soil on footing: fy (N/mm2) =

fck (N/mm2) =

Net Bearing Capacity 'qnet'

(t/m2) =

Footing Wt.+Soil Wt.= (P1 )(t) =

Gross Bearing Capacity 'qgross'

=(qnet+DF x gs )(t/m2) =

Static case :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=

d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

My

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

MZ

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

Node 14L/C 7

= 67.238

= 0.431

= 17.742

112.558

= 1.5

25

15.28 15.10 8.35 8.17

4.72

M (t-m) = 19.41 24.16

29.11 36.24

1.203 2.066

0.294 0.532

1293 1696

V (t) = 17.20 21.73

25.80 32.59

1.693 1.4870.438 0.438

0.205 0.278

0.070 0.136

1513 1592

85.31

0.559 1.250

Hence OK

Seismic/Wind case in X-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

a b c d a

a b c d a

Node 14L/C 10

= 67.029

= 8.091

= 2.335

112.349

= 1.5

25

13.84 10.47 12.93 9.56

4.72

M (t-m) = 22.45 18.54

33.68 27.81

1.392 1.585

0.344 0.396

1512 1263

V (t) = 20.04 16.50

30.06 24.74

1.693 1.4870.438 0.438

0.238 0.211

0.097 0.075

1513 1405

85.31

0.559 1.250

Hence OK

R/F REQD 1513.14 1696.07

R/F PROVIDED 3617.28 3391.20Provided 12 dia @ 100 Provided 12 dia @ 100

Ast = 1130 Ast = 1130

Seismic/Wind case in Y-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

mm2/m mm2/m

a b c d a

a b c d a

F 5 0.600

0.380

0.6000.380

0.800

0.580

2.900

2.900

0.600

0.300

0.000

2.679

0.050

0.050

0.550

0.550

2.500

1.800

500

Wt. of footing (t) = 9.026 25

Wt. of soil over footing (t) = 30.619 10.0

39.645 14.8222

= 52.712 Node 15

= 0.291 Load Case 6

= 3.251

92.357

= 1.5

0

11.85 11.71 10.25 10.11

4.71

M (t-m) = 14.55 13.15

21.82 19.72

0.902 1.124

0.217 0.273

953 872

V (t) = 13.02 12.01

19.52 18.01

1.615 1.574

0.434 0.421

0.171 0.163

0.048 0.043

1367 1330

73.41

0.481 1.250

Hence OK

DESIGN OF FOOTING MARKED :- cl (m) =

cb (m) =

l (m) =b (m) =

l' (m) =

b' (m) =

L (m) =

B (m) =

D1 (m) =

D2 (m) =

Dp (m) =

Depth of foundation 'DF' below G.L (m) =

clear cover cx to R/F for forces about X-axis (m) =

clear cover cy to R/F for forces about Y-axis (m) =

effective depth 'd1' for forces about X-axis (m) =

effective depth 'd2' for forces about Y-axis (m) =

Unit wt. of Conc.'gc' (t/m3) =

Unit wt. of Soil. 'gs' (t/m3) =

Self wt. of footing and weight of soil on footing: fy (N/mm2) =

fck (N/mm2) =

Net Bearing Capacity 'qnet'

(t/m2) =

Footing Wt.+Soil Wt.= (P1 )(t) =

Gross Bearing Capacity 'qgross'

=(qnet+DF x gs )(t/m2) =

Static case :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=

d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

My

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

(a+b)/2 (c+d)/2

DFD1D2

a

b

c

d a

cl

cbXX

Y

Y

MxMx

My

MZ

(b+d)/2

(a+c)/2

2

2

1 1

P

a b c d a

L

l'

bB

l

b'

Dp

Node 15L/C 7

= 55.572

= 0.239

= 18.317

95.217

= 1.5

25

15.89 15.77 6.87 6.76

4.71

M (t-m) = 15.31 19.03

22.96 28.54

0.949 1.627

0.229 0.407

1006 1299

V (t) = 13.70 17.72

20.55 26.57

1.615 1.5740.434 0.421

0.180 0.240

0.053 0.098

1367 1330

73.41

0.481 1.250

Hence OK

Seismic/Wind case in X-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

a b c d a

a b c d a

Node 15L/C 10

= 54.207

= 9.578

= 3.175

93.852

= 1.5

25

14.30 9.58 12.73 8.02

4.71

M (t-m) = 18.69 13.46

28.04 20.19

1.159 1.151

0.282 0.280

1242 894

V (t) = 16.94 12.29

25.40 18.44

1.615 1.5740.434 0.421

0.223 0.166

0.084 0.045

1367 1330

73.41

0.481 1.250

Hence OK

R/F REQD 1367.39 1330.21

R/F PROVIDED 2731.80 2731.80Provided 12 dia @ 120 Provided 12 dia @ 120

Ast = 942 Ast = 942

Seismic/Wind case in Y-direction :

P (t)

Mx (t-m)

My (t-m)

Total Load(PT = P + P1 ) (t) =

partial safety factor 'fs'

percent increase in qnet /qgross =

Pressure under footing(t/m2) = PT /(L x B) + Mx x 6 /(L x B2) + My x 6 /(B x L2)

Pressure due to Wt.of footing + Wt.of soil = P1 /(L x B)(t/m2) =

Taking average of pressure and calculating moment at the face of pedestal :About 1-1 : About 2-2 :

Mu = (fs x M)(t-m) =

ku (N/mm2) = Mu /(l' x d12) = Mu /(b' x d2

2) =

pt =

A st (mm2) = pt x l' x d1 /100 = pt x b' x d2/100 =

Taking average of pressure and calculating one-way shear force at "d" from the face of pedestal :

At 'd1' from 1-1: At 'd2' from 2-2:

Vu =(fs x V)(t) =

tv(N/mm2) =Vu/(Lx(D2-cx)+(L+b1')/2x{d1'-(D2-cx)} tv(N/mm2) =Vu/(Bx(D2-cy)+(BL+b2')/2x{d2'-(D2-cy)}

where b1'=[l'+2x{d1-(b'-b)/2}x(L-l')/(B-b')](m)= where b2'=[b'+2x{d2-(l'-l)/2}x(B-b')/(L-l')](m)=d1'=[(D2-cx)+{d1 -(D2-cx)}/{(B-b')/2}x{(B-b)/2-d1}]= d2'=[(D2-cy)+{d2 -(D2-cy)}/{(L-l')/2}x{(L-l)/2-d2}]=

tv(N/mm2) =

pt =

A st (mm2) = pt x Agross1 = pt x Agross2 =

Check for two-way Shear at "d/2" from the face of pedestal :

V(t) = {LxB-(l+d)x(b+d)}xqnet =

tv = Vu /(po x d) (N/mm2) where po = ( l+b+2d )

tv(N/mm2) = tc =(ksx0.25x(fck)1/2) (N/mm2) =

where ks=(1+E/F)but>1.0

mm2/m mm2/m

a b c d a

a b c d a