correction to: nature geoscience 10, 788–792 (2017); published … · 2017-11-14 · correction...

24
CORRECTION https://doi.org/10.1038/s41561-017-0025-0 Author Correction: Earth’s early O 2 cycle suppressed by primitive continents Matthijs A. Smit and Klaus Mezger Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In the Supplementary Information file originally published, notes were mistakenly omitted from Supplementary Table 4. This has now been corrected. Published: xx xx xxxx https://doi.org/10.1038/s41561-017-0025-0 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. NATURE GEOSCIENCE | www.nature.com/naturegeoscience

Upload: others

Post on 29-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

CorreCtionhttps://doi.org/10.1038/s41561-017-0025-0

Author Correction: Earth’s early O2 cycle suppressed by primitive continentsMatthijs A. Smit and Klaus Mezger

Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017.

In the Supplementary Information file originally published, notes were mistakenly omitted from Supplementary Table 4. This has now been corrected.

Published: xx xx xxxx https://doi.org/10.1038/s41561-017-0025-0

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature GeoscieNce | www.nature.com/naturegeoscience

Page 2: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

In the format provided by the authors and unedited.

SUPPLEMENTARY INFORMATION

“Primitive continents suppressed Earth’s early O2 cycle” by Smit, M.A. & Mezger, K.

Table S1: Summary of Cr/U for terrestrial reservoirs and Post-Archean Australian Shale (PAAS).

Reservoir

Ref.

Cr (ppm)

U (ppm)

Δ(Cr/U)

SiO2 (wt%)

DMM 1 2500 0.0047 2.69 44.90

2 1950 0.0032 2.73 44.71

PM 3 2625 0.0203 2.30 44.80

4 2520 0.0218 2.27 45.10

5 2532 0.02 2.29 45.40

6 3465 0.026 2.31 45.10

7 2500 0.036 2.12 44.92

BSE 8 3079 0.0203 2.34 45.00

3 2625 0.0203 2.30 44.92

N-MORB 10 161 0.03 1.41 50.01

10 251 0.03 1.53 50.01

11 253 0.061 1.33 50.16

F-MORB 12 357 0.23 1.06 50.51

C-Arc 13 141 1.20 0.34 57.30

I-Arc 14 47 1.50 -0.03 64.63

15 55 1.00 0.12 57.97

BC 13 119 1.42 0.24 60.60

16 92 1.20 0.22 60.60

17 100 2.70 0.01 60.40

18 135 1.30 0.30 60.60

19 90 1.80 0.10 64.50

15 185 0.91 0.49 58.00

20 55 1.25 0.06 58.00

21 56 1.30 0.05 63.20

22 145 1.60 0.26 61.01

23 126 1.70 0.21 61.61

UCC 24 112 2.4 0.08 66.33

14 92 2.7 -0.01 66.60

16 80 1.55 0.10 67.97

18 92 2.70 -0.01 66.60

25 35 2.45 -0.25 66.80

26 85 2.80 -0.04 65.89

15 35 2.80 -0.29 65.89

20 35 2.50 -0.26 66.00

23 35 2.50 -0.26 64.00

PAAS 15 110 3.10 0.00 62.80

Earth’s early O2 cycle suppressed byprimitive continents

Matthijs A. Smit and Klaus Mezger

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO3030

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1

Page 3: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Figure S1: Average CIPW-normative olivine index for terrestrial reservoirs as a function of Δ(Cr/U). The

index is a model proxy for olivine content in anhydrous systems and a maximum estimate of olivine

content in hydrous systems. The data indicate that olivine contents in olivine-bearing rocks decrease

exponentially with Δ(Cr/U). The Δ(Cr/U) values are given in Table S1 and CIPW-normative olivine

indexes were calculated on the basis of major-element data in the given references. The regression and

uncertainty limits were calculated using least-squares fitting.

Page 4: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Table S2: Summary of the Cr/U data for all lithologies evaluated in this study. The source data are in

Table S3, which is appended as a separate file. All data were extracted from the GeoRoc international

database compiled and hosted by the Max Planck Institut für Chemie (georoc.mpch-mainz.gwdg.de). The

table is based on all analyses in this database for which Cr/U data exist. The data are not filtered or

averaged on the basis of number of analyses per location, because inter- and intra-location variability is

similar. The same applies to the age of the rocks, which shows no correlation to Cr/U for any rock type.

Lithology Average ± 2σ Minimum 1st quartile Median 2nd quartile Maximum n

Trachyte -0.83 0.79 -1.72 -1.10 -0.83 -0.56 0.12 1007

Rhyolite -0.80 0.75 -1.70 -1.06 -0.85 -0.57 0.14 3888

Dacite -0.42 0.79 -1.29 -0.74 -0.42 -0.13 0.48 3166

Shoshonite -0.21 0.91 -1.20 -0.56 -0.20 0.16 0.72 404

Trachyandesite -0.12 0.85 -1.08 -0.40 -0.13 0.22 0.79 1422

Andesite -0.09 0.77 -0.98 -0.38 -0.08 0.18 0.79 3386

Trachybasalt 0.05 0.81 -0.84 -0.29 0.04 0.41 0.86 1226

Basaltic andesite 0.22 0.85 -0.77 -0.10 0.24 0.53 1.18 4728

Basanite 0.40 0.49 -0.29 0.26 0.42 0.57 1.02 1920

Basalt 0.59 0.81 -0.41 0.33 0.59 0.85 1.56 17776

Dolerite 0.61 0.81 -0.36 0.33 0.65 0.93 1.54 1818

Gabbro 0.73 1.20 -0.68 0.30 0.74 1.14 2.13 1705

Tholeiite 0.89 0.73 -0.02 0.63 0.92 1.14 1.74 2776

Bonninite 1.29 1.14 0.12 0.87 1.43 1.67 2.44 286

Picrite 1.46 0.72 0.62 1.21 1.44 1.69 2.39 654

Pyroxenite 1.69 0.89 0.57 1.46 1.72 1.95 2.62 162

Peridotite 1.93 0.89 0.78 1.64 1.98 2.25 3.16 317

Kimberlite 2.01 0.76 1.11 1.77 2.00 2.24 3.09 350

Lherzolite 2.03 0.58 1.27 1.82 2.01 2.24 2.71 508

Komatiite 2.14 0.61 1.22 1.94 2.14 2.36 2.89 629

Harzburgite 2.01 0.76 1.11 1.77 2.00 2.24 3.09 350

Page 5: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Figure S2: Modified box-plot diagram representing the Cr/U data summarized in Table S2. Coloured

areas represent inter-quartile ranges and 2 standard deviations of the mean. White lines and whiskers are

medians and extremes, respectively. The approximate limit of olivine stability, based on Cr/U data of

picrites (olivine-bearing) and andesites (olivine-free), is shown. Intermediate lithologies may or may not

contain olivine.

Table S3 is provided as a separate data spreadsheet.

Page 6: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Table S4: Shale information, and Cr/U and chemical index of alteration [CIA; Al2O3 / (Al2O3 +

CaO + Na2O + K2O )] data. Data are from references as listed at the end of the Supplementary

Information. All samples represent pristine shale samples, or altered equivalents thereof.

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

Isua Greenstone belt 3742 Shallow marine 27 SM/GR/9 6/12 301 0.28 1075 0.96 68

SM/GR/9 9/16 895 0.16 5594 1.42 100

SM/GR/9 3/13 894 0.29 3083 1.25 79

SM/GR/9 8/45 380 0.13 2923 1.24 65

SM/GR/9 7/29 626 0.22 2845 1.23 66

SM/GR/9 3/33 11 0.3 37 0.01 76

SM/GR/9 3/76 430 0.13 3308 1.27 49

SM/GR/9 9/20 4 0.32 13 -0.28 48

SM/GR/9 3/66 752 0.16 4700 1.37 46

SM/GR/9 6/02 30 0.99 30 -0.05 95

SM/GR/9 7/22 268.1 0.35 766 0.86 85

SM/GR/9 3/57 36 0.82 44 0.06 69

SM/GR97/31 113 0.83 136 0.38 65

SM/GR/0 1/01A 60 0.78 77 0.22 53

SM/GR/0 1/01B 64 0.67 96 0.28 60

248484A 187 0.75 249 0.55 61

28 248442 175 0.09 1944 1.12 54

248443 158 0.06 2633 1.21 39

248484A 69 0.93 74 0.21 60

248484G 63 0.7 90 0.26 62

248484L 118 0.94 126 0.36 50

152769 325 0.82 396 0.68 58

221123 580 0.2 2900 1.23 49

221127 315 0.25 1260 1.00 53

119215 205 0.15 1367 1.02 50

131429 274 0.63 435 0.70 56

29 810194 137 0.86 159 0.42 60

810196 137 0.94 146 0.40 56

810205 170 0.34 500 0.74 47

810215 74.9 0.95 79 0.22 56

800494 18.9 0.41 46 0.07 45

810348 51.2 0.37 138 0.38 44

810436 15.9 0.65 24 -0.11 43

810437 13.1 0.39 34 -0.01 27

810193 171 0.59 290 0.59 57

810207 28.4 1.22 23 -0.12 60

810208 35.2 0.77 46 0.07 59

810216 71.4 0.62 115 0.33 55

810217 31.1 0.51 61 0.15 51

460512 27.9 1.05 27 -0.08 61

460528 162 0.62 261 0.56 56

460534 61.1 0.61 100 0.29 55

Page 7: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

Onverwacht Group 3360 Turbiditic 30 MM2* 89.16 0.17 524 0.75 38

Barberton Greenstone Belt MM7* 67.75 0.11 616 0.80 ---

Note: largely data for chert and laminated sediments* and sandstone (**). H12* 99.67 0.03 3322 1.27 49

AH5* 19.57 0.14 140 0.38 37

H25* 13.13 0.05 263 0.56 ---

H27* 139 0.16 869 0.90 ---

H28* 13.61 0.15 91 0.26 ---

H11* 8.1 0.02 405 0.68 44

H1* 10.93 0.06 182 0.46 18

H2* 43.67 0.21 208 0.50 66

H4 3.33 1.21 3 -0.69 67

H21** 18.78 0.12 157 0.42 65

H22** 3.92 0.14 28 -0.07 59

FT 8* 17.48 0.08 219 0.51 ---

H20** 9.51 0.16 59 0.14 58

H24** 19.59 0.18 109 0.31 71

FT 2** 24.26 0.07 347 0.64 ---

K9* 8.46 0.09 94 0.27 34

AK4* 29.55 0.17 174 0.45 80

AK2* 2.05 0.05 41 0.04 ---

O8* 26.6 0.11 242 0.54 70

O9* 470.5 0.2 2353 1.18 75

AMC1* 2.03 0.05 41 0.04 ---

MC18* 25.93 0.13 199 0.48 ---

MC4* 44.29 0.08 554 0.77 60

M3* 25.5 0.12 213 0.50 4

M4* 40.88 0.43 95 0.28 63

AM 5* 7.18 0.22 33 -0.02 18

AM9* 50.61 0.3 169 0.44 ---

MC8* 16.1 0.09 179 0.45 59

MM1* 398.8 0.11 3625 1.30 56

S7* 913.2 0.01 91320 2.20 70

MC19* 706.8 0.06 11780 1.63 ---

MC9* 191.7 0.02 9585 1.57 72

MC6* 497.6 0.09 5529 1.41 75

Fig Tree Group 3243 Alluvial, shallow marine 31 FS-1 70.3 2.61 27 -0.08 74

Swaziland Supergroup Pro-delta turbite FS-3 156.8 8.21 19 -0.18 73

Barberton Greenstone Belt 32 NC103 1027 1.6 642 0.81 65

Note: includes data for sandstones and plutonic pebbles. NC104 1023 1.4 731 0.85 74

In part from discarded drill cores that show evidence for NC105 977 1.7 575 0.78 45

shearing, alteration and mineralization. NC106 1029 1.5 686 0.83 64

NC107 393 1.5 262 0.56 76

NC108 888 1.4 634 0.81 52

NC111 969 1.7 570 0.78 53

NC113 1006 1.1 915 0.91 63

NC114 996 1.4 711 0.84 61

NC115 986 1.8 548 0.77 57

NC116 1029 1.4 735 0.85 68

NC117 1120 1.7 659 0.82 77

Page 8: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

NC118 854 1.2 712 0.84 75

NC119 952 1.6 595 0.79 67

33 79NC94 86 0.52 165 0.43 20

79NC117 1120 1.67 671 0.82 76

79NC118 854 1.2 712 0.84 74

79NC136 1074 1.18 910 0.91 56

Moodies Group 3220 Alluvial, shallow marine 33 79NC123 643 1.64 392 0.67 52

Barberton Supergroup Pro-delta turbite 79NC124 577 1.54 375 0.66 53

Barberton Greenstone Belt 79NC129 822 2.36 348 0.64 62

Note: includes data for sandstones and plutonic pebbles. 79NC130 679 1.92 354 0.64 56

In part from discarded drill cores that show evidence for 79NC131 855 2.31 370 0.66 60

shearing, alteration and mineralization. 34 463-1-39 898 1.76 511 0.75 71

463-2-3 867 1.21 718 0.84 74

463-3-1s 175 2.24 78 0.22 67

468-1 13 2.29 6 -0.50 54

468-2 5 2.08 2 -0.81 65

468-6 2 2.02 1 -1.00 64

469-7 15 2.22 7 -0.45 61

469-8 70 2.9 24 -0.11 62

470-1 67 0.57 117 0.33 60

473-1 50 0.51 98 0.28 62

476-1 9 0.46 20 -0.16 61

476-3 18 0.49 37 0.01 61

479-1 14 0.83 17 -0.21 61

479-10 5 1.08 5 -0.55 61

479-11 4 3.34 1 -1.00 60

479-13 7 0.82 9 -0.38 62

479-3 1 0.6 2 -0.81 63

479-4 4 1.36 3 -0.69 61

AMCR 1 1267 3.94 321 0.62 73

AMS 1A 156 1.33 118 0.34 71

AMS 2A 841 2.2 382 0.67 67

MSB 1D 1460 2.79 524 0.75 72

MSB 3A 1324 1.86 710 0.84 76

MSB 4 1446 1.66 872 0.9 76

35 NC123 643 1.6 402 0.68 53

NC124 577 1.5 385 0.67 53

NC125 677 1.6 423 0.69 57

NC126 717 2.2 326 0.62 56

NC127 535 1.3 412 0.69 54

NC128 509 1.9 268 0.57 56

NC129 822 2.4 343 0.64 62

NC130 679 1.9 357 0.65 57

NC131 855 2.3 372 0.66 61

North Spirit Lake 3100 Turbiditic 36 1-7 Pelite bedded 278 2.15 129 0.36 75

Greenstone belt 1-8 Pelite bedded 97 2.92 33 -0.02 57

2-8 Pelite gwacke 677 1.38 491 0.74 52

2-9 Fe-carb bedded 2220 0.17 13059 1.66 16

2-10 Sst gwacke 1860 0.19 9789 1.57 18

Page 9: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

2-11 Pelite gwacke 419 0.85 493 0.74 65

2-12 Pelite gwacke 1280 0.61 2098 1.14 70

2-13 Iron Fm bedded 44 0.05 880 0.90 6

2-15 Pelite bedded 48 0.95 51 0.10 73

2-16 Iron Fm bedded 29 0.08 363 0.65 15

2-17 Iron Fm bedded 23 0.03 767 0.86 9

Pongola Supergroup 2985 Alluvial, shallow marine 33 PO84 670 4.59 146 0.40 79

PO103 530 2.21 240 0.54 75

PO59 290 2.1 138 0.38 76

PO60 300 1.1 273 0.57 72

Alluvial, shallow marine 37 Piet Retief 350 3.3 106 0.31 86

Wit-Mfolozi 426 2.2 194 0.48 77

Wit-Mfolozi-upper 189 2.5 76 0.21 71

Wit-Mfolozi-lower 709 4.7 151 0.41 79

Mpongoza Inlier 455 3.2 142 0.39 78

Vutshini Inlier 386 1.4 276 0.57 78

P4 378 3.7 102 0.30 76

P7 149 0.46 324 0.62 78

P12 9.5 0.96 10 -0.35 69

P26 29 0.95 31 -0.04 87

P33 96 0.98 98 0.28 64

P40 46 0.88 52 0.11 99

P45 319 0.49 651 0.82 72

P63 10 0.46 22 -0.13 6

Transvaal Supergroup 2985 Alluvial plain 38 Bothaville 579 1.7 341 0.63 72

Barberton Greenstone Belt Selati 447 2.1 213 0.50 69

Black Reef 421 2.1 200 0.48 68

Timeball Hill 140 7.2 19 -0.18 76

Strubenkop 174 6 29 -0.06 88

Silverton 141 3.9 36 0.00 74

Witwatersrand Basin 2900 Alluvial, shallow marine 39 D14 572 3.7 155 0.41 81

MED-10 619 4.7 132 0.37 89

MED-11 436 0.6 727 0.85 93

MED-12 543 1.3 418 0.69 92

C-71 284 0.68 418 0.69 81

MED-13 395 0.61 648 0.81 77

MED-14 388 0.62 626 0.80 70

MED-15 510 0.75 680 0.83 77

MED-17 794 1 794 0.87 98

MED-18 686 0.55 1247 1.00 87

C-75 1112 1.2 927 0.91 82

AA0098 690 2.3 300 0.60 82

AA0101 840 2 420 0.69 81

Abitibi Greenstone Belt 2710 Alluvial, turbiditic 40 813-I 206 1.3 158 0.42 63

813-3 175 1.2 146 0.40 65

8134 234 1.1 213 0.50 67

813-6 142 1.4 101 0.29 60

813-32 122 1.2 102 0.30 62

Page 10: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

813-33 233 2.4 97 0.28 73

813-13 275 2.8 98 0.28 73

813-15 139 1.6 87 0.25 67

813-17 143 1.6 89 0.26 66

813-19 743 1.2 619 0.80 54

813-20 984 1.4 703 0.84 82

813-22 431 1.4 308 0.61 65

GY-4 193 1.8 107 0.31 73

GY-7 146 1.3 112 0.32 64

GY-22 167 1.9 88 0.25 66

GY-31 175 1.6 109 0.31 66

GY-20 163 1.4 116 0.33 68

T-l 141 1.3 108 0.31 46

T-4 151 1.5 101 0.29 45

T-5 244 1.4 174 0.45 43

T-8 192 1.2 160 0.42 44

T-9 193 1 193 0.47 45

T-12 147 0.6 245 0.54 42

723-14 106 1.2 88 0.25 60

723-17 123 1.3 95 0.28 64

723-18 74 0.7 106 0.31 52

TB2 172 2.1 82 0.23 62

TB7 122 9.7 13 -0.28 48

TB8 258 0.7 369 0.66 54

Yellowknife Supergroup 2700 Turbiditic 41 Y-2A 147 0.23 639 0.81 41

Yellowknife greenstone belt Y-2B 156 0.14 1114 0.97 41

Y-3 209 0.53 394 0.67 37

Y-4 219 0.21 1043 0.95 45

Y-5 18 2.23 8 -0.42 48

Y-6 78 0.63 124 0.35 42

Y-7 850 0.39 2179 1.15 37

Y-8 239 0.22 1086 0.96 57

Y-9 424 0.18 2356 1.18 37

Y-10 A1 142 1.42 100 0.29 57

Y-10 A2 157 1.51 104 0.30 58

Y-10 C 167 1.5 111 0.32 58

Y-10 E 170 1.4 121 0.34 62

Y-11 A 153 1.61 95 0.28 55

Y-12 A 128 2.28 56 0.13 60

Y-12 D 152 1.29 118 0.34 61

Y-12 E 228 1.54 148 0.40 64

Y-13 A 105 1.07 98 0.28 61

Y-13 E 190 1.03 184 0.46 63

Y-14 A 154 2.04 75 0.21 58

Y-15 A 164 1.82 90 0.26 67

Y-16 A 87 3.07 28 -0.07 65

Y-16 E 126 2.75 46 0.07 70

Y-17 A 114 1.37 83 0.24 62

Y-17 C 153 2.78 55 0.12 64

Page 11: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

Y-17 D 211 2.08 101 0.29 67

Y-17 E 262 2.45 107 0.31 70

Y-18 A 153 1.24 123 0.35 62

Y-18 E 200 1.32 152 0.41 69

Y-23 E 102 1.92 53 0.11 63

Y-24 E 181 2.27 80 0.23 66

Y-26 A 129 1.95 66 0.17 54

Y-26 E 265 2.35 113 0.32 54

Y-27 A 150 1.8 83 0.24 55

Y-27 E 155 1.58 98 0.28 60

Y-28 A 101 1.46 69 0.19 55

Y-28 E 202 2.03 100 0.29 68

Y-19 A 151 2.13 71 0.19 55

Y-19 E 163 1.69 96 0.28 56

Y-20 A 130 2.15 60 0.15 58

Y-20 E 126 2.03 62 0.16 56

Y-21 A 126 2.78 45 0.07 61

Y-21 E 209 2.5 84 0.24 71

Y-22 A 121 2.56 47 0.08 52

Y-22 E 233 2.68 87 0.25 62

Y-23 A-(L) 115 2.02 57 0.13 60

Y-23 A-(H) 118 2.17 54 0.12 63

Sandur Superterrane 2700 Shallow marine 42 C12(V) 405 0.83 488 0.73 81

C22 (V) 146 1.49 98 0.28 77

C17 (V) 169 1.05 161 0.42 82

C23 (V) 122 0.93 131 0.37 81

C13 (V) 261 0.82 318 0.61 88

C20 (V) 300 0.9 333 0.63 88

C14 (V) 348 1.01 345 0.64 82

C21 (V) 332 0.91 365 0.65 86

C15 (V) 136 1.19 114 0.33 81

C8 (B) 404 1.54 262 0.56 85

C18 (V) 291 1.71 170 0.44 81

C1 (B) 224 1.32 170 0.44 80

C4 (B) 304 1.48 205 0.49 80

C9 (B) 189 1.98 95 0.28 80

C10 (B) 205 1.48 139 0.38 81

C5 (B) 294 1.62 181 0.46 80

C2 (B) 41 0.11 373 0.66 71

C3 (B) 15 0.17 88 0.25 47

C7 (B) 30 0.34 88 0.25 77

Ranibennur Formation 2700 Shallow marine 43 X-10 175 2.4 73 0.20 54

West Dharwar Craton X-13 221 2.7 82 0.23 61

X-18 209 2.6 80 0.23 56

X-26 170 2.1 81 0.23 55

R-7 154 2.4 64 0.17 51

A-26 196 2.3 85 0.24 57

G-6 118 2.2 54 0.12 54

G-7 164 1.9 86 0.25 55

Page 12: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

George Creek, Pilbara 2700 Alluvial, turbiditic 44 Pg1 627 1.69 371 0.66 79

Pg2 625 2.01 311 0.61 81

Pg3 614 2.37 259 0.56 82

Pg4 671 2.1 320 0.62 77

Pg5 689 3.42 201 0.49 79

Pg6 788 2.23 353 0.64 82

Pg7 477 7.84 61 0.15 76

MC 635 4.43 143 0.39 80

80-05 407 1.11 367 0.65 85

80-06 503 2.25 224 0.52 77

WC1 353 3.4 104 0.30 80

WC3 222 1.92 116 0.33 75

West Dharwar Craton 2650 Shallow Marine 45 DA-48 130 4 33 -0.02 58

DA-40 158 4 40 0.03 50

DW-38 86 2 43 0.05 51

HL-4 60 3 20 -0.16 50

DA-38 71 3 24 -0.11 49

DW-52 88 2 44 0.06 46

NG-02 144 3 48 0.08 46

AG-68 2.37 4 1 -1.00 61

AG-69 160 1 160 0.42 58

AG-92 183 3 61 0.15 64

RN-59 68 3 23 -0.12 55

AG21 119 1 119 0.34 58

VP-06 128 3 43 0.05 50

DW-57 89 2 45 0.07 53

DW-27 116 3 39 0.03 47

DW76 123 3 41 0.04 49

VP-09 119 5 24 -0.11 58

DW-91 153 4 38 0.02 64

DW32 150 3 50 0.10 46

DW-83 92 4 23 -0.12 53

DW-72A 62 2 31 -0.04 53

DA-34 93 5 19 -0.18 51

AG-124A 133 11 12 -0.30 57

DA-55 139 5 28 -0.07 59

DW-84A 143 4 36 0.00 56

HL-4A 90 3 30 -0.05 61

DA-45 105 3 35 0.00 58

AG-124 123 11 11 -0.33 59

DA-36 73 1 73 0.20 52

DW21A 62 2 31 -0.04 46

Quetico Metasediments 2650 Turbiditic 46 ES356 223 2 112 0.32 54

Superior Province ES36 178 1 178 0.45 52

ES367 150 2 75 0.21 54

ES353 164 1 164 0.43 54

ES355 159 2 80 0.23 54

ES358 171 2 86 0.25 55

ES361 183 6 31 -0.04 62

Page 13: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

ES364 207 2 104 0.30 62

ES82 197 2 99 0.29 63

ES103 206 2 103 0.30 72

ES174 249 2 125 0.35 58

ES133 101 5 20 -0.16 62

ES208 264 5 53 0.11 55

ES126 163 3 54 0.12 53

ES156 111 2 56 0.13 51

ES223 205 7 29 -0.06 57

ES407 133 3 44 0.06 55

ES256 211 5 42 0.05 59

Singhbhum Mobile Belt 2350 Shallow marine 47 SK6 148 5.52 27 -0.08 ---

Singhbhm Craton SC2 81 3.75 22 -0.13 ---

SK11 154 7.8 20 -0.16 ---

SM8D 149 2.95 51 0.1 ---

SK8 142 11.06 13 -0.28 ---

SC9 228 1.34 170 0.44 ---

SC6 158 2.83 56 0.13 ---

SU5 153 0.53 289 0.59 ---

SP2 303 1.24 244 0.54 ---

Gwalior Basin 1900 Shallow marine 48 TUN-1b 138 2.05 67 0.18 63

Bundelkhand Craton TUN-3 168 21 8 -0.42 64

JSX-2b 109 1.94 56 0.13 62

JSX-3b 165 3.01 55 0.12 64

BDE-1b 61 11.18 5 -0.55 63

SDL-2c 257 7 37 0.01 75

MHG-1 56 26 2 -0.81 66

Rowsell Harbour Formation 1900 Shallow marine 49 DMH-9 96.6 1.7 57 0.13 75

Nain Province DMH-9 97.1 18 5 -0.55 75

DMH-8 148 2.2 67 0.18 73

DMH-8 152 1.9 80 0.23 74

DMH-8 151 2.2 69 0.19 74

DMH-5 139 2.2 63 0.16 76

DMH-5 140 1.9 74 0.21 77

DMH-5 160 2.1 76 0.21 76

DMH-4 150 2.1 71 0.19 75

DMH-4 145 2.4 60 0.15 75

DMH-25 121 2 61 0.15 79

DMH-25 136 2 68 0.18 77

DMH-25 136 1.5 91 0.26 79

DMH-6 118 2 59 0.14 73

DMH-6 110 1.7 65 0.17 72

DMH-6 123 2.3 53 0.11 74

DMH-24 142 2.4 59 0.14 75

DMH-24 111 2 56 0.13 79

DMH-24 109 2.1 52 0.11 79

DMH-11 71 1.7 42 0.05 56

DMH-11 71.1 1.6 44 0.06 57

Page 14: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

Kaladgi Supergroup 1800 Shallow marine 50 D-2 94 2.11 45 0.07 77

East Dharwar Craton D-6 53 1.37 39 0.03 69

G-2 108 3.3 33 -0.02 71

G-5 117 3.2 37 0.01 72

G-8 141 1.7 83 0.24 77

K-2 95 3.02 31 -0.04 76

P-6-1 115 1.24 93 0.27 72

S-12-3 52 1.33 39 0.03 79

S-14 104 2.3 45 0.07 80

S-16 116 2.6 45 0.07 75

S-17 134 2.9 46 0.07 77

S-19 100 1.6 63 0.16 79

T-10 122 1.8 68 0.18 70

T-11 212 1.8 118 0.34 75

T-6 155 1.7 91 0.26 76

Cuddapah Supergroup 1800 Shallow marine 51 CBS-18(M) 84 2.9 29 -0.06 57

East Dharwar Craton CBS-4 (M) 123 2.6 47 0.08 75

CBS-6(M) 100 3.79 26 -0.09 47

CBS-3(M) 134 3.61 37 0.01 76

CBS-1(M) 124 3.97 31 -0.04 74

CBS-2 (M) 137 3.92 35 0 75

CBS-16(Mk) 178 1.7 105 0.3 75

CBS-10(Mk) 118 5.51 21 -0.15 70

CBS-12(Mk) 182 3.5 52 0.11 77

CBS-13(Mk) 170 2.69 63 0.16 75

CBS-11(Mk) 120 6.66 18 -0.19 71

CBS-8(Mk) 118 5.57 21 -0.15 68

CBS-9(Mk) 112 5.75 19 -0.18 69

T-8 181 1.8 101 0.29 74

Rampur Group 1760 Shallow Marine 52 DN48 105 4 26 -0.09 77

Western Himalaya DN51 76 4 19 -0.18 77

DN52 95 3 32 -0.03 76

DN45 66 6 11 -0.33 75

DN39 90 5 18 -0.19 77

DN37 65 3 22 -0.13 69

DN24 152 2 76 0.21 74

DN26 181 3 60 0.15 68

DN28 113 3 38 0.02 70

DN29 104 4 26 -0.09 74

DN30 150 4 38 0.02 76

DN35 144 3 48 0.08 69

DN19 114 3 38 0.02 76

DN3 86 6 14 -0.26 76

DN7 160 3 53 0.11 73

DN12 77 4 19 -0.18 74

DN14 94 6 16 -0.22 76

DN15 131 4 33 -0.02 74

CL22 105 2 53 0.11 76

CL23 202 2 101 0.29 70

Page 15: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

CL24 210 4 53 0.11 73

Hongshuizhuang Formation 1437 Shallow marine 53 207.58 90.2 4.95 18 -0.19 70

North China Craton 206.92 38.6 1.82 21 -0.15 54

205.31 42.6 4.05 11 -0.33 57

205.01 45.8 5.48 8 -0.42 52

196.73 31.9 2.08 15 -0.24 60

195.76 48.3 5.23 9 -0.38 57

195.09 19.9 1.42 14 -0.26 53

194.17 83.8 9.26 9 -0.38 61

179.05 53.3 2.84 19 -0.18 56

177.05 41.7 4.93 8 -0.42 59

175.57 45.8 7.03 7 -0.45 48

172.38 50.4 6.44 8 -0.42 58

169.3 70.3 7.24 10 -0.35 59

166.11 52.7 4.85 11 -0.33 59

163.02 64.2 3.86 17 -0.21 59

160.43 50.1 2.6 19 -0.18 60

156.84 40.4 2.74 15 -0.24 60

154.69 35.7 2.23 16 -0.22 58

151.56 44.3 7.3 6 -0.5 57

148.16 21.6 2.53 9 -0.38 13

145.56 42 10.2 4 -0.61 56

141.56 50.6 10.8 5 -0.55 51

139.83 48.5 10.05 5 -0.55 50

136.33 58.9 9.7 6 -0.5 48

133.01 64 9.67 7 -0.45 57

129.43 53.7 7.39 7 -0.45 56

126.61 77.1 10.8 7 -0.45 56

123.86 77.4 9.46 8 -0.42 55

120.63 57 7.85 7 -0.45 54

118.96 64 8.95 7 -0.45 51

116.85 83.5 9.45 9 -0.38 58

Bastar Craton Basins 1000 Shallow marine 54 RN438 13.2 0.36 37 0.01 57

RN423 13.3 0.45 30 -0.05 71

RD405 10 0.43 23 -0.12 73

RD409 13.3 0.54 25 -0.1 79

RD520 18.5 0.4 46 0.07 70

JC542 31 1.8 17 -0.21 65

JT547 14.4 0.85 17 -0.21 58

SB81 50.8 1.1 46 0.07 68

SB83 63.3 2.6 24 -0.11 78

JC540 119 1.4 85 0.24 72

JT549 134.3 1.4 96 0.28 72

DS524 423.9 6.2 68 0.18 92

DS525 154 3.5 44 0.06 75

ST528 129.2 4.1 32 -0.03 75

ST534 49 3.2 15 -0.24 75

DS526 14.2 1.3 11 -0.33 68

AD536 15.8 5.4 3 -0.69 45

Page 16: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Shale occurrence Age (Myr ago)

Setting Ref. Sample ID Cr (ppm)

U (ppm)

Cr/U Δ(Cr/U) CIA

(%)

ST530 33.2 4.1 8 -0.42 53

Sandstone 16.3 0.7 23 -0.12 66

Quartzite 21.1 3.62 6 -0.5 48

Shale 91.9 1.6 57 0.13 73

Pelite 189 4.2 45 0.07 77

Kaladgi 118.6 2.1 56 0.13 75

Cuddapah 130.7 4 33 -0.02 63

Rabanpalli Formation 675 Shallow marine 55 S53 37 2.85 13 -0.28 8

East Dharwar Craton S51A 26.8 3.27 8 -0.42 9

E117 19.7 3.62 5 -0.55 7

S51B 27.2 3.56 8 -0.42 9

S38E 31.1 3.94 8 -0.42 10

S4 58.1 3.72 16 -0.22 14

S23 67.7 4.61 15 -0.24 18

C111 33.5 4.19 8 -0.42 12

E121 51.6 4.72 11 -0.33 20

C122 63.3 5.61 11 -0.33 28

E49 71.7 6.79 11 -0.33 72

C103 49.8 4.53 11 -0.33 75

E189 57.9 6.5 9 -0.38 70

Central Iberian Zone 650 Shallow marine 56 SIA-11 83 2.9 29 -0.06 73

SIA-18 93 3.1 30 -0.05 68

SSA-11 80 2.9 28 -0.07 72

SIA-26 79 2.6 30 -0.05 69

FG-2 68 2.1 32 -0.03 68

CPA-2 67 2.3 29 -0.06 77

SIA-15 120 3.9 31 -0.04 77

SIA-19 129 4.3 30 -0.05 74

SIA-21 130 4.3 30 -0.05 75

SIA-22 128 4.2 30 -0.05 78

SIA-34 117 3.4 34 -0.01 77

SSA-5 67 2.8 24 -0.11 59

SSA-21 54 2.7 20 -0.16 60

SSA-27 82 3 27 -0.08 66

GUA-30 32 2.8 11 -0.33 53

CR-2 93 3.3 28 -0.07 67

SSA-18 90 3.8 24 -0.11 72

SSA-19 80 3.3 24 -0.11 74

SSA-24 111 2.8 40 0.03 75

SSA-25 93 6.2 15 -0.24 76

CR-5 100 3 33 -0.02 72

MIR-22 103 3.2 32 -0.03 70

Page 17: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Figure S3: Comparison of Cr/U data versus CIA for global shales. The value of the coefficient of

determination (R2) for each shale occurrence is given in brackets. Correlation between Δ(Cr/U)

and CIA are insignificant in each case, indicating that alteration of shale samples and their source

rocks did not influence Cr/U systematics.

Page 18: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

Figure S4: 2-D boxplot diagram of total Fe versus Δ(Cr/U) for various rock types. The range of

maximum Δ(Cr/U) in shales observed before 2.4 Gyr ago is represented by the grey bar. Rocks

that fall in this range show no correlation between Δ(Cr/U) and Fe. This shows that the

decreasing mafic component of the continental crust 3.0-2.4 Gyr ago does not correspond to a

loss of Fe in particular. The rise of O2 accumulation in the oceans and atmosphere during this

period can, hence, not be ascribed to a possible decrease in Fe concentrations of continental run-

off. All data are from the GeoROC international database compiled and hosted by the Max

Planck Institut für Chemie (georoc.mpch-mainz.gwdg.de).

Page 19: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

References

1. Salters, V.J.M. & Stracke, A. Composition of the depleted mantle. Geochemistry Geophysics

Geosystems 5: doi: 10.1029/2003GC000597 (2004).

2. Workman, R.K. & Hart, S.R., Major and trace element composition of the depleted MORB mantle

(DMM). Earth Planet. Sci. Lett. 231, 53-72 (2005).

3. McDonough, W.F. & Sun, S.-S. Composition of the Earth. Chem. Geol. 120, 223-253 (1995).

4. Palme, H. & O'Neill, H. St. C. in: Treatise on Geochemistry 3, 2nd

Edition (eds Holland, H.D. &

Turekian, K.K.) 1-39 (Elsevier, Amsterdam, 2014).

5. Walter, M.J. in: Treatise on Geochemistry 3, 2nd

Edition (eds Holland, H.D. & Turekian, K.K.) 393-

419 (Elsevier, Amsterdam, 2014).

6. Jagoutz, E. et al. in: Proceedings of the Lunar and Planetary Science Conference (eds. Merrill, R.B.,

Bogard, D.D., Hoerz, F., McKay, D.S. & Robertson, P.C.), 2031-2050 (Pergamon, New York,

1979).

7. Wedepohl, K.H. & Hartmann, G. in: Kimberlites, related rocks and mantle xenoliths (eds. Meyer,

H.O.A. & Leonardos, O.H.), 486-495 (Comp. Pesq. Recur. Minerais Rio de Janeiro. 1, 1994).

8. Green, D.H., Hibberson, W.O. & Jaques, A.L. in: The Earth; its origin, structure and evolution (ed.

McElhinny, M.W.), 265-299 (Acad. Press., London, 1979).

9. McDonough, W.F. in: Encyclopedia of geochemistry, (eds. Marshall, C.P. & Fairbridge, R.W.), 151-

156 (Kluwer Acad. Publ., Dordrecht, 1998).

10. Lehnert, K., Su, Y., Langmuir, C.H., Sarbas, B. & Nohl, U. A global geochemical database structure

for rocks. Geochem. Geophys. Geosyst. 1: doi: 10.1029/1999GC000026 (2000).

11. Niu, Y., Collerson, K.D., Batiza, R., Wendt, J.I. & Regelous, M., Origin of enriched-type mid-ocean

ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20'N, J. Geophys. Res.

104, doi: 10.1029/1998JB900037 (1999).

12. Kelemen, P.B., Hanghoj, K. & Greene, A.R. in: Treatise on Geochemistry 4, 2nd

Edition (eds Holland,

H.D. & Turekian, K.K.) 749-806 (Elsevier, Amsterdam, 2014).

Page 20: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

13. Rudnick, R.L. & and Fountain, D.M., Nature and composition of the continental crust – a lower

crustal perspective. Rev. Geophys. 33, 267-309 (1995).

14. Kemp, A.I.S. & Hawkesworth, C.J., in: Treatise on Geochemistry 4, 2nd

Edition (eds Holland, H.D. &

Turekian, K.K.) 379-421 (Elsevier, Amsterdam, 2014).

15. Taylor, S.R. & McLennan, S.M., The geochemical evolution of the continental crust. Rev. Geophys.

33, 241-265 (1995).

16. Gao, S. et al. Chemical composition of the continental crust as revealed by studies in East China.

Geochim. Cosmochim. Acta 62, 1959-1975 (1998).

17. Taylor, S.R., Abundance of chemical elements in the continental crust; a new table. Geochim.

Cosmochim. Acta 28, 1273-1285 (1964).

18. Rudnick, R.L. & Gao, S. in: Treatise on Geochemistry 4, 2nd

Edition (eds Holland, H.D. & Turekian,

K.K.) 1-51 (Elsevier, Amsterdam, 2014).

19. Shaw, D.M., Cramer, J.J., Higgins, M.D. & Truscott, M.G. in: Geological Society Special

Publications: The Nature of the Lower Continental Crust (eds. Dawson, J.D., Carswell, D.A., Hall,

J. & Wedepohl, K.H.) 275-282 (The Geological Society, London, 1986).

20. Taylor, S.R. & McLennan, S.M., The Composition and evolution of the continental crust: rare-earth

element evidence from sedimentary rocks, Phil. Trans. Royal Soc. London 301, 381-399 (1981)

21. Weaver, B.L. & Tarney, J., Empirical approach to estimating the composition of the continental crust,

Nature 310, 575-577 (1984).

22. Wedepohl, K.H., Chemical composition and fractionation of the continental crust. Geol. Rundsch. 80,

207-223 (1991).

23. Wedepohl, K.H., The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217-

1239 (1995).

24. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results

from surface samples and shales. Chem. Geol. 104, 1-37 (1993).

Page 21: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

25. Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E. & Campbell, F.E., An estimate of the

chemical composition of the Canadian Precambrian Shield. Can. J. Earth Sci. 4, 829-853 (1967).

26. Taylor, S.R. & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution: An

Examination of the Geochemical Record Preserved in Sedimentary Rocks, 312 p. (Blackwell,

Oxford, 1985).

27. Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J. & Collerson, K.D. Chemical

characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt,

southern West Greenland. Geochim. Cosmochim. Acta. 69, 1555-1573 (2005).

28. McLennan. S.M., Taylor, S.R. & McGregor, V.R., Geochemistry of Archean metasedimentary rocks

from West Greenland. Geochim. Cosmochim. Acta 48, 1-13 (1984).

29. Koeberl, C., Reimold, W.U., McDonald, I. & Rosing, M.T. in Impacts and the Early Earth, Lecture

Notes in Earth Sciences 91 (eds Gilmour, I. & Boeberl, C.) 73-97 (Springer, Heidelberg, 2000).

30. Hofmann, A., Bolhar, R., Orberger, B. & Foucher, F., Cherts of the Barberton Greenstone Belt, South

Africa: Petrology and trace-element geochemistry of 3.5 to 3.3 Ga old silicified volcaniclastic

sediments. South Afr. J. Geol. 116, 297-322 (2014).

31. Hofmann, A., The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone

belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times.

Prec. Res. 143, 23-49 (2005).

32. Toulkeridis, T., Clauer, N., Kröner, A. & Todt, W., A mineralogical, chemical and isotopic

investigation of shales from the Barberton Greenstone Belt, South Africa, to constrain source

materials and post-deposition evolution. South Afr. J. Geol. 118, 389-410 (2015).

33. McLennan. S.M. & Taylor, S.R., Geochemical evolution of Archean shales from South Africa. I. The

Swaziland and Pongola Supergroups. Prec. Res. 22, 93-124 (1983).

34. Hessler, A. & Lowe, D.R., Weathering and sediment generation in the Archean: An integrated study

of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton

Greenstone Belt, South Africa. Prec. Res. 151, 185-210 (2006).

Page 22: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

35. Toulkeridis, T., Clauer, N., Kröner, A. & Todt, W., A mineralogical, chemical and isotopic

investigation of shales from the Barberton Greenstone Belt, South Africa, to constrain source

materials and post-deposition evolution. South Afr. J. Geol. 118, 389-410 (2015).

36. Nesbitt, H.W., Young, G.M. & Bosman, S.A., Major and trace element geochemistry and genesis of

supracrustal rocks of the North Spirit Lake Greenstone belt, NW Ontario, Canada. Prec. Res. 174,

16-34 (2009).

37. Wronkiewicz, D.J. & Condie, K.C., Geochemistry and provenance of sediments from the Pongola

Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochim. Cosmochim.

Acta 53, 1537-1549 (1989).

38. Wronkiewicz, D.J. & Condie, K.C., Geochemistry and mineralogy of sediments from the Ventersdorp

and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic.

Geochim. Cosmochim. Acta 54, 343-354 (1990).

39. Wronkiewicz, D.J. & Condie, K.C., Geochemistry of Archean shales from the Witwatersrand

Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Acta 51,

2401-2416 (1987).

40. Feng, R. & Kerrich, R., Geochemistry of fine-grained clastic sediments in the Archean Abitibi

greenstone belt, Canada: Implications for provenance and tectonic setting. Geochim. Cosmochim.

Acta 54, 1061-1081 (1990)

41. Yamashita, K. & Creaser, R.A., Geochemical and Nd isotopic constraints for the origin of Late

Archean turbidites from the Yellowknife area, Northwest Territories, Canada. Geochim.

Cosmochim. Acta 63, 2579-2598 (1999).

42. Manikyamba, C. & Kerrich, R., Geochemistry of black shales from the Neoarchaean Sandur

Superterrane, India: First cycle volcanogenic sedimentary rocks in an intraoceanic arc–trench

complex. Geochim. Cosmochim. Acta 70, 4663-4679 (2006).

Page 23: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

43. Hedge, V.S. & Chavadi, V.C., Geochemistry of late Archaean metagreywackes from the Western

Dharwar Craton, South India: Implications for provenance and nature of the Late Archaean crust.

Gondw. Res. 15, 178-187 (2009).

44. McLennan, S.M., Taylor, S.R. & Eriksson, K.A., Geochemistry of Archean shales from the Pilbara

Supergroup, Western Australia. Geochim. Cosmochim. Acta 47, 1211-1222 (1983).

45. Devarjaru, T.C. et al. Petrology and geochemistry of greywackes from Goa-Dharwar Sector, Western

Dharwar Craton: Implications for volcanoclastic origin. J. Geol. Soc. India 75, 465-487 (2010).

46. Sawyer, E.W., The influence of source rock type, chemical weathering and sorting on the

geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province,

Canada. Chem. Geol.55, 77-95 (1986).

47. Mir, A.R., Rare earth element geochemistry of Post- to Neo-archean shales from Singhbhum mobile

belt, Eastern India: implications for tectonic setting and paleo-oxidation conditions. Chin. J.

Geochem. 34, 401-409 (2015). Age constraints from: Goodwin, A.M. in Principles of Precambrian

Geology (Acad. Press, London) 123-176 (1996).

48. Absar, N., Raza, M., Roy, M., Naqvi, S.M. & Roy, A.K., Composition and weathering conditions of

Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of

clastic sediments of 1.9 Ga Gwalior Group. Prec. Res. 168, 313-329 (2009).

49. Hayashi, K.-I., Fujisawa, H., Holland, H.D. & Ohmoto, H., Geochemistry of ∼1.9 Ga sedimentary

rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 61, 4115-4137 (1997).

50. Sambasiva, V.V., Sreenivas, R.B., Balaram, V., Govil, P.K. & Srinivasan, R., The nature of the

Archean upper crust as revealed by the geochemistry of the Proterozoic shales of the Kaladgi basin,

Karnataka, southern India. Prec. Res. 98, 53-65 (1999). Age constraints from: Zachariah, J.K.,

Baskar Rao, Y.J. & Gopalan, K., Pb, Sr and Nd isotope systematics of uranium mineralised

stromatolitic dolomites from the proterozoic Cuddapah Supergroup, south India: constraints on age

and provenance. Chem. Geol. 162, 49-64 (1999).

Page 24: Correction to: Nature Geoscience 10, 788–792 (2017); published … · 2017-11-14 · Correction to: Nature Geoscience 10, 788–792 (2017); published online 18 September 2017. In

51. Manikyamba, C., Kerrich, R., González-Álvarez, I., Mathur, R. & Khanna, T.C., Geochemistry of

Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for

provenance, tectonic setting, and weathering intensity, Prec. Res. 162, 424-440 (2008).

52. Bhat, M.I. & Ghosh, S.K., Geochemistry of the 2.51 Ga old Rampur group pelites, western

Himalayas: implications for their provenance and weathering. Prec. Res. 108, 1-16 (2001). Age

constraints from: Miller, C. Klötzli, U., Frank, W. & Grasemann, B., Comment on ‘Geochemistry

of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and

weathering’ by Bhat and Gosh 2001. Precambrian Research 108, 1–16, Prec. Res. 116, 155-156

(2002).

53. Luo, Q., Zhong, N., Wang, Y., Ma, L. & Li, M., Provenance and paleoweathering reconstruction of

the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China. Int. J. Earth Sci.

104, 1701-1720 (2015).

54. Wani, H. & Mondal, M.E.A., Petrological and geochemical evidence of the Paleoproterozoic and the

Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: Implications on

paleoweathering and Proterozoic crustal evolution. J. Asian Earth Sci. 38, 220-232 (2010).

55. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J.S. & Moutte, J., Geochemistry of

Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern

India: implications for provenance and paleoredox conditions. Revist. Mex. Cienc. Geol. 24, 150-

160.

56. Ugidos, J.M., Bilström, K., Valladares, M.I. & Barba, P., Geochemistry of the Upper Neoproterozoic

and Lower Cambrian siliciclastic rocks and U-Pb dating on detrital zircons in the Central Iberian

Zone, Spain. Int. J. Earth Sci. 92, 661-676 (2003).