corrosion of structural materials and electrochemistry in...

48
Corrosion of Structural Materials and Electrochemistry in High Temperature Water of Nuclear Power Systems Shunsuke Uchida Institute of Applied Energy 17th International Workshop on Nuclear Safety & Simulation Technology (IWNSST17) Kyoto, Japan, January 21-22, 2014

Upload: hacong

Post on 01-Aug-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.0

Corrosion of Structural Materials and Electrochemistry in High Temperature Water

of Nuclear Power Systems

Shunsuke Uchida Institute of Applied Energy

17th International Workshop on Nuclear Safety & Simulation Technology (IWNSST17)

Kyoto, Japan, January 21-22, 2014

Page 2: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.1

1. Background 2. Objectives 3. Optimal water chemistry 4. Theoretical approaches towards quantifying interaction of materials and water 4.1 Electrochemistry 4.2 Electrochemical corrosion potential 5. Flow-accelerated Corrosion 6. Water radiolysis 7. Future subjects 8. Conclusions 9. Acknowledgements 10. References

Table of Contents

Page 3: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.2

1. Background

Page 4: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.3 World list of nuclear power plants Countries*1 total PWR, VVER PHWR BWR GCR, AGR LWGR LMFBR USA 104 69 35 France 59 58 1 Japan 55 (49*3) 24 31 (25*3) Russia 31 13 17 1 South Korea 20 16 4 UK 19 1 18 Canada 18 18 Germany 17 11 6 India 17 15 2 Ukraine 15 15 China 11 9 2 Sweden 10 3 7 Spain 8 6 2 Belgium 7 7 Taiwan 6 2 4 Czech 6 6 Slovakia 5 5 Switzerland 5 3 2 Total*2 439 260 43 93 18 23 2 Share (%) (59) (10) (21) (4) (5) (0.5) *1: more than 5 plants Others: Finland, Hungary: 4 plants, Bulgaria, Argentina, Brazil, Mexico, Pakistan, South Africa: 2 plants, Romania, Armenia, Lithuania, Netherlands, Slovenia: 1 plant *2: 380GWe *3: after March 11 accident Version 2008 Ref.1

Page 5: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.4 Major accidents and incidents at nuclear facilities Plant (reactor type) Date Causes Environmental effects Three Mile Island-2 (PWR) Mar. 1979 LOCA <1mSv Chernobyl (LGR) Apr. 1986 RIA 31 people died 16 k person Sv Surry-2 (PWR) Dec. 1986 FAC* 4 people died Fukushima Daini-3 (BWR) Jan. 1989 vibration none Mihama-2 (PWR) Feb. 1991 CF none Monju (LMFBR) Dec. 1995 parts defect none (Na leakage ) JCO (conversion Sep. 1999 critical 2 people died facility) accident 130 residents received radiation dose Hamaoka-1 (BWR) Nov. 2001 H2 explosion none Mihama-3 (PWR) Aug. 2004 FAC* 5 people died Fukushima (BWR) Mar. 2011 earthquake radioactivity release: Daiichi 1-4 + tsunami 600 PBq evacuee: 160,000 *: related to material LOCA: loss of coolant accident RIA: reactivity initiated accident FAC: flow assisted corrosion CF: corrosion fatigue Ref.2

Page 6: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.5 Major problems related to structural materials in NPPs

problem reactor troubled location countermeasures type FAC PWR feed water piping material exchange water chemistry improvement BWR feed water piping water chemistry improvement heater drain piping material exchange SCC BWR primary piping material exchange, stress improvement water chemistry improvement PWSCC PWR core internals material exchange, water chemistry improvement Fuel cladding PWR fuel material improvement corrosion BWR material improvement SG tubing defects PWR SG water chemistry improvement material exchange

Ref.2

Page 7: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.6

2. Objectives

Page 8: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.7

1. Roles of materials, water and their interaction on plant safety and reliability are confirmed.

2. Optimal water chemistry control required for satisfying multi-problems related to interaction of materials and water is introduced. 3. Theoretical approaches as well as empirical ones required for quantifying the interaction of materials and water and for establishing suitable countermeasures for those problems are introduced. Electrochemistry is one of key issues to determine corrosion related problems. 4. As examples of application of theoretical electrochemistry procedures, a prediction

model for flow-accelerated corrosion (FAC) and prediction models for water radiolysis are introduced.

5. As future subjects of the theoretical models related to electrochemistry and water

radiolysis, verification and validation evaluation procedures are introduced and standardization of the procedures are introduced.

Objectives

Page 9: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.8

3. Optimal water chemistry

Page 10: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.9

BWR primary cooling water

radwaste system recirculation system main steam/ feed water systems

radioactive contamination

occupational exposure

pre-filter demineralizer

spent resin liquid waste (back wash, regeneration)

radwaste source volume

fuel integrity

structural material integrity

major roles: energy transporting medium neutron moderating medium

under line: items concerning adverse effects

PWR primary and secondary cooling water

fuel integrity occupational exposure

structural material integrity

major roles: energy transport medium neutron moderating medium

primary cooling system secondary cooling system

Major roles and adverse effects of cooling water of nuclear power plants

Ref.3

Page 11: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.10 Optimal water chemistry control (BWR and PWR)

Establishing 4 targets

iron, nickel & cobalt control

Fewer environmental impacts

Improving reliability of cladding materials

Reducing radwaste sources Minimizing radioactive effluent

Reducing occupational exposure (radioactive contamination)

Improving reliability of structural materials

radiolysis control pH & hydrogen control

Higher safety and higher reliability

nickel alloy

zirconium alloy

stainless steel

a) PWR (primary system)

zirconium alloy

stainless steel

carbon steel

b) BWR

Major materials in primary system Their wetted surface

Ref.2

Page 12: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.11 Interaction between structural materials and cooling water

composition (impurities crystal structure local stress

temperature pH conductivity oxidant

materials water

release of metallic ions

growth of oxide film

oxide film

barrier for diffusion of oxidant and metallic ion

Ref.4

Page 13: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.12

4. Theoretical approaches towards quantifying interactions of materials and water

Page 14: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.13 Comparison of corrosion behaviors and features of major materials

Materials Carbon steel Stainless steel Zirconium alloy (nickel alloy) Corrosion rate high medium low (relatively) Oxide film magnetite/hematite Cr rich nickel ferrite zirconium oxide Application piping of secondary piping and component fuel cladding system of primary system Problems FAC IGSCC, PWSCC clad thinning radioactivity accumulation Effects of strong medium weak electrochemistry

Corrosion rates / corrosion effects should be predicted based on theoretical tools for preparing for suitable countermeasures

Ref.4

Page 15: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.14 Major parameters of major corrosion induced phenomena

temperature. pH, [O2]

mass transfer due to

flow turbulence

Cr content

material factors

environmental factors

flow dynamics factors

Flow accelerated corrosion(FAC)

sensitization at heat affected zone

radiolytic species,

[O2],[H2O2]

residual stress at heat affected

zone

material factors

environmental factors

stress factors

Intergranular stress corrosion cracking (IGSCC) Zircaloy corrosion

compression due to

lattice constant

material factors

environmental factors

stress factors

radiolytic species,

[O2],[H2O2] Ref.4

Page 16: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.15

4.1 Electrochemistry

Page 17: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.16 Electrochemistry Basic reaction between metal and aqueous solution

Corrosion mechanism depends on electrochemistry. Mass and charge balances between metal surface and aqueous solution. Electrode reactions => Corrosion rate Electrode potential => Electrochemical corrosion potential (ECP) Electrolysis Radiolysis Hydrogen generation reaction

2H+ + 2e- → H2

H+ e-

H2

Oxygen generation reaction 2H2O → O2 + 4H+

+ 4e- O2,H+

e- H2O

H2O

O2,H+ e-

Oxygen reduction reaction O2 + 4H+ + 4e- → 2H2O

Metal dissolution reaction Fe → Fe2+ + 2e-

Fe Fe2+ e-

Oxide film formation reaction 2Fe+3H2O → Fe2O3+6H++6e-

H+

H2O

e-

Fe Fe2O3

Ref.5

Page 18: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.17 Schematic diagram of charge balance at surface

pote

ntia

l (ar

bitr

arily

scal

e)

-1.0

-0.5

0

0.5

current density (arbitrarily scale)

10-4 100 10-1 10-3 10-2

Fe Fe2+ + e- total anodic current

with oxide film

without oxide film

total cathdic current O2 + e- O2

-

high [O2]

low [O2]

hydrogen generation

potential

H

L

b) Static charge balance

boundary layer

metal bulk

O2

H+ H2O e-

N2H4

H+

M+ e-

e-

diffusion

anodic current

cathodic current

oxide film

a) Cathodic and anodic reactions

H2

anodic reaction

cathodic reaction

Ref.6

Page 19: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.18

4.2 Electrochemical corrosion potential

Page 20: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.19 Coupled electrochemistry/oxide layer growth model for ECP evaluation

Sub-model electrochemistry model oxide layer growth model (static model) (dynamic model) Input temperature, [O2] , pH, km, temperature mass transfer coefficient (hm) anodic/cathodic current densities oxide film thickness, ECP oxide properties Output anodic/cathodic current densities oxide film thickness ECP properties (Fe2O3/Fe3O4 ratio)

coupling calculation

Ref.7

release

mass transfer

hematite particles

magnetite particles

dissolution adsorption

oxidation

flow

δ outer layer (hematite particles)

inner layer (magnetite particles)

base metal

boundary layer

bulk water

pote

ntia

l (a.

u.)

current density (a..u)

cathodic current

anodic current

oxide filn effects

Page 21: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.20 Cathodic reaction. H2O2 + e- = OH + OH- O2 + e- = O2

- O2 + 2H2O +2e- = 2O2

- + 2H2 2H+ + 2e- = H2 (hydrogen generation at low potential) Current density due to the cathodic reaction is expressed by Eq. (1) Ic = fc (φ) Xs (1) fc (φ) = zc F kc

e exp(-αczcF(φ-φc0)/RT) (2)

[O2] at the metal surface is determined by its diffusion from the bulk to the surface. Da

B(Xb-XB)/δΒ = Ic/zc/F (3) Da

o(XB-Xs)/δο = Ic/zc/F (4) The current density due to the cathodic reaction is expressed by Eq. (5). Ic= fc (φ)Xb/{1+ fc (φ)/zc/F (δo/Da

o+δB/DaB}} (5)

Anodic reactions M = Mz+ + ze- Current density due to the metal release is expressed by Eq. (6). Ia = fa (φ) (Csol-Cs) (6) fa (φ) = za F ke

a exp(+αazaF(φ-φa0)/RT) (7)

The cation concentration at the metal surface is determined by its diffusion. Dc

o(Cs –CB)/δο = Ia/za/F-β(Csol-Cs) -βXs = fa (φ) (Csol-Cs)/za/F-βXs (8) Dc

B(CB -Cb)/δΒ = Ia/za/F= fa (φ) (Csol-Cs)/za/F-βXs (9) The current density due to the anodic reaction is expressed by Eq. (10). Ia = fa (φ) [Csol -{Cb+fa (φ)Csol /za/F(δο/Dc

o+δΒ/DcB)}/{1+(fa (φ)/za/F+β)(δο/Da

o+δΒ/DaB)}] (10)

Numerical expression for cathodic and anodic reactions

Ref.14

Page 22: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.21 Ferrous ion release rate from base metal dM/dt= -Ia/za/F (12) dCB/dtδB=Ia/za/F -δmCBSmCmδB

2 -δhCBShChδB2 -kgCB/Csolfb(CB)δB -km(CB-Cb)δ

+ζmTm +ζhTh (13) dCp

B/dt δB = kgCB/Csolfb(CB)/Wm δB -kdCpB -k(Cp

B-Cpb) δB (14)

dTim/dt =Φ-ζmTi

m for Tim<Ti

m* (15) =0 for Ti

m>Tim* (16)

Φ = ΦOX(φSS)+ ΦHPO([H2O2])+ ΦΗ (17) ΦOX(φSS) = ΦOX*( φSS - φH)1/2/Tb

m for φSS > φ H (18)

= 0 for φSS < φ H (19)

ΦHPO([H2O2]) = ΦHPO*( [H2O2])/Tim (20)

Φ H = ΦH*/Tim (21)

dCm/dt τb = kdCpBδB - (χ+km)Cm δB (22)

dTm/dt=δmCBSmCmδB 2+kdCp

BWmδB -(ζm+χ+km)Tm for Tim>Ti

m* (23) dTm/dt=δmCBSmCmδB

2+kdCpBWmδB -(ζm +χ+km)Tm+Φ for Ti

m<Tim* (24)

The transfer ratio from magnetite to hematite χ=χOX +χHPO (25) χOX = χOX* (φSS - φ H)1/2 for φSS > φ H

(26) = 0 for φSS < φ H

(27) χHPO = χHPO*([H2O2]) (28) dCh/dt δB =χCm δB -khChδB (29) dTh/dt= χTm +δhCBShCh δB

2 -(ζh +kh)Th (30)

Numerical expression for oxide film growth

Ref.14

Page 23: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.22

decreasing potential

101

100

10-1

10-2

10-3

10-4 -1.0 -0.5 0 0.5 1.0

potential (V-SHE)

curr

ent d

ensi

ty (

A/m

2 )

increasing potential

dV/dt=1 V/s

dV/dt=0.01 V/s

dV/dt=100 V/s

a) Potential increasing rate dependence

101

100

10-1

10-2

10-3

10-4 -1.0 -0.5 0 0.5 1.0

potential (V-SHE) cu

rren

t den

sity

(A

/m2 )

increasing potential

decreasing potential

mass transfer coeff., km= 0.01 m/s

km= 0.002 m/s

km= 0.001 m/s

b) Mass transfer coefficient dependence

Calculated anodic polarization responses

Ref.2

Page 24: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.23 Temperature dependent Co release rate from stainless steel

10-1

10-2

10-3

10-4

coba

lt re

leas

e ra

te (

g/m

2 /mon

th)

20 50 100 200 500 1000 5000 exposure time (h)

200ºC 250ºC

170ºC 270ºC

240ºC

150ºC

temperature decrease 250℃ 240℃

Temperature dependence of corrosion rate When temperature decrease from 250 ºC to 240 ºC, corrosion rate decrease due to protective oxide film

developed under 250 ºC water

Ref.8

Page 25: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.24

5. Flow-accelerated Corrosion

Page 26: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.25 Condensate water piping rupture at Mihama-3 NNP

Accident (Aug. 9, 2004) Rupture of condensate water piping

of secondary system (A)

5 person injured to death

Causes Flow assisted corrosion of carbon steel piping

Environmental effect: Non

HP turbine

SG

deareter

ruptured HP

heater

LP heater

feed water pump

moisture re-heater

LP turbine

condenser condensate

water pump

condensate polisher

water chemistry AVT: NH3 + N2H4 pH: 8.8-9.3

[O2]:<10ppb

bent piping orifice

flange ruptured hanger

upstream (A)

upstream (B)

2.5 m 1.5 m 4.0 m

1.9 m 1.5 m 3.4 m

0.45 m

Possible countermeasures · thermal hydraulic improvement · material improvement · water chemistry improvement

Ref.9

Page 27: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.26 Evaluation and inspection steps for wall thinning

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

1D CFD code

1D O2-hydrazine reaction code

3D CFD code

Wall thinning calculation code

1D wall thinning calculation

Total evaluation [planning for preventive maintenance, analysis of plant system safety]

Periodic wall thinning measurement

Continuous wall thinning measurement

Evaluation of residual wall thickness

Selection of measuring point based on JSME code

Selection of measurement location for wall thinning

Improvement of 3D FAC code

Improvement of FAC codes

Corrosion (chemical) analysis Measurement and inspection Flow dynamics analysis System analysis

Ref.10

Page 28: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.27 Evaluation code system for FAC Calculation Flow pattern [O2], [Fe2+] Wall thinning rate and ECP targets (anodic/cathodic (oxide film current density) formation) Input Reactor Reactor [O2] , T, pH, km, icorr, parameters: parameters: geometries, T, flow velocity (v), oxide film ECP heat flux (Q), surface/volume rate, thickness, temperature (T) mixing rate properties Computer 1D CFD N2H4-O2 reaction Static model Dynamic model programs 2-3D k-ε CFD code (Electro- (Oxide layer 3D LES -chemistry) growth) Output T, v distributions [O2] and [Fe2+] icorr, ECP oxide film along distributions wall thinning rate thickness flow path along flow path properties (Fe2O3/Fe3O4 ratio)

coupling calculation

Ref.7

Page 29: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.28 Relationship between corrosion rate and ECP po

tent

ial (

arbi

trar

ily sc

ale)

-1.0

-0.5

0

0.5

current density (arbitrarily scale)

10-4 100 10-1 10-3 10-2

Fe Fe2+ + e- total anodic current

with oxide film without

oxide film

oxidation of hydrazine

total cathdic current O2 + e- O2

-

high [O2]

low [O2]

hydrogen generation

potential

H

L

Protective oxide film mitigates further corrosion with increasing ECP

Increasing ECP mitigates further corrosion with increasing [O2]

Ref.7

Page 30: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.29

10-5 10-4 10-3 10-2 10-1

mass transfer coefficient (m/s)

pH: 7.3

pH: 9.2

101

100

10-1

10-2

10-3 W

all t

hinn

ing

rate

(a.

u)

condensate water heater

main condenser

feed water heater

steam generator

demineralizer

deaerator

①*

② ⑫ ⑤

⑥ ⑦ ⑧

⑩ ⑪

⑬ ⑭

③ ④

Application of FAC code to PWR secondary cooling system

3D computational fluid dynamics code

Mass transfer coefficient at pipe inner surface

Wall thinning rate

3D FAC code

Page 31: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.30 Time margin and hazard scale of pipe rupture

time margin relative effects

0 20 40 60 80

100 120 140

location

time

mar

gin

for

rupt

ure

(y)

0

0.2

0.4

0.6

0.8

1.0 re

lativ

e ha

zard

scal

e (-)

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯

Time margin and hazard scale according to location

Relationship of time margin and hazard scale

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 time margin for rupture (y)

rela

tive

haza

rd sc

ale

(-)

primary location for inspection and maintenance

15

14 13 12

11

10 9

8

7 6 5 4 3

2

16

1

Ref.10

condensate water heater

main condenser

feed water heater

steam generator

demineralizer

deaerator

①*

② ⑫ ⑤

⑥ ⑦ ⑧

⑩ ⑪

⑬ ⑭

③ ④ Thinning rate evaluation

+ Effects evaluation

For risk evaluation

Page 32: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.31

6. Water radiolysis

Page 33: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.32

0 20

200 50

[O2]eff (ppb)

HWC [H2]eff : 50 ppb NWC

Maps of distribution of [O2]eff in RPV (Effects of hydrogen injection on suppression of [O2])

Ref.12

Page 34: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.33 Theoretical determination of corrosive conditions of BWRs based on water radiolysis model

steam flow

water flow

feed water

recirculation water

release of gaseous species steam

H2, O2

reactor core water radiolysis

2H2O→ H2 + H2O2

sampled water to determine oxidant concentrations

cooled down

upper plenum

2H2O2→ 2H2O + O2

decomposition of hydrogen peroxide

down comer lower plenum

2H2 + O2→ 2 H2O H2 + H2O2→ 2 H2O

recombination reactions

Ref.12

Page 35: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.34 Effects of H2 injection in BWR plants

b) Calculated for plants

0 20 40 60 80 100 [H2]RW (ppb)

[O2]eff [O2]

102

101

100

[O2] e

ff (p

pb)

[O2]eff= [O2]+1/2 [H2O2]: effective oxygen concentration [H2]RW :[H2] in the reactor water

0

50

100

150

200

250

0

1

2

3

4

5

6

0 20 40 60 80 100

mai

n st

eam

line

dos

e ra

te

[O

2] eff

(ppb

)

[H2]RW (ppb)

ECP

(V-S

HE)

-0.6

-0.4

-0.2

0

0.2

0.4

optimal [H2]RW MSDR

limit [O2]eff target

MS dose rate

[O2]eff

ECP NMCA ECP

a) Measured in plants

Ref.12

Page 36: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.35 ECP evaluation procedures

Evaluation of lifetime of major component

ECP calculation code

(AESJ standard - proposed) Crack grow calculation code

ECP

Water radiolysis code

Fluid dynamics parameters

Reactor parameters (flow velocity, equivalent diameter, radiation energy deposition)

(JSME standard) Plant materials Residual stress

Concentrations of radiolytic species

b) Hydrogen water chemistry

100 101 102

10-5

10-6

10-7

10-8

10-9 crac

k gr

owth

rate

(m

m/s

)

stress intensity factor, K (MPa m1/2)

austenitic stainless steel

low carbon containing austenitic

stainless steel

conductivity: <0.2µS/cm ECP: <-100mV-SHE

a) Normal water chemistry

10-5

10-6

10-7

10-8

10-9 100 101 102

crac

k gr

owth

rate

(m

m/s

)

stress intensity factor, K (MPa m1/2)

austenitic stainless steel

low carbon containing austenitic stainless

steel

conductivity: <0.2µS/cm ECP: >150mV-SHE

Ref.13

Page 37: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.36 Crack growth rate as a function of ECP

NWC: normal water chemistry (without hydrogen injection) HWC: hydrogen water chemistry (with hydrogen injection)

measured calculated

-600 -400 -200 0 200 400

10-5

10-6

10-7

10-8

10-9

ECP (mV-SHE)

crac

k gr

owth

rat

e (m

m/s

) Type 304 stainless steel (25mm CT specimen) furnace sensitized: 15C/cm2

water temperature: 288 C constant load: Kin/(in)1/2

Conductivity (mS/cm) :

0.3 0.2 0.1

HWC NWC

Decreasing ECP mitigates IGSCC occurrence and propagation with decreasing [O2]

Ref.16

Page 38: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.37 Effects of hydrogen on PWSCC crack initiation and crack growth rate

Ni/N

iO li

ne 25

20

15

10

5

0

tube diameter 3/4 inches 7/8 inches

Nml-H2/kg-H2O (at 330 C) cr

ack

initi

atio

n tim

e (k

h)

0 5 10 15 20 25 30 35

b) Crack initiation time

0 50 100 150 [H2] (Ncm3/kg)

crac

k gr

owth

rat

e(m

ills/

day)

NiO Ni metal

2.0

1.0

0

X-750, 360C, 49 MPam1/2

a) Crack growth rate

Refs.2, 17 and 18

Page 39: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.38 High Temperature G-values

molecules, atoms /100ev absorption

e-

H H+

H2

H2O2

HO2

OH OH-

species

3.50 0.90 3.50 0.60 0.55 0.00 4.50 0.00

γ rays

0.60 0.50 0.60 1.50 1.14 0.04 1.70 0.00

neutrons PWR(305ºC)

0.152 0.199 1.974 0.152 1.104 0.300 1.191 0.000

α rays

3.565 0.927 0.612 3.565 0.542 0.000 4.632 0.000

γ rays

0.662 0.453 1.278 0.662 0.836 0.050 1.849 0.000

neutrons BWR(285ºC)

Water radiolysis codes for BWR have been well developed and applied, while those for PWR have just developed with different G value sets

Ref.19

Page 40: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.39

7. Future subjects

Page 41: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.40 Calculated results of PWR radiolysis model Comparison with INCA loop experiments

Standard procedures to authorize the computer simulation codes have been based on the verification and validation (V&V) method.

The verification and validation (V&V) processes for the FAC simulation code and the corrosive condition calculation code were done in conformity with the ASME “Guide for Verification and Validation in Computational Solid Mechanics.” The definitions of V&V are as follows: 1. code verification: addressing errors in the software 2. calculation verification: estimating numerical errors due to under resolved discrete representations of the mathematical model 3. validation: assessing the degree to which the computational model is an accurate representation of the physics being modeled, based on comparison between numerical simulations and relevant experimental data (predictive capability of the model).

Ref.20

Page 42: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.41 Comparison of the calculated results with the measured Validation of FAC code based on Residual thickness

0

10

20

30

40

50

0 10 20 30 40 50 calculated (mm)

mea

sure

d (m

m) -20%

+20%

Bend (condensate water line: 146ºC)

Bend (feed water line: 222ºC)

T-junctions (drum: 190ºC)

T-junctions (pipe : 190ºC)

Ref.6

Page 43: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.42

0.2

0

-0.2

-0.4

-0.6

-0.6 -0.4 -0.2 0 0.2 measured ECP (V- SHE)

calc

ulat

ed E

CP

(V- S

HE

)

+0.05V

-0.05V

: BWR4 : BWR5

Comparison of the calculated results with the measured Validation of corrosive condition calculation code based on Residual thickness

Ref.13

Page 44: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.43

8. Conclusion

Page 45: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.44

8. Conclusions 1. Optimal water chemistry control has been established to satisfy multi-problems related to interaction of materials and water is introduced. 2. Theoretical approaches as well as empirical ones have been established to quantify the interaction of materials and water and to establish suitable countermeasures for those problems. 3. Electrochemistry procedures have been successfully applied to determine corrosion related problems. 4. As examples of application of theoretical electrochemistry procedures, a prediction model for FAC and prediction models for water radiolysis are introduced. 5. As future subjects of the theoretical models related to corrosion problems, standardization of the codes should be established based on V&V evaluation procedures

Page 46: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.45

9. ACKNOWLEDGEMENT

The author expresses his thanks to the members of the Institute of Applied Energy for their enthusiastic discussion and contribution to develop the FAC code.

He also expresses his thanks to the members of the HWC Standard Working Group of

the Standard Committee of the AESJ for enthusiastically discussing on the standard draft and Prof. Seiichi Koshizuka for his helpful guidance on V&V evaluation..

Page 47: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.46

[1] Nuclear Energy Institute, “World Nuclear Generation and Capacity (2007)”, web site: http://www.nei.org/resourcesandstats/documentlibrary/reliableandaffordableenergy/graphicsandcharts/worldnuclearpowerplantsinoperation/ [2] S. Uchida, “Latest Experience with Water Chemistry in Nuclear Power Plants in Japan”, Power Plant Chemistry, 8, 282 (2006) [3] S. Uchida and Y. Katsumura, “Water Chemistry Technology – one of the key technologies for safe and reliable nuclear power plant operation”, J. Nucl. Sci. Technol., 50 (4), 346 (2013). [4] S. Uchida, “Corrosion of Structural Materials and Electrochemistry in High Temperature Water of Nuclear Power Systems”, Power Plant Chemistry, 10 [11], 630, (2008) [5] H. H. Uhlig and R. W. Revie, “Corrosion and corrosion control”, Wiley-Interscience, New York, 1985. [6] S. Uchida, M. Naitoh, H. Okada, T. Ohira, S. Koshizuka and D. H. Lister, “Verification and Validation of Evaluation Procedures for Local Thinning due to Flow- accelerated Corrosion and Liquid Droplet Impingement”, Nucl. Technol., 178 280 (2012) [7] S. Uchida, M. Naitoh, Y. Uehara, H. Okada, N. Hiranuma, W. Sugino, S. Koshizuka and D. H. Lister, “Evaluation Methods for Corrosion Damage of Components in Cooling Systems of Nuclear Power Plants by Coupling Analysis of Corrosion and Flow Dynamics (III), Evaluation of Pipe Wall Thinning Rate with the Coupled Model of Static Electrochemical Analysis and Dynamic Double Oxide Layer Analysis”, J. Nucl. Sci. Technol., 46 [1] , 31 (2009). [8] M. Kitamura, E. Ibe, S. Uchida, T. Honda, G. Romeo and R. L. Cowan, “Application of Pre-Oxidation Treatment to Suppress Cobalt-60 Deposition on Stainless Steel Surfaces of BWR Primary Cooling System”, Nucl. Technol., 89, 61 (1985). [9] M. Naitoh, S. Uchida, S. Koshizuka, H. Ninokata, N. Hiranuma, K. Dozaki, K. Nishida, M. Akiyama and H. Saitoh, “Evaluation Methods for Corrosion Damage of Components in Cooling Systems of Nuclear Power Plants by Coupling Analysis of Corrosion and Flow Dynamics (I), Major targets and development strategies of the evaluation methods”, J. Nucl. Sci. Technol., 45 [11] , 1116 (2008). [10] H. Suzuki, S. Uchida, M. Naitoh, H. Okada, S. Koikari, K. Hasegawa, F. Kojima, S. Koshizuka, and D. H. Lister, “Risk Evaluation of Flow-Accelerated Corrosion Based on One-Dimensional FAC Code”, Nucl. Technol., 183 [2], 193 (2013). [11] S. Uchida, M. Naitoh, Y. Uehara, H. Okada, N. Hiranuma, W. Sugino and S. Koshizuka, “Evaluation Methods fo Corrosion Damage of Components in Cooling Systems of Nuclear Power Plants by Coupling Analysis of Corrosion and Flow (II), Evaluation of corrosive conditions in PWR secondary cooling system”, J. Nucl. Sci. Technol., 45 [12], 1275 (2008). [12] Y. Wada, S. Uchida, M. Nakamura and K. Akamine, ”Empirical Understanding of the Dependency on BWR Designs for HWC Effectiveness”, J. Nucl. Sci. Technol. 36, 169 (1999). [13] S. Uchida, Y. Wada, S. Yamamoto, J. Takagi and K. Hisamune, “Verification and validation procedures of calculation codes for determining corrosive conditions in the BWR primary cooling system based on water radiolysis and mixed potential models”, J. Nucl. Sci. Technol., 51 [1], 24 (2014). [14] S. Uchida, S. Hanawa, Y. Nishiyama, T. Nakamura, T. Satoh, T. Tsukada and J. Kysela, “Determination of Electrochemical Corrosion Potential along the JMTR In-pile Loop (I) Evaluation of ECP of Stainless Steel in High Temperature Water as a Function of Oxidant Concentrations and Exposure Time”, Nucl. Technol. 183, 119 (2013). [15] S. Uchida, T. Satoh, T. Tsukada, T. Miyazawa, Y. Satoh and K. Ishii, “Evaluation of the Effects of Oxide Film on Electrochemical Corrosion Potential of Stainless Steel in High Temperature Water”, Proc. 14th Int Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Virginia Beach, VA, Aug. 22-27, 2009, ANS, 2009 (in CD). [16] F. P. Ford, D. F. Taylor, P. L. Andresen and R. G. Ballinger., “Corrosion-Assisted Cracking of Stainless and Low- Alloy Steels in LWR Environments”, EPRI NP-5064M Project 2006-6 Final Report, February (1987). [17] L. Wilson, J. Hickling, “Use of Primary Water chemistry in Pressurized Water Reactors to Mitigate PWSCC in Nickel Base Alloys. Proc. International Conference on Water Chemistry of Nuclear Reactor Systems”, Proc. Int. Conf. Water Chemistry of Nuclear power Systems, 2006 Oct 23-26; Jeju Island (Korea) [CD-ROM]. [18] A. Molander, A. Jenssen, M. Konig and K. Norring, “PWSCC Initiation and Crack Growth Data for Alloy 600 with Focus on Hydrogen Effects”, Proc. Int. Workshop on Optimization of Dissolved Hydrogen Content in PWR Primary Coolant; 2008 July 18-19; Sendai (Japan) [CD-ROM]. [19] H. Takiguchi, M. Ullberg, S. Uchida, “Optimization of Dissolved Hydrogen Concentration for Control of Primary Coolant Radiolysis in Pressurized Water Reactors”, J. Nucl. Sci. Technol. 41 601 (2004). [20] Performance Test Codes Standards Committee. Guide for Verification and Validation in Computational Solid Mechanics. USA: American Society of Mechanical Engineers, ASME V&V 10-2006 (2006).

10. References (1)

Page 48: Corrosion of Structural Materials and Electrochemistry in ...symbio-newsreport.jpn.org/files/upload/report/presentation... · IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida No.0

IWNSST17, Kyoto, Japan, Jan. 21-22, 2014 S. Uchida

No.47

Thank you for your kind attention.