cosmic ray - wikipedia, the free encyclopedia

Upload: donodoni0008

Post on 03-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    1/7

    The energy spectrum for cosmic rays

    cini makes a

    asurement in 1910.

    osmic raym Wikipedia, the free encyclopedia

    edirected from Cosmic rays)

    smic rays are very high-energy particles, mainly originating outside the Solar System.[1] They may produce showers of

    ondary particles that penetrate and impact the Earth's atmosphere and sometimes even reach the surface. Comprised

    marilyof high-energy protons and atomic nuclei, their origin has, until recently, been a mystery. With data from the Fermi

    ce telescope published in February 2013,[2] it is now known that cosmic rays primarily originate from the supernovae of

    ssive stars.[3]

    e term ray is a historical accident, as cosmic rays were at first, and wrongly, thought to be mostly electromagnetic

    iation. In modern common usage[4] high-energy particles with intrinsic mass are known as "cosmic" rays, and photons,

    ch are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as

    mma rays" or "X-rays", depending on their frequencies.

    mic rays attract great interest practically, due to the damage they inflict on microelectronics and life outside the protection

    n atmosphere and magnetic field, and scientifically, because the energies of the most energetic ultra-high-energy cosmic

    s (UHECRs) have been observed to approach 3 1020 eV,[5] about 40 million times the energy of particles accelerated by

    Large Hadron Collider.[6] At 50 J,[7] the highest-energy ultra-high-energy cosmic rays have energies comparable to the

    etic energy of a 90-kilometre-per-hour (56 mph) baseball. As a result of these discoveries, there has been interest in

    estigating cosmic rays of even greater energies.[8] Most cosmic rays, however, do not have such extreme energies; the

    rgy distribution of cosmic rays peaks at 0.3 gigaelectronvolts (4.8 1011 J).[9]

    primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the nuclei (stripped of their electron

    lls) of well-known atoms, and about 1% are solitary electrons (similar to beta particles). Of the nuclei, about 90% are

    ple protons, i. e. hydrogen nuclei; 9% are alpha particles, and 1% are the nuclei of heavier elements. [10] A very small

    tion are stable particles of antimatter, such as positrons or antiprotons, and the precise nature of this remaining fraction is

    area of active research.

    Contents

    1 History

    1.1 Discovery

    1.2 Identification

    1.3 Energy distribution

    2 Sources of cosmic rays

    3 Types

    3.1 Primary cosmic rays

    3.2 Secondarycosmic rays

    3.3 Cosmic-ray flux

    4 Detection methods

    5 Effects

    5.1 Changes in atmospheric chemistry

    5.2 Role in ambient radiation

    5.3 Effect on electronics

    5.4 Significance to space travel

    5.5 Role in lightning

    5.6 Role in climate change

    5.6.1 Suggested mechanisms

    5.6.2 Geochemical and astrophysical evidence

    6 Research and experiments

    6.1 Ground-based

    6.2 Satellite

    6.3 Balloon-borne

    7 See also

    8 Notes

    9 References

    10 External links

    istory

    er the discovery of radioactivity by Henri Becquerel in 1896, it was generally believed that atmospheric electricity, ionization of the air, was caused only by radiation from radioactive

    ments in the ground or the radioactive gases or isotopes of radon they produce. Measurements of ionization rates at increasing heights above the ground during the decade from 1900 to

    0 showed a decrease that could be explained as due to absorption of the ionizing radiation by the intervening air.

    scovery

    909 Theodor Wulf developed an electrometer, a device to measure the rate of ion production inside a hermetically sealed container, and used it to show higher levels of radiation at the

    of the Eiffel Tower than at its base. However, his paper published in Physikalische Zeitschriftwas not widely accepted. In 1911 Domenico Pacini observed simultaneous variations of

    rate of ionization over a lake, over the sea, and at a depth of 3 meters from the surface. Pacini concluded from the decrease of radioactivity underwater that a certain part of the

    ization must be due to sources other than the radioactivity of the Earth.[11]

    Then, in 1912, Victor Hess carried three enhanced-accuracy Wulf electrometers[12] to an altitude of 5300 meters in a free balloon flight. He found the

    ionization rate increased approximately fourfold over the rate at ground level.[12] Hess also ruled out the Sun as the radiation's source by making a balloon

    ascent during a near-total eclipse. With the moon blocking much of the Sun's visible radiation, Hess still measured rising radiation at rising altitudes.[12] He

    concluded "The results of my observation are best explained by the assumption that a radiation of very great penetrating power enters our atmosphere from

    above." In 19131914, Werner Kolhrster confirmed Victor Hess' earlier results by measuring the increased ionization rate at an altitude of 9 km.

    Hess received the Nobel Prize in Physics in 1936 for his discovery.[13][14]

    The Hess balloon flight took place on 7 August 1912. By sheer coincidence, exactly 100 years later on 7 August 2012,

    the Mars Science Laboratory rover used its Radiation Assessment Detector (RAD) instrument to begin measuring the

    iation levels on another planet for the first time.

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    2/7

    Increase of ionization with altitude as

    measured by Hess in 1912 (left) and

    by Kolhrster (right)

    Hess lands after his balloon flight in

    1912.

    Primary cosmic particle collides with a moleculeof atmosphere.

    entification

    he 1920s the term "cosmic rays" was coined by Robert Millikan who made measurements of ionization due to cosmic rays from deep under

    er to high altitudes and around the globe. Millikan believed that his measurements proved that the primary cosmic rays were gamma rays, i.e.,

    rgetic photons. And he proposed a theory that they were produced in interstellar space as by-products of the fusion of hydrogen atoms into the

    vier elements, and that secondaryelectrons were produced in the atmosphere by Compton scattering of gamma rays. But then, in 1927, J. Clay

    nd evidence,[15] later confirmed in many experiments, of a variation of cosmic ray intensity with latitude, which indicated that the primary

    mic rays are deflected by the geomagnetic field and must therefore be charged particles, not photons. In 1929, Bothe and Kolhrster discovered

    rged cosmic-ray particles that could penetrate 4.1 cm of gold.[16] Charged particles of such high energy could not possibly be produced by

    tons from Millikan's proposed interstellar fusion process.

    930, Bruno Rossi predicted a difference between the intensities of cosmic rays arriving from the east and the west that depends upon the charge

    he primary particles - the so-called "east-west effect."[17] Three independent experiments[18][19][20] found that the intensity is, in fact, greater

    m the west, proving that most primaries are positive. During the years from 1930 to 1945, a wide variety of investigations confirmed that the

    mary cosmic rays are mostly protons, and the secondary radiation produced in the atmosphere is primarilyelectrons, photons and muons. In

    8, observations with nuclear emulsions carried by balloons to near the top of the atmosphere showed that approximately 10% of the primaries

    helium nuclei (alpha particles) and 1% are heavier nuclei of the elements such as carbon, iron, and lead.[21][21]

    ring a test of his equipment for measuring the east-west effect, Rossi observed that the rate of near-simultaneous discharges of two widely

    arated Geiger counters was larger than the expected accidental rate. In his report on the experiment, Rossi wrote "... it seems that once in a while

    recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large

    ances from one another."[20] In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some

    ail. He concluded that high-energy primary cosmic-ray particles interact with air nuclei high in the atmosphere, initiating a cascade of secondary

    ractions that ultimately yield a shower of electrons, and photons that reach ground level.

    viet physicist Sergey Vernov was the first to use radiosondes to perform cosmic ray readings with an instrument carried to high altitude by a

    oon. On 1 April 1935, he took measurements at heights up to 13.6 kilometers using a pair of Geiger counters in an anti-coincidence circuit to

    id counting secondaryray showers.[22][23]

    mi J. Bhabha derived an expression for the probability of scattering positrons by electrons, a process now known as Bhabha scattering. His

    sic paper, jointly with Walter Heitler, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to

    duce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron

    rs.

    ergy distribution

    asurements of the energy and arrival directions of the ultra-high energy primary cosmic rays by the techniques of "density sampling" and "fast timing" of extensive air showers were

    t carried out in 1954 by members of the Rossi Cosmic Ray Group at the Massachusetts Institute of Technology.[24] The experiment employed eleven scintillation detectors arranged

    hin a circle 460 meters in diameter on the grounds of the Agassiz Station of the Harvard College Observatory. From that work, and from many other experiments carried out all over

    world, the energy spectrum of the primary cosmic rays is now known to extend beyond 1020 eV. A huge air shower experiment called the Auger Project is currently operated at a site

    he pampas of Argentina by an international consortium of physicists, led by James Cronin, 1980 Nobel Prize in Physics of the University of Chicago and Alan Watson of the

    versity of Leeds. Their aim is to explore the properties and arrival directions of the very highest-energy primary cosmic rays.[25] The results are expected to have important

    plications for particle physics and cosmology, due to a theoretical GreisenZatsepinKuzmin limit to the energies of cosmic rays from long distances (about 160 million light years)

    ch occurs above 1020 eV because of interactions with the remnant photons from the big bang origin of the universe.

    November, 2007 preliminary results were announced showing direction of origination of the 27 highest energy events were strongly correlated with the locations of active galactic

    lei (AGNs), where bare protons are believed to be accelerated by strong magnetic fields associated with the large black holes at the AGN centers to energies of 1020 eV and higher.[26]

    h-energy gamma rays (>50 MeV photons) were finally discovered in the primary cosmic radiation by an MIT experiment carried on the OSO-3 satellite in 1967.[27] Components of

    h galactic and extra-galactic origins were separately identified at intensities much less than 1% of the primary charged particles. Since then, numerous satellite gamma-ray observatories

    e mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse

    rces in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.

    ources of cosmic rays

    ly speculation on the sources of cosmic rays included a 1948 proposal by Horace W. Babcock that magnetic variable stars could be a source of cosmic rays.[28] Subsequently in 1951,

    Sediko et al. identified the Crab Nebula as a source of cosmic rays.[29] Subsequently, a wide variety of potential sources for cosmic rays began to surface, including supernovae, active

    actic nuclei, quasars, and gamma-ray bursts.[30]

    er experiments have helped to identify the sources of cosmic rays with greater certainty. In 2009, a paper presented at the International Cosmic Ray Conference (ICRC) by scientists at

    Pierre Auger Observatory showed ultra-high energy cosmic rays (UHECRs) originating from a location in the sky very close to the radio galaxy Centaurus A, although the authors

    cificallystated that further investigation would be required to confirm Cen A as a source of cosmic rays.[31]

    However, no correlation was found between the incidence of gamma-raysts and cosmic rays, causing the authors to set a lower limit of 106 erg cm2 on the flux of 1 GeV-1 TeV cosmic rays from gamma-ray bursts.[32]

    2009, supernovae were said to have been "pinned down" as a source of cosmic rays, a discovery made by a group using data from the Very Large Telescope.[33] This analysis, however,

    disputed in 2011 with data from PAMELA, which revealed that "spectral shapes of [hydrogen and helium nuclei] are different and cannot be described well bya single power law",

    gesting a more complex process of cosmic ray formation.[34] In February 2013, though, research analyzing data from Fermi revealed through an observation of neutral pion decay that

    ernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 1042 - 3 1043 J of cosmic rays.[2][3] However, supernovae do not produce all cosmic rays,

    the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.[35]

    ypes

    mic rays originate as primary cosmic rays, which are those originally produced in various astrophysical processes.

    mary cosmic rays are composed primarily of protons and alpha particles (99%), with a small amount of heavier

    lei (~1%) and an extremely minute proportion of positrons and antiprotons.[10] Secondary cosmic rays, caused by a

    ay of primary cosmic rays as they impact an atmosphere, include neutrons, pions, positrons, and muons. Of these

    r, the latter three were first detected in cosmic rays.

    imary cosmic rays

    mary cosmic rays primarily originate from outside our Solar System and sometimes even the MilkyWay. When they

    ract with Earth's atmosphere, they are converted to secondary particles. The mass ratio of helium to hydrogen

    lei, 28%, is about the same as the primordial elemental abundance ratio of these elements, 24%.[36] The remaining

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    3/7

    The moon in cosmic rays

    e Moon'scosmic rayshadow,as

    en in secondarymuons detected

    0 m below ground, at the

    udan 2 detector

    e moon as seen by the Compton

    amma RayObservatory, in

    mma rays with energies greater

    an 20 MeV. Theseare produced

    cosmic raybombardment on its

    rface.[39]

    An overview of the space environment shows the relationship between

    the solar activity and galactic cosmicrays.[41]

    The VERITAS arrayof air Cherenkov telescopes.

    tion is made up of the other heavier nuclei that are nuclear synthesis end products, products of the Big Bang[citation needed], primarily lithium, beryllium, and boron. These light nuclei

    ear in cosmic rays in much greater abundance (~1%) than in the solar atmosphere, where they are only about 1011 as abundant as helium.

    s abundance difference is a result of the way secondary cosmic rays are formed. Carbon and oxygen nuclei collide with interstellar matter to form lithium, beryllium and boron in a

    cess termed cosmic ray spallation. Spallation is also responsible for the abundances of scandium, titanium, vanadium, and manganese ions in cosmic rays produced by collisions of iron

    nickel nuclei with interstellar matter.[37]

    ellite experiments have found evidence of a few antiprotons and positrons in primary cosmic rays, although there is no evidence of complex antimatter atomic nuclei, such as anti-

    um nuclei (anti-alpha) particles. Antiprotons arrive at Earth with a characteristic energy maximum of 2 GeV, indicating their production in a fundamentally different process from

    mic ray protons.[38]

    Secondary cosmic rays

    When cosmic rays enter the Earth's atmosphere they collide with molecules, mainly oxygen and nitrogen. The interaction produce a cascade of lighter

    particles, a so-called air shower.[40] All of the produced particles stay within about one degree of the primary particle's path.

    Typical particles produced in such collisions are neutrons and charged mesons such as positive or negative pions and kaons. Some of these

    subsequently decay into muons, which are able to reach the surface of the Earth, and even penetrate for some distance into shallow mines. The muons

    can be easily detected by many types of particle detectors, such as cloud chambers, bubble chambers or scintillation detectors. The observation of a

    secondary shower of particles in multiple detectors at the same time is an indication that all of the particles came from that event.

    Cosmic rays impacting other planetary bodies in the Solar System are detected indirectly byobserving high energy gamma ray emissions by gamma-

    ray telescope. These are distinguished from radioactive decay processes bytheir higher energies above about 10 MeV.

    Cosmic-ray flux

    The flux of incoming cosmic rays at the upper atmosphere is dependent on the

    solar wind, the Earth's magnetic field, and the energy of the cosmic rays. At

    distances of ~94 AU from the Sun, the solar wind undergoes a transition, called

    the termination shock, from supersonic to subsonic speeds. The region between the

    termination shock and the heliopause acts as a barrier to cosmic rays, decreasing

    the flux at lower energies ( 1 GeV) by about 90%. However, the strength of thesolar wind is not constant, and hence it has been observed that cosmic ray flux is

    correlated with solar activity.

    In addition, the Earth's magnetic field acts to deflect cosmic rays from its surface,

    giving rise to the observation that the flux is apparently dependent on latitude,

    longitude, and azimuth angle. The magnetic field lines deflect the cosmic rays

    towards the poles, giving rise to the aurorae.

    The combined effects of all of the factors mentioned contribute to the flux of cosmic rays at Earth's surface. For 1 GeV particles, the rate of arrival is

    about 10,000 per square meter per second. At 1 TeV the rate is 1 particle per square meter per second. At 10 PeV there are only a few particles per

    square meter per year. Particles above 10 EeV arrive only at a rate of about one particle per square kilometer per year, and above 100 EeV at a rate of

    about one particle per square kilometer per century.[42]

    In the past, it was believed that the cosmic ray flux remained fairly constant over time. However, recent research suggests 1.5 to 2-fold millennium-

    escale changes in the cosmic ray flux in the past forty thousand years.[43]

    e magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per

    ic centimeter of interstellar space, or ~1 eV/cm3, which is comparable to the energy density of visible starlight at 0.3 eV/cm3, the galactic magnetic field energy density (assumed 3

    rogauss) which is ~0.25 eV/cm3, or the cosmic microwave background (CMB) radiation energy density at ~ 0.25 eV/cm3.[44]

    etection methods

    ere are several ground-based methods of detecting cosmic rays currently in use. The

    t detection method is called the air Cherenkov telescope, designed to detect low-

    rgy (

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    4/7

    ffects

    anges in atmospheric chemistry

    mic rays ionize the nitrogen and oxygen molecules in the atmosphere, which leads to a number of chemical reactions. One of the reactions results in ozone depletion. Cosmic rays are

    o responsible for the continuous production of a number of unstable isotopes in the Earth's atmosphere, such as carbon-14, via the reaction:

    n + 14N p + 14C

    mic rays kept the level of carbon-14[50] in the atmosphere roughly constant (70 tons) for at least the past 100,000 years, until the beginning of above-ground nuclear weapons testing in

    early 1950s. This is an important fact used in radiocarbon dating used in archaeology.

    action products of primary cosmic rays, radioisotope half-lifetime, and production reaction.[51]

    Tritium (12.3 years): 14N(n, 3H)12C (Spallation)Beryllium-7 (53.3 days)

    Beryllium-10 (1.39 million years): 14N(n,p )10Be (Spallation)

    Carbon-14 (5730 years): 14N(n, p)14C (Neutron activation)

    Sodium-22 (2.6 years)

    Sodium-24 (15 hours)

    Magnesium-28 (20.9 hours)

    Silicon-31 (2.6 hours)

    Silicon-32 (101 years)

    Phosphorus-32 (14.3 days)

    Sulfur-35 (87.5 days)

    Sulfur-38 (2.8 hours)

    Chlorine-34 m (32 minutes)

    Chlorine-36 (300,000 years)

    Chlorine-38 (37.2 minutes)

    Chlorine-39 (56 minutes)

    Argon-39 (269 years)

    Krypton-85 (10.7 years)

    le in ambient radiation

    mic rays constitute a fraction of the annual radiation exposure of human beings on the Earth, averaging 0.39 mSv out of a total of 3 mSv per year (13% of total background) for the

    th's population. However, the background radiation from cosmic rays increases with altitude, from 0.3 mSv per year for sea-level areas to 1.0 mSv per year for higher-altitude cities,

    ing cosmic radiation exposure to a quarter of total background radiation exposure for populations of said cities. Airline crews flying long distance high-altitude routes can be exposed

    .2 mSv of extra radiation each year due to cosmic rays, nearly doubling their total ionizing radiation exposure.

    Average annual radiation exposure (millisieverts)

    Radiation UNSCEAR[52][53] Princeton[54] Wa State[55] MEXT[56]

    Type Sourc eWorld

    averageTypical range USA USA Japan Remark

    atural

    Air 1.26 0.2-10.0a 2.29 2.00 0.40 Primarily from Radon, (a)depends on indoor accumulation of radon gas.

    Internal 0.29 0.2-1.0b 0.16 0.40 0.40 Mainlyfrom radioisotopes in food (40K, 14C, etc.) (b)depends on diet.

    Terrestrial 0.48 0.3-1.0c 0.19 0.29 0.40 (c)Depends on soil composition and building material of structres.

    Cosmic 0.39 0.3-1.0d 0.31 0.26 0.30 (d)Generally increases with elevation.

    Subtotal 2.40 1.0-13.0 2.95 2.95 1.50

    tificial

    Medical 0.60 0.03-2.0 3.00 0.53 2.30

    Fallout 0.007 0 - 1+ - - 0.01Peaked in 1963 with a spike in 1986; still high near nuclear test and accident sites.

    For the United States, fallout is incorporated into other categories.

    others 0.0052 0-20 0.25 0.13 0.001Average annual occupational exposure is 0.7 mSv; mining workers have higher exposure.

    Populations near nuclear plants have an additional ~0.02 mSv of exposure annually.

    Subtotal 0.6 0 to tens 3.25 0.66 2.311

    Total 3.00 0 to tens 6.20 3.61 3.81

    Figures are for the time before the Fukushima Daiichi nuclear disaster. Human-made values by UNCEAR are from the Japanese National Institute of Radiological Sciences, which summarized the UNCEAR data.

    fect on electronics

    mic rays have sufficient energy to alter the states of elements in electronic integrated circuits, causing transient errors to occur, such as corrupted data in electronic memory devices, or

    orrect performance of CPUs, often referred to as "soft errors" (not to be confused with software errors caused by programming mistakes/bugs). This has been a problem in extremely

    h-altitude electronics, such as in satellites, but with transistors becoming smaller and smaller, this is becoming an increasing concern in ground-level electronics as well.[57] Studies by

    M in the 1990s suggest that computers typically experience about one cosmic-ray-induced error per 256 megabytes of RAM per month.[58] To alleviate this problem, the Intel

    poration has proposed a cosmic ray detector that could be integrated into future high-density microprocessors, allowing the processor to repeat the last command following a cosmic-

    event.[59]

    mic rays are suspected as a possible cause of an in-flight incident in 2008 where an Airbus A330 airliner of Qantas twice plunged hundreds of feet after an unexplained malfunction in

    flight control system. Many passengers and crew members were injured, some seriously. After this incident, the accident investigators determined that the airliner's flight control system

    received a data spike that could not be explained, and that all systems were in perfect working order. This has prompted a software upgrade to all A330 and A340 airliners, worldwide,

    hat any data spikes in this system are filtered out electronically.[60]

    gnificance to space travel

    Main article: Health threat from cosmic rays

    actic cosmic rays are one of the most important barriers standing in the way of plans for interplanetary travel by crewed spacecraft. Cosmic rays also pose a threat to electronics placed

    ard outgoing probes. In 2010, a malfunction aboard the Voyager 2 space probe was credited to a single flipped bit, probably caused by a cosmic ray. Strategies such as physical or

    gnetic shielding for spacecraft have been considered in order to minimize the damage to electronics and human beings caused by cosmic rays.[61][62]

    le in lightning

    mic rays have been implicated in the triggering of electrical breakdown in lightning. It has been proposed that essentially all lightning is triggered through a relativistic process,

    naway breakdown", seeded by cosmic ray secondaries. Subsequent development of the lightning discharge then occurs through "conventional breakdown" mechanisms.[63]

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    5/7

    Carbondioxide concentrationson 500

    million year scale.[66][68]

    Climate change on 500 millionyear

    scale

    le in climate change

    ole of cosmic rays directly or via solar-induced modulations in climate change was suggested by Edward P. Ney in 1959[64] and by Robert E. Dickinson in 1975.[65] In recent years, the

    a has been revived, most notably by Henrik Svensmark; the most recent IPCC study disputed the mechanism,[66] while the most comprehensive review of the topic to date states that

    le the amount of influence extraterrestrial factors have on Earth's climate is unclear, "evidence for the cosmic ray forcing is increasing as is the understanding of its physical

    nciples."[67]

    ggested mechanisms

    nrik Svensmark has argued that because solar variations modulate the cosmic ray flux on Earth, they would consequently affect the rate of cloud

    mation and hence the climate. Cosmic rays have been experimentally determined capable of producing ultra-small aerosol particles;[69] however,

    se are orders of magnitude smaller than cloud condensation nuclei.

    cording to a report about the ongoing CERN CLOUD research project,[70] detecting any cosmic ray forcing is challenging, since on geological

    escales changes in the Sun's magnetic activity, Earth's magnetic field, and the galactic environment must all be taken into account. Empirically,

    reased galactic cosmic ray (GCR) flux seem to be associated with a cooler climate and a weakening of monsoon rainfalls, or vice versa .[70]

    ims have been made of identification of GCR climate signals in atmospheric parameters such as high-latitude precipitation and Svensmark's

    ual cloud cover variations.

    ious proposals have been made for the mechanism by which cosmic rays might affect clouds, including ion mediated nucleation and indirect

    ects on current flow density in the global electric circuit, as suggested byBrian Tinsley[71] and Fangqun Yu.[72] Other studies refer to the

    mation of relativelyhighly charged aerosols and cloud droplets at cloud boundaries, with an indirect effect on ice particle formation and altering aerosol interaction with cloud droplets.

    Kirkby (2009) reviews developments and describes further cloud nucleation mechanisms that appear energetically favorable and depend on GCRs.[73][74] However, the many

    cesses which cause cosmic rays to seed clouds have yet to be definitely identified.[67]

    ochemical and astrophysical evidence

    Shaviv has argued that climate signals on geological time scales are attributable to changing positions of the galactic spiral arms of the Milky

    y Galaxy, and that cosmic ray flux variability is the dominant "climate driver" over these time periods.[75] Nir Shaviv and Jan Veizer in 2003[68]

    ue, that in contrast to a carbon based scenario, the model and proxybased estimates of atmospheric CO2

    levels especially for the early

    nerozoic (see diagrams) do not show correlation with the paleoclimate picture that emerged from geological criteria, while cosmic ray flux does.

    e 2007 IPCC synthesis report, however, strongly attributes a major role in the ongoing global warming to human-produced gases such as carbon

    xide, nitrous oxide, and halocarbons, and has stated that models including natural forcings only (including aerosol forcings, which cosmic rays

    considered by some to contribute to) would result in far less warming than has actually been observed or predicted in models including

    hropogenic forcings.[76] The IPCC synthesis report only covers present and future changes in the Earth's climate, and does not mention

    eoclimate or the influences which cosmic rays may have had on it.

    omprehensive study of different research institutes was published 2007 by Scherer et al.[67] The study combines geochemical evidence both on

    perature, cosmic rays influence and as well astrophysical deliberations suggesting a major role in climate variability over different geological time scales. Proxy data of CRF influence

    mprise among others isotopic evidence in sediments on the Earth and as well changes in iron meteorites.

    esearch and experiments

    See also: Cosmic-ray observatory

    ere are a number of cosmic-ray research initiatives.

    ound-based

    Akeno Giant Air Shower Array

    CHICOS

    High Energy Stereoscopic System

    High Resolution Fly's Eye Cosmic Ray Detector

    MAGIC

    MARIACHI

    Pierre Auger Observatory

    Telescope Array Project

    Washington Large Area Time Coincidence Array

    CLOUD

    Spaceship Earth

    Milagro

    NMDB

    KASCADE

    GAMMA

    GRAPES-3

    HEGRA

    Chicago Air Shower Array

    IceCube

    tellite

    PAMELA

    Alpha Magnetic Spectrometer

    ACE (Advanced Composition Explorer)

    Voyager 1 and Voyager 2

    CassiniHuygens

    HEAO 1, HEAO 2, HEAO 3

    Fermi Gamma-ray Space Telescope

    Solar and Heliospheric Observatory

    Interstellar Boundary Explorer

    Langton Ultimate Cosmic-Ray Intensity Detector

    lloon-borne

    BESS

    Advanced Thin Ionization Calorimeter

    TRACER (cosmic ray detector)

    TIGER (http://tiger.gsfc.nasa.gov)

    Cosmic Ray Energetics And Mass (CREAM) (http://cosmicray.umd.edu/cream/)

    PERDaix

    HEAT (High Energy Antimatter Telescope) (http://adsabs.harvard.edu/

    abs/1995psu..reptR....B)

    e also

    Environmental radioactivity

    Forbush decrease

    Gilbert Jerome Perlow

    Extragalactic cosmic ray

    Solar energetic particle

    Track Imaging Cherenkov Experiment

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    6/7

    otes

    1. ^ Sharma (2008).Atomic And Nuclear Physics. Pearson Education India. p. 478.

    ISBN 978-81-317-1924-4.

    2. ^a b

    Ackermann, M.; Ajello,M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.;

    Bastieri,D. et al. (2013-02-15)."Detectionof the Characteristic Pion-Decay Signature in Supernova

    Remnants" (http:// www.sciencemag.org/content/339/6121/807.full). Science (American

    Association for the Advancement of Science) 339 (6424) : 807811. doi:10.1126/science.1231160

    (http://dx.doi.org/10.1126%2Fscience.1231160). Retrieved 2013-02-14.

    3. ^ a b Ginger Pinholster(2013-02-13). "Evidence Shows that Cosmic Rays Comefrom Exploding

    Stars" (http://www.aaas.org/news/releases/2013/0214_supernova_cosmicrays.shtml).

    4. ^ Dr. Eric Christian."Are CosmicRays Electromagnetic radiation?" (http://helios.gsfc.nasa.gov/qa_

    cr.html#em). NASA. Retrieved 2012-12-11.

    5. ^ Nerlich, Steve (12 June 2011). "AstronomyWithout A Telescope Oh-My-God Particles" (http://

    www.universetoday.com/86490/astronomy-without-a-telescope-oh-my-god-particles/). Universe

    Today. Universe Today. Retrieved 17 February 2013.

    6. ^ "Facts and figures" (http://public.web.cern.ch/public/en/lhc/Facts-en.html). TheLHC. European

    Organization for Nuclear Research.2008. Retrieved 17 February 2013.

    7. ^ Gaensler, Brian (November 2011). "Extreme speed" (http://ska.cosmosmagazine.com/features/

    print/5162/extreme-speed). COSMOS(41).

    8. ^ L.Anchordoqui, T. Paul,S. Reucroft, J. Swain (2003). "Ultrahigh Energy Cosmic Rays: The state

    of the art before the Auger Observatory".International Journal of Modern Physics A 18 (13):

    2229. arXiv:hep-ph/0206072 (http://arxiv.org/abs/hep-ph/0206072).

    Bibcode:2003IJMPA..18.2229A (http://adsabs.harvard.edu/abs/2003IJMPA..18.2229A).

    doi:10.1142/S0217751X03013879 (http://dx.doi.org/10.1142%2FS0217751X03013879).

    9. ^ Nave, Carl R. "Cosmic rays" (http://hyperphysics.phy-astr.gsu.edu/hbase/astro/cosmic.html).

    HyperPhysics Concepts. Georgia State University. Retrieved 17 February 2013.

    0. ^ a b "What are cosmic rays?" (http://imagine.gsfc.nasa.gov/docs/science/know_l1/cosmic_

    rays.html). NASA,Goddard Space Flight Center. Retrieved 31 October 2012.

    1. ^ D. Pacini (1912). "La radiazione penetrante alla superficie ed in seno alle acque".Il Nuovo

    Cimento, Series VI3: 93100. doi:10.1007/BF02957440 (http://dx.doi.org/10.1007%

    2FBF02957440).

    Translated and commented in A. de Angelis (2010). "Penetrating Radiation at the Surface of

    and in Water". arXiv:1002.1810 (http:/ /arxiv.org/abs/1002.1810) [physics.hist-ph (http://arxiv.org/archive/physics.hist-ph)].

    2. ^ a b c "Nobel Prize in Physics 1936 Presentation Speech" (http://nobelprize.org/nobel_prizes/

    physics/laureates/1936/press.html). Nobelprize.org. 1936-12-10. Retrieved 2013-02-27.

    3. ^ V.F. Hess (1936). "The Nobel Prize in Physics 1936" (http://nobelprize.org/nobel_prizes/physics/

    laureates/1936/index.html). The Nobel Foundation. Retrieved 2010-02-11.

    4. ^ V.F.Hess (1936). "Unsolved Problems in Physics: Tasks for the Immediate Future in Cosmic Ray

    Studies" (http:/ /nobelprize.org/nobel_prizes/physics/laureates/1936/index.html).Nobel Lectures.

    The Nobel Foundation. Retrieved 2010-02-11.

    5. ^ Clay, J. (1927). "Title unknown". Proceedings of the Section of Sciences,Koninklijke Akademie

    van Wetenschappen te Amsterdam 30: 633.

    6. ^ Bothe, Walther and Werner Kolhrster (November 1929). "Das Wesen der

    Hhenstrahlung" (http:/ /link.springer.com/article/10.1007/BF01340137).Zeitschrift fr Physik56

    (1112): 751777. doi:10.1007/BF01340137 (http://dx.doi.org/10.1007%2FBF01340137).

    7. ^ Rossi, Bruno (August 1930). "On the Magnetic Deflection of Cosmic Rays" (http://prola.aps.org/

    abstract/PR/v36/i3/p606_1). Physical Review 36 (3): 606.doi:10.1103/PhysRev.36.606 (http://

    dx.doi.org/10.1103%2FPhysRev.36.606).

    8. ^ Johnson, Thomas H. (May 1933). "The AzimuthalAsymmetry of the Cosmic Radiation" (http://

    prola.aps.org/abstract/PR/v43/i10/p834_1). Physical Review 43 (10): 834835. doi:10.1103/PhysRev.43.834 (http://dx.doi.org/10.1103%2FPhysRev.43.834).

    9. ^ Alvarez, Luis; Compton, Arthur Holly (May 1933). "A Positively Charged Component of Cosmic

    Rays" (http://prola.aps.org/abstract/PR/v43/i10/p835_1). Physical Review 43 (10): 835836.

    doi:10.1103/PhysRev.43.835 (http://dx.doi.org/10.1103%2FPhysRev.43.835).

    0. ^a b

    Rossi, Bruno (May1934). "DirectionalMeasurements on the CosmicRays Near the

    Geomagnetic Equator" (http://prola.aps.org/abstract/PR/v45/i2/p212_1). Physical Review 45 (3):

    212214. doi:10.1103/PhysRev.45.212 (http://dx.doi.org/10.1103%2FPhysRev.45.212).

    1. ^ a b Freier, Phyllis et al.; Lofgren, E.; Ney,E.; Oppenheimer,F.; Bradt,H.; Peters,B. (July 1948).

    "Evidence forHeavy Nuclei in the PrimaryCosmic radiation" (http://prola.aps.org/abstract/PR/v74/

    i2/p213_1). Physical Review 74 (2): 213217.doi:10.1103/PhysRev.74.213 (http://

    dx.doi.org/10.1103%2FPhysRev.74.213).

    2. ^ J.L.DuBois, R.P.Multhauf, C.A. Ziegler (2002). The Invention and Development of the

    Radiosonde (http://www.sil.si.edu/smithsoniancontributions/HistoryTechnology/pdf_lo/

    SSHT-0053.pdf). Smithsonian Studies in History and Technology 53. Smithsonian Institution Press.

    3. ^ S. Vernoff (1935). "Radio-Transmission of Cosmic RayData from the Stratosphere".Nature 135

    (3426) : 1072. Bibcode:1935Natur .135.1072V (http://adsabs.harvard.edu/

    abs/1935Natur.135.1072V). doi:10.1038/1351072c0 (http://dx.doi.org/10.1038%2F1351072c0).

    4. ^ Clark,G.; Earl,J.; Kraushaar, W.; Linsley, J.; Rossi, B.; Scherb, F.; Scott,D. (1961). "Cosmic-RayAir Showers at Sea Level". Physical Review 122 (2): 637. doi:10.1103/PhysRev.122.637 (http://

    dx.doi.org/10.1103%2FPhysRev.122.637).

    5. ^ Auger Project. "Auger Observatory: A New Astrophysics Facility Rises from the Pampa" (http://

    www.auger.org/observatory/).PierreAuger Observatory. Auger Project.Retrieved 2013-04-29.

    6. ^ Riesselmann,Kurt (October/November 2007). "On the trail of cosmic bullets" (http://

    www.auger.org/observatory/outreach/on_the_trail.pdf).Symmetry 4 (8-9): 1623.

    7. ^ Kraushaar, W.L et al.(1972)."Titleunknown". The Astrophysical Journal 177: 341.

    doi:10.1086/151713 (http://dx.doi.org/10.1086%2F151713).

    8. ^ Babcock, H. (1948). "Magnetic Variable Stars as Sources of Cosmic Rays".Physical Review 74

    (4): 489. doi:10.1103/PhysRev.74.489 (http://dx.doi.org/10.1103%2FPhysRev.74.489).

    9. ^ Sekido, Y.; Masuda,T.; Yoshida, S.; Wada, M. (1951). "The Crab Nebula as an Observed Point

    Source of CosmicRays". Physical Review 83 (3): 658. doi:10.1103/PhysRev.83.658.2 (http://

    dx.doi.org/10.1103%2FPhysRev.83.658.2).

    0. ^ Gibb,Meredith (3 February 2010). "Cosmic Rays" (http://imagine.gsfc.nasa.gov/docs/science/

    know_l1/cosmic_rays.html).Imagine the Universe. NASA Goddard SpaceFlight Center. Retrieved

    17 March 2013.

    1. ^ Hague, J. D. (July 2009). "Correlation of the Highest Energy Cosmic Rays with Nearby

    Extragalactic Objects in Pierre Auger Observatory Data" (http://www.auger.org/technical_info/ICRC2009/arxiv_astrophysics.pdf). Proceedings of the 31stICRC, d2009. International

    Cosmic Ray Conference. d, Poland. pp. 69. Retrieved 17 March2013.

    2. ^ Hague, J. D. (July 2009). "Correlation of the Highest Energy Cosmic Rays with Nearby

    Extragalactic Objects in Pierre Auger Observatory Data" (http://www.auger.org/technical_info/

    ICRC2009/arxiv_astrophysics.pdf). Proceedings of the 31stICRC, d2009. International

    Cosmic Ray Conference. d, Poland. pp. 3639. Retrieved 17 March2013.

    3. ^ Moskowitz, Clara (25 June 2009). "Source of Cosmic Rays Pinned Down" (http://

    www.space.com/6890-source-cosmic-rays-pinned.html). Space.com. TechMediaNetwork. Retrieved

    20 March 2013.

    4. ^ Adriani, O.; Barbarino,G. C.; Bazilevskaya,G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.;

    Bonechi,L.; Bongi,M. et al. (2011). "PAMELA Measurements of Cosmic-RayProton and Helium

    Spectra". Science 332 (6025): 6972.doi:10.1126/science.1199172 (http://dx.doi.org/10.1126%

    2Fscience.1199172). PMID 21385721 (//www.ncbi.nlm.nih.gov/pubmed/21385721).

    35. ^ Jha, Alok (14 February 2013). "Cosmic ray mystery solved" (http://www.guardian.co.uk/

    science/2013/feb/14/cosmic-ray-mystery-solved).The Guardian. GuardianNews and Media

    Limited.Retrieved 21 March2013.

    36. ^ Mewaldt, R.A.,2010 . "Cosmic Rays" (http://www.srl.caltech.edu/personnel/dick/cos_encyc.html)

    . California Institute of Technology.

    37. ^ Koch,L.; Engelmann, J. J.; Goret, P.; Juliusson, E.; Petrou,N.; Rio, Y.; Soutoul, A.; Byrnak,B.;

    Lund, N.; Peters, B. (October 1981). "The relative abundances of the elements scandium to

    manganese in relativistic cosmic rays and the possible radioactive decay of manganese 54" (http://

    adsabs.harvard.edu/abs/1981A&A...102L...9K).Astronomy and Astrophysics 102 (11): L9.

    Bibcode:1981A%26A...102L...9K (http://adsabs.harvard.edu/abs/1981A%26A...102L...9K).

    38. ^ Moskalenko,I. V.; Strong, A. W.; Ormes,J. F; Potgieter, M. S. (January 2002). "Secondary

    antiprotons and propagationof cosmic rays in the Galaxy and heliosphere" (http://

    iopscience.iop.org/0004-637X/565/1/280). The Astrophysical Journal 565 (1): 280296.

    arXiv:arXiv:astro-ph/0106567v2 (http://arxiv.org/abs/arXiv:astro-ph/0106567v2).

    Bibcode:2002ApJ...565..280M (http://adsabs.harvard.edu/abs/2002ApJ...565..280M).

    doi:10.1086/324402 (http://dx.doi.org/10.1086%2F324402).

    39. ^ "EGRET Detection of GammaRays from the Moon" (http://heasarc.gsfc.nasa.gov/docs/cgro/epo/

    news/gammoon.html). NASA/GSFC. 1 August 2005. Retrieved 2010-02-11.

    40. ^ Morison,Ian (2008).Introduction to Astronomy and Cosmology. JohnWiley & Sons.p. 198.

    ISBN 978-0-470-03333-3.

    41. ^ "Extreme SpaceWeather Events" (http://sxi.ngdc.noaa.gov/sxi_greatest.html).National

    Geophysical Data Center.

    42. ^ "Pierre Auger Observatory" (http://www.auger.org/cosmic_rays/faq.html#how_many). Auger.org.

    Retrieved 2012-08-17.

    43. ^ D. Lal, A.J.T. Jull,D. Pollard, L.Vacher (2005). "Evidence for large centurytime-scale changes in

    solar activity in the past 32 Kyr,based on in-situ cosmogenic14

    C in ice atSummit, Greenland".

    Earth and Planetary Science Letters 234 (34): 335249. Bibcode:2005E&PSL.234..335L (http://

    adsabs.harvard.edu/abs/2005E&PSL.234..335L). doi:10.1016/j.epsl.2005.02.011 (http://

    dx.doi.org/10.1016%2Fj.epsl.2005.02.011).

    44. ^ Castellina, Antonella; Donato, Fiorenza (2012). Oswalt, T.D McLean, I.S.; Bond,H.E.; French,L.;

    Kalas, P.; Barstow, M.; Gilmore,G.F.; Keel, W., ed. Planets,Stars, and Stellar Systems (http://

    arxiv.org/abs/1110.2981) (1 ed.).Springer. ISBN 978-90-481-8817-8.Retrieved 24 February 2013.45. ^ "The Detection of CosmicRays" (http://www.lanl.gov/milagro/detecting.shtml).Milagro

    Gamma-Ray Observatory. Los Alamos National Laboratory. 3 April 2002. Retrieved 22 February

    2013.

    46. ^ "What are cosmic rays?" (http://www.nscl.msu.edu/files/PAN%20cosmic%20ray%20articles.pdf)

    . Michigan State University National Superconducting Cyclotron Laboratory. Retrieved 23

    February 2013.

    47. ^ R.L.Fleischer, P.B. Price,R.M. Walker (1975).Nuclear tracks in solids: Principles and

    applications. Universityof California Press.

    48. ^ "Cloud Chambers and Cosmic Rays: A Lesson Plan and Laboratory Activity for the High School

    Science Classroom" (http://www.chess.cornell.edu/Outreach/document/cloudchamber.pdf). Cornell

    UniversityLaboratory for Elementary Particle Physics.2006. Retrieved 23 February 2013.

    49. ^ Chu,W.; Kim,Y.; Beam, W.; Kwak,N. (1970). "Evidence of a Quark in a High-Energy Cosmic-

    Ray Bubble-Chamber Picture". Physical Review Letters 24 (16): 917. doi:10.1103/

    PhysRevLett.24.917 (http://dx.doi.org/10.1103%2FPhysRevLett.24.917).

    50. ^ Trumbore,Susan(2000).Noller, J.S., J.M. Sowers, and W.R. Lettis, ed. Quaternary

    Geochronology: Methodsand Applications (http://www.agu.org/books/rf/v004/). Washington,

    D.C.: American Geophysical Union. pp. 4159. ISBN 0-87590-950-7.

    51. ^ "Natrliche, durch kosmische Strahlung laufend erzeugte Radionuklide" (http://www.um.baden-

    wuerttemberg.de/servlet/is/34839/Natuerliche_durch_kosmische_Strahlung_laufend_erzeugte_

    Radionuklide.pdf?command=downloadContent&filename=Natuerliche_durch_kosmische_

    Strahlung_laufend_erzeugte_Radionuklide.pdf). Retrieved 2010-02-11.(German)

    52. ^ UNSCEAR "Sources and Effects of Ionizing Radiation" (http://www.unscear.org/docs/

    reports/2008 /09-86753_Report_2008_Annex_B.pdf) page 339 retrieved 2011-6-29

    53. ^ Japan NIRS UNSCEAR 2008 report (http://www.aec.go.jp/jicst/NC/iinkai/teirei/siryo2010/

    siryo59/siryo1.pdf) page 8 retrieved 2011-6-29

    54. ^ Princeton.edu "Background radiation" (http://web.princeton.edu/sites/ehs/osradtraining/

    backgroundradiation/background.htm) retrieved 2011-6-29

    55. ^ Washington state Dept. of Health "Background radiation" (http://www.doh.wa.gov/ehp/rp/

    factsheets/factsheets-htm/fs10bkvsman.htm) retrieved 2011-6-29

    56. ^ Ministry of Education, Culture, Sports,Science, and Technologyof Japan "Radiation in

    environment" (http://www.kankyo-hoshano.go.jp/04/04-1.html) retrieved 2011-6-29

    57. ^ IBM experiments in softfails in computerelectronics (19781994) (http://

    www.research.ibm.com/journal/rd/401/curtis.html), from Terrestrial cosmic raysand soft errors

    (http://www.research.ibm.com/journal/rd40-1.html), IBM Journal of Research and Development,

    Vol. 40, No.1, 1996. Retrieved 16 April 2008.

    58. ^ Scientific American (2008-07-21). "Solar Storms: Fast Facts" (http://

    www.scientificamerican.com/article.cfm?id=solar-storms-fast-facts). Nature Publishing Group.Retrieved 2009-12-08.

    59. ^ Intel plans to tacklecosmic ray threat(http://news.bbc.co.uk/2/hi/technology/7335322.stm),

    BBC NewsOnline,8 April 2008. Retrieved 16 April 2008.

    60. ^ Cosmic raysmay have hit Qantas plane off the coast of North West Australia (http://

    www.news.com.au/travel/story/0,28318,26370596-5014090,00.html), News.com.au, 18 November

    2009. Retrieved 19 November 2009.

    61. ^ Globus, Al (10 July 2002). "Appendix E: Mass Shielding" (http://

    settlement.arc.nasa.gov/75SummerStudy/5appendE.html).Space Settlements: A Design Study.

    NASA. Retrieved 24 February 2013.

    62. ^ Atkinson, Nancy (24 January 2005). "Magnetic shieldingfor spacecraft" (http://

    www.thespacereview.com/article/308/1).The Space Review. Retrieved 24 February 2013.

    63. ^ Runaway Breakdown and the Mysteries of Lightning (http://www.aip.org/pt/vol-58/iss-5/

    p37.shtml),Physics Today, May2005.

    64. ^ Ney,Edward P. (14 February 1959). "Cosmic Radiation and the Weather" (http://

    www.nature.com/nature/journal/v183/n4659/abs/183451a0.html).Nature 183 (4659): 451452.

    Bibcode:1959Natur .183..451N (http:/ /adsabs.harvard.edu/abs/1959Natur.183..451N).

    doi:10.1038/183451a0 (http://dx.doi.org/10.1038%2F183451a0). Retrieved 2012-02-09.

    65. ^ Dickinson,Robert E. (December 1975). "Solar Variabilityand the Lower Atmosphere" (http://

    journals.ametsoc.org/doi/abs/10.1175/1520-0477( 1975)056%3C1240 %3ASVATLA%3E2.0.CO

    %3B2).Bulletin of the American Meteorological Society 56 (12): 12401248. doi:10.1175/1520-

    0477(1975)0562.0.CO;2 (http://dx.doi.org/10.1175%2F1520-0477%281975%

    29056%3C1240%3ASVATLA%3E2.0.CO%3B2).

    66. ^ a b Changes in Atmospheric Constituents and in Radiative Forcing IPCC Fourth Assessment

    Report WorkingGroup I Report "The Physical Science Basis" 2007 [1] (http://www.ipcc.ch/pdf/

    assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf)

    67. ^a b c

    K. Scherer, H. Fichtner et al. (December, 2006). "Interstellar-Terrestrial Relations: Variable

    Cosmic Environments, The Dynamic Heliosphere, and Their Imprints on Terrestrial Archives and

    Climate". Space Science Reviews (Springer Netherlands) 127 (14): 327465.

    Bibcode:2006SSRv..127..327S (http://adsabs.harvard.edu/abs/2006SSRv..127..327S).

  • 7/28/2019 Cosmic Ray - Wikipedia, The Free Encyclopedia

    7/7

    doi:10.1007/s11214-006-9126-6 (http://dx.doi.org/10.1007%2Fs11214-006-9126-6).

    ISSN 0038-6308 (//www.worldcat.org/issn/0038-6308).

    8. ^a b

    N.J. Shaviv, J. Veizer; Veizer (2003) . "Celestial driver of Phanerozoic climate?" (ftp://

    rock.geosociety.org/pub/GSAToday/gt0307.pdf). GSA Today 7 (7): 410.

    Bibcode:2003EAEJA....13401S (http://adsabs.harvard.edu/abs/2003EAEJA....13401S).

    doi:10.1130/1052-5173(2003)0132.0.CO;2 (http://dx.doi.org/10.1130%

    2F1052-5173%282003%29013 %3C0004%3ACDOPC%3E2.0.CO%3B2). ISSN 1052-5173 (//

    www.worldcat.org/issn/1052-5173).

    9. ^ Henrik Svensmark, Jens Olaf Pepke Pedersen, Nigel Marsh, Martin Enghoff and Ulrik Uggerhj,

    "Experimental Evidence forthe role of Ions in ParticleNucleation under Atmospheric

    Conditions" (http://dx.doi.org/10.1098/rspa.2006.1773), Proceedings of the Royal Society A,

    (Early OnlinePublishing), 2006.

    0. ^a b c

    Kirkby, Jasper (November 2007). "Cosmic Rays and Climate" (http://link.springer.com/

    article/10.1007%2Fs10712-008-9030-6). Surveys in Geophysics 28 (56): 333375. doi:10.1007/

    s10712-008-9030-6 (http://dx.doi.org/10.1007%2Fs10712-008-9030-6). ISSN 1573-0956 (//

    www.worldcat.org/issn/1573-0956).

    1. ^ Tinsley,Brian A. (November 2000). "Influenceof Solar Wind on the GlobalElectric Circuit,and

    Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere". SpaceScience Reviews 94 (12): 231258. doi:10.1023/A:1026775408875 (http://dx.doi.org/10.1023%

    2FA%3A1026775408875).

    72. ^ Yu, Fangqun( July 2002). "Altitude variations of cosmicray induced production of aerosols:

    Implications for global cloudiness and climate" (http://onlinelibrary.wiley.com/

    doi/10.1029/2001JA000248/abstract). Journal of Geophysical Research: Space Physics 107 (A7).

    doi:10.1029/2001JA000248' (http://dx.doi.org/10.1029%2F2001JA000248%27). Retrieved 24

    February 2013.

    73. ^ Cosmic Rays and Climate Video (http://cdsweb.cern.ch/record/1181073/) Jasper Kirkby, CERN

    Colloquium, 4 June 2009

    74. ^ Cosmic Rays and Climate Presentation (http://indico.cern.ch/getFile.py/access?

    resId=0&materialId=slides&confId=52576) Jasper Kirkby, CERNColloquium, 4 June2009

    75. ^ [2] (http ://www.sciencebits.com/CosmicRaysClimate), [3] (http: //www.sciencebits.com/ice-ages)

    sciencebits.com/CO2orSolar (http://www.sciencebits.com/CO2orSolar) Science bit display of Nir

    Shaviv papers

    76. ^ Core Writing Team (17). Pachauri,R.K.and Reisinger, A.,ed. "Climate Change 2007: Synthesis

    Report" (http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_

    synthesis_report.htm).IPCC Plenary XXVII. Valencia,Spain: Intergovernmental Panel on Climate

    Change.pp. 3940. Retrieved 24 February 2013.

    eferences

    R.G. Harrison and D.B. Stephenson, Detection of a galactic cosmic ray influence on clouds, Geophysical Research Abstracts, Vol. 8, 07661, 2006 SRef-ID: 1607-7962/gra/EGU06-

    A-07661

    C. D. Anderson and S. H. Neddermeyer, Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level, Phys. Rev 50, 263,(1936).

    M. Boezio et al., Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus, Phys. Rev. D 62, 032007, (2000).

    R. Clay and B. Dawson, Cosmic Bullets, Allen & Unwin, 1997. ISBN 1-86448-204-4

    T. K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, 1990. ISBN 0-521-32667-2

    P. K. F. Grieder, Cosmic Rays at Earth: Researcher's Reference Manual and Data Book, Elsevier, 2001. ISBN 0-444-50710-8

    A. M. Hillas, Cosmic Rays, Pergamon Press, Oxford, 1972 ISBN 0-08-016724-1

    J. Kremer et al., Measurement of Ground-Level Muons at Two Geomagnetic Locations, Phys. Rev. Lett. 83, 4241, (1999).

    S. H. Neddermeyer and C. D. Anderson, Note on the Nature of Cosmic-Ray Particles, Phys. Rev. 51, 844, (1937).

    M. D. Ngobeni and M. S. Potgieter, Cosmic ray anisotropies in the outer heliosphere, Advances in Space Research, 2007.M. D. Ngobeni, Aspects of the modulation of cosmic rays in the outer heliosphere, M.Sc Dissertation, Northwest University (Potchefstroom campus) South Africa 2006.

    D. Perkins, Particle Astrophysics, Oxford University Press, 2003. ISBN 0-19-850951-0

    C. E. Rolfs and S. R. William, Cauldrons in the Cosmos, The University of Chicago Press, 1988. ISBN 0-226-72456-5

    B. B. Rossi, Cosmic Rays, McGraw-Hill, New York, 1964.

    Martin Walt, Introduction to Geomagnetically Trapped Radiation, 1994. ISBN 0-521-43143-3

    M. Taylor and M. Molla, Towards a unified source-propagation model of cosmic rays, Pub. Astron. Soc. Pac. 424, 98 (2010).

    J. F. Ziegler, The Background In Detectors Caused By Sea Level Cosmic Rays, Nuclear Instruments and Methods 191, 419, (1981).

    TRACER Long Duration Balloon Project: the largest cosmic ray detector launched on balloons.

    Carlson, Per; De Angelis, Alessandro (2011). "Nationalism and internationalism in science: the case of the discovery of cosmic rays". European Physical Journal H 35 (4): 309.

    arXiv:1012.5068 (http://arxiv.org/abs/1012.5068). Bibcode:2010EPJH...35..309C (http://adsabs.harvard.edu/abs/2010EPJH...35..309C). doi:10.1140/epjh/e2011-10033-6 (http://

    dx.doi.org/10.1140%2Fepjh%2Fe2011-10033-6).

    xternal links

    Aspera European network portal (http://www.ASPERA-EU.org)

    Animation about cosmic rays on astroparticle.org (http://astroparticle.aspera-eu.org/index.php?option=com_content&task=view&id=111&Itemid=107)Helmholtz Alliance for Astroparticle Physics (http://www.hap-astroparticle.org/)

    Particle Data Group review of Cosmic Rays (http://pdg.lbl.gov/2008/reviews/cosmicrayrpp.pdf) by C. Amsler et al., Physics Letters B667, 1 (2008).

    Introduction to Cosmic Ray Showers (http://www.mpi-hd.mpg.de/hfm/CosmicRay/Showers.html) by Konrad Bernlhr.

    BBC news, Cosmic rays find uranium, 2003 (http://news.bbc.co.uk/1/hi/sci/tech/2868041.stm).

    BBC news, Rays to nab nuclear smugglers, 2005 (http://news.bbc.co.uk/1/hi/sci/tech/4282657.stm).

    BBC news, Physicists probe ancient pyramid (using cosmic rays), 2004 (http://news.bbc.co.uk/1/hi/sci/tech/3710735.stm).

    Shielding Space Travelers (http://www.scientificamerican.com/article.cfm?id=shielding-space-travelers) by Eugene Parker.

    Anomalous cosmic ray hydrogen spectra from Voyager 1 and 2 (http://imagine.gsfc.nasa.gov/docs/features/bios/christian/anomalous.html)

    Anomalous Cosmic Rays (http://helios.gsfc.nasa.gov/acr.html) (From NASA's Cosmicopia)

    Review of Cosmic Rays (http://www.int.washington.edu/PHYS554/winter_2004/chapter8_04.pdf)

    "Who's Afraid of a Solar Flare? Solar activity can be surprisingly good for astronauts." (http://science.nasa.gov/headlines/y2005/07oct_afraid.htm?list84849) 7 October 2005, at

    Science@NASA

    video of Muon detector in use at Smithsonian Air and Space Museum (http://www.youtube.com/watch?v=xJtSWdT598k)

    Dr. Lothar Frey "Cosmic rays and electronic devices" (http://www.youtube.com/watch?v=xcMbmj-lBEg) (YouTube Video) SpaceUp Stuttgart 2012

    Padilla, Antonio (Tony). "Where do Cosmic Rays come from?" (http://www.sixtysymbols.com/videos/cosmic_rays.htm). Sixty Symbols. Brady Haran for the University of

    Nottingham.

    rieved from "http://en.wikipedia.org/w/index.php?title=Cosmic_ray&oldid=554255155"

    egories: Cosmic rays Astroparticle physics Radiation Stellar phenomena Solar phenomena

    This page was last modified on 9 May 2013 at 07:52.

    Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

    Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.