cosmic’ray’dosage’and’shielding’ ingeo · 2016. 10. 18. · outline’ •...

17
Cosmic Ray Dosage and Shielding in GEO Jeff Kruk NASA/GSFC

Upload: others

Post on 26-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Cosmic  Ray  Dosage  and  Shielding  in  GEO  

Jeff  Kruk  NASA/GSFC  

Page 2: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Outline  

•  IniBal  shielding  study  •  InteracBons  with  HgCdTe  – Cleaning  with  Sample-­‐Up-­‐The-­‐Ramp  

–  In-­‐flight  vs  ground  processing  •  Time  variability  of  radiaBon  environment  

•  Future  work  

1/10/13   Kruk  SDT#2   2  

Page 3: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

IniBal  Shielding  Study  

•  Three  cases:  1.  Simple  aluminum  sealed  box  

2.  Al/Pb  sealed  box  3.  Box  with  lid  displaced  • What  gets  in  w/o  direct  line-­‐of-­‐sight  trajectory  

•  Proxy  for  open  light  path  with  lid  =  last  mirror  in  path  

•  Use  annual-­‐average  electron  flux  distribuBon  in  GEO-­‐synch  orbit  

CalculaBons  done  by  Mike  Xapsos  of  GSFC  radiaBon  branch  

1/10/13   Kruk  SDT#2   3  

Page 4: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Case  1:  sealed  Al  box  –  e-­‐  flux  

For  reference:  proton  rate  at  L2  is  ~5/cm2/s  –  about  the  red  line  above  

1/10/13   Kruk  SDT#2   4  

1.E-­‐03  

1.E-­‐02  

1.E-­‐01  

1.E+00  

1.E+01  

1.E+02  

1.E+03  

1.E+04  

1.E+05  

1.E+06  

1.E+07  

1.E+08  

1.E+09  

1.E-­‐03   1.E-­‐02   1.E-­‐01   1.E+00   1.E+01  

Electron

 Flux  (#/cm

2 *sec  >  E)  

Energy,  E  (MeV)  

WFIRST  Electron  FLuxes:    Case  1,  Simple  Hollow  Box  

Incident  Electrons  

Emerging  Electrons  (5mm  Al  Walls)  

Emerging  Electrons  (7.5mm  Al  Walls)  

Emerging  Electrons  (10mm  Al  Walls)  

Emerging  Electrons  (12.5mm  Al  walls)  

Page 5: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Case  1:  sealed  Al  box  –  γ  flux  

1.E-­‐06  

1.E-­‐05  

1.E-­‐04  

1.E-­‐03  

1.E-­‐02  

1.E-­‐01  

1.E+00  

1.E+01  

1.E+02  

1.E+03  

1.E+04  

1.E-­‐03   1.E-­‐02   1.E-­‐01   1.E+00   1.E+01  

Photon

 Flux  (#/cm

2 *sec  >  E)  

Energy,  E  (MeV)  

WFIRST  Photon  FLuxes:    Case  1,  Simple  Hollow  Box  

Emerging  Photons  (5mm  Al  Walls)  

Emerging  Photons  (7.5mm  Al  Walls)  

Emerging  Photons  (10mm  Al  Walls)  

Emerging  Photons  (12.5mm  Al  walls)  

1/10/13   Kruk  SDT#2   5  

Photons  produced  by  high-­‐energy  tail  of  e-­‐  distribuBon;  few  produced  aaer  first  few  mm  of  e-­‐  path  length.  

Page 6: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Case  2:  Al/Pb  sealed  box  –  e-­‐  flux  

1.E-­‐03  

1.E-­‐02  

1.E-­‐01  

1.E+00  

1.E+01  

1.E+02  

1.E+03  

1.E+04  

1.E+05  

1.E+06  

1.E+07  

1.E+08  

1.E+09  

1.E-­‐03   1.E-­‐02   1.E-­‐01   1.E+00   1.E+01  

Electron

 Flux  (#/cm

2 *sec  >  E)  

Energy,  E  (MeV)  

WFIRST  Electron  FLuxes:    Case  2,  Al/Pb  Hollow  Box  

Incident  Electrons  

Emerging  Electrons  (2mm  Al,  0.65mm  Pb  Walls)  

Emerging  Electrons  (3.1mm  Al,  1.0mm  Pb  Walls)  

Emerging  Electrons  (4.1mm  Al,  1.3mm  Pb  Walls)  

Emerging  Electrons  (5.1mm  Al,  1.6mm  Pb  walls)  

Order  of  Al/Pb  doesn’t  mader  for  electrons  

1/10/13   Kruk  SDT#2   6  

Page 7: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Case  2:  Al/Pb  sealed  box  –  ϒ  flux  

1.E-­‐04  

1.E-­‐03  

1.E-­‐02  

1.E-­‐01  

1.E+00  

1.E+01  

1.E+02  

1.E+03  

1.E+04  

1.E-­‐03   1.E-­‐02   1.E-­‐01   1.E+00   1.E+01  

Photon

 Flux  (#/cm

2 *sec  >  E)  

Energy,  E  (MeV)  

WFIRST  Photon  FLuxes:    Case  2,  Al/Pb  Hollow  Box  

Emerging  Photons  (2mm  Al,  0.65mm  Pb  Walls)  

Emerging  Photons  (3.1mm  Al,  1.0mm  Pb  Walls)  

Emerging  Photons  (4.1mm  Al,  1.3mm  Pb  Walls)  

Emerging  Photons  (5.1mm  Al,  1.6mm  Pb  walls)  

Pufng  Pb  on  outside  increases  photon  flux  by  10X  

1/10/13   Kruk  SDT#2   7  

Page 8: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

ϒ  flux  -­‐  conBnued  

•  Convolve  the  photon  spectrum  with  weighted  mean  of  Hg,Cd,Te  photo-­‐electron  and  scadering  cross-­‐secBons:  –     ~5.2  events/cm2/s  

•  Roughly  comparable  to  proton  flux  at  L2  

•  W/in  striking  distance  of  enough  shielding  – 5.1mmAl+1.6mmPb  gives  net  e-­‐/ϒ  event  rates  2X  proton  rate  at  L2,  or  3X  L2  for  total  rate  

1/10/13   Kruk  SDT#2   8  

Page 9: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Case  3:  displaced  lid  –  e-­‐  flux  

1.E-­‐03  

1.E-­‐02  

1.E-­‐01  

1.E+00  

1.E+01  

1.E+02  

1.E+03  

1.E+04  

1.E+05  

1.E+06  

1.E+07  

1.E+08  

1.E+09  

1.E-­‐03   1.E-­‐02   1.E-­‐01   1.E+00   1.E+01  

Electron

 Flux  (#/cm

2 *sec  >  E)  

Energy,  E  (MeV)  

WFIRST  Electron  FLuxes:    Case  3,  Hollow  Box  with  Offset  Lid  

Incident  Electrons  

Emerging  Electrons  (5mm  Al  Walls)  

Emerging  Electrons  (7.5mm  Al  Walls)  

Emerging  Electrons  (10mm  Al  Walls)  

Emerging  Electrons  (12.5mm  Al  walls)  

Need  mulaple  labyrinth  seal  or  window  in  light  path    

1/10/13   Kruk  SDT#2   9  

Page 10: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

CR  removal  by  “Sample  up  the  Ramp”  

•  Read  detector  conBnuously  throughout  exposure.  •  In  principle,  CRs  can  be  removed  by  dropping  individual  detector  readouts.  

•  Even  minimum-­‐ionizing  charged  parBcles  leave  large  signal:  easily  detected  and  flagged  

•  PotenBal  complicaBon:  –  Small  amounts  of  charge  deposited  in  pixels  adjacent  to  main  track  

–  Photon  conversions  that  deposit  only  a  lidle  charge  in  a  pixel  

1/10/13   Kruk  SDT#2   10  

Page 11: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

CR  removal  conBnued  

•  Processing  individual  pixel  readouts  on-­‐board  is  demanding  but  straighqorward  in  principle  – Some  risk  if  detecBon  algorithm  is  not  robust  – Cleaning  adjacent  pixels  requires  much  more  processing  power  

•  If  a  large  subset  of  samples  are  downlinked,  then  pixels  adjacent  to  clearly  detected  events  can  be  pruned  on  the  ground.  – Easier  to  adapt  to  idiosyncracies  of  data  

1/10/13   Kruk  SDT#2   11  

Page 12: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Examine  CANDELS  data  

•  CRs  are  primarily  protons,  but  WFC3  IR  detector  is  otherwise  representaBve  

•  Wrote  custom  SUTR  algorithm  to  process  archival  WFC3  IMA  files.  – First  flag  samples  with  4.5  sigma  jumps  in  rate  

– Also  flag  same  sample  in  adjacent  pixels  – Refit  count  rates,  excluding  flagged  samples  – Histogram  residuals  to  fits  

1/10/13   Kruk  SDT#2   12  

Page 13: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

CANDELS  non-­‐CR  examples  

1/10/13   Kruk  SDT#2   13  

Page 14: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

CANDELS  CR  examples  

1/10/13   Kruk  SDT#2   14  

Page 15: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Results  for  residuals  to  SUTR  fit  

For  protons,  no  significant  sub-­‐threshold  charge  deposited  in  adjacent  pixels  

1/10/13   Kruk  SDT#2   15  

Page 16: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Time  Variability  

1/10/13   Kruk  SDT#2   16  

Page 17: Cosmic’Ray’Dosage’and’Shielding’ inGEO · 2016. 10. 18. · Outline’ • IniBal’shielding’study’ • InteracBons’with’HgCdTe’ – Cleaning’with’SampleGUpGTheGRamp’

Future  work  

•  Calculate  shielding  properBes  of  composite  material  –  Lower  Z  than  Al,  so  less  bremsstrahlung  

•  Calculate  shielding  of  suitable  opBcal  materials  •  Evaluate  more  realisBc  enclosure  geometries  •  Set  up  more  detailed  model  of  detector,  propagate  electrons  properly  to  assess  track  characterisBcs  

•  Obtain  more  informaBon  on  Bme  variability.  

1/10/13   Kruk  SDT#2   17