coupled natural circulation loops with source and sink ... ·...

44
Coupled Natural Circulation Loops with Source and Sink Energy Exchange and Coupling Heat Exchanger Dan Hughes Hughes and Associate January 2016 Abstract The steady state performance of a mathematical model of a system of two coupled Natural Circulation Loops (NCLs) is analytically determined. The loops are stacked vertically with the hot primary loop on the bottom and the cool secondary loop above. The energy source is horizontal at the bottom of the primary loop and the energy sink is horizontal at the top of the secondary loop. A horizontal Heat Exchanger (HEX) between the loops couples the loops. Two arrangements for the energy source and sink are considered. For the first case energy is supplied to the hightemperature primary loop from a source of constant temperature and rejected from the lowtemperature secondary loop into a sink of constant temperature. For the second case the energy source is a constant energy supply and the sink is a HEX. The horizontal energy source and sink offers considerable simplification of the analysis. These boundary conditions have not yet been considered in the literature. Other boundary conditions are briefly considered. Additionally, only one arrangement of the direction of flows in the loops is considered, and in the coupling and sink HEXs only cocurrent conditions are considered. The number of possible arrangements of energy source and sink (horizontal and vertical), loop flow direction, and flow conditions in the HEXs is quite large. The analytical solutions of the system of four algebraic equations for the first case and five equations for the second case that describe the operating state of the system are developed. The solutions are expressed in terms of the specified boundary conditions and the thermalexchange properties of the energy source and sink and coupling HEX. Application of the solutions to the physical domain requires an iterative approach. These solutions form the basis for stability analyses of the coupled NCL system, but that is not carried out in these notes. The design of such systems, also an interesting problem, is not addressed here.

Upload: others

Post on 21-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Coupled Natural Circulation Loops with Source and Sink Energy Exchange and Coupling Heat Exchanger

 Dan  Hughes  

Hughes  and  Associate  January  2016  

 

Abstract The  steady  state  performance  of  a  mathematical  model  of  a  system  of  two  coupled  Natural  Circulation  Loops  (NCLs)  is  analytically  determined.  The  loops  are  stacked  vertically  with  the  hot  primary  loop  on  the  bottom  and  the  cool  secondary  loop  above.  The  energy  source  is  horizontal  at  the  bottom  of  the  primary  loop  and  the  energy  sink  is  horizontal  at  the  top  of  the  secondary  loop.  A  horizontal  Heat  Exchanger  (HEX)  between  the  loops  couples  the  loops.    Two  arrangements  for  the  energy  source  and  sink  are  considered.  For  the  first  case  energy  is  supplied  to  the  high-­‐temperature  primary  loop  from  a  source  of  constant  temperature  and  rejected  from  the  low-­‐temperature  secondary  loop  into  a  sink  of  constant  temperature.  For  the  second  case  the  energy  source  is  a  constant  energy  supply  and  the  sink  is  a  HEX.  The  horizontal  energy  source  and  sink  offers  considerable  simplification  of  the  analysis.    These  boundary  conditions  have  not  yet  been  considered  in  the  literature.  Other  boundary  conditions  are  briefly  considered.    Additionally,  only  one  arrangement  of  the  direction  of  flows  in  the  loops  is  considered,  and  in  the  coupling  and  sink  HEXs  only  co-­‐current  conditions  are  considered.  The  number  of  possible  arrangements  of  energy  source  and  sink  (horizontal  and  vertical),  loop  flow  direction,  and  flow  conditions  in  the  HEXs  is  quite  large.    The  analytical  solutions  of  the  system  of  four  algebraic  equations  for  the  first  case  and  five  equations  for  the  second  case  that  describe  the  operating  state  of  the  system  are  developed.  The  solutions  are  expressed  in  terms  of  the  specified  boundary  conditions  and  the  thermal-­‐exchange  properties  of  the  energy  source  and  sink  and  coupling  HEX.  Application  of  the  solutions  to  the  physical  domain  requires  an  iterative  approach.  These  solutions  form  the  basis  for  stability  analyses  of  the  coupled  NCL  system,  but  that  is  not  carried  out  in  these  notes.  The  design  of  such  systems,  also  an  interesting  problem,  is  not  addressed  here.    

Page 2: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Introduction Single  natural  circulation  loops  have  been  the  subject  of  experimental,  analytical  and  numerical  research  for  several  decades  since  the  early  1950s.  The  literature  is  very  extensive  with  investigations  continuing  to  this  day.  Much  of  the  research  has  been  directed  toward  various  systems  of  electric  power  generation  by  nuclear  power  plants.    Coupled  NCLs,  on  the  other  hand,  have  not  been  much  investigated.  The  objectives  of  the  present  notes  include  development  of  model  equations  for  transient  and  steady  state  flows  in  coupled  NCLs  and  analytical  solutions  for  the  steady  state  equations.    

Energy Source and Sink Temperature Specified A  sketch  of  the  system  of  coupled  natural  circulation  loops  is  shown  in  Figure  1.  The  primary  loop  is  at  the  bottom  of  the  sketch  and  the  secondary  loop  at  the  top.  The  sketch  shows  the  loop  dimensions  to  be  the  same,  but  that  is  not  necessary  for  the  analysis  and  is  used  to  simplify  the  equation  processing.  The  two  rectangular  loops  are  thermally  coupled  by  convection  on  each  side  of  the  coupling  HEX  and  conduction  through  the  walls  of  the  HEX.  Energy  exchange  at  the  heater  at  the  hot  end  of  the  primary  loop,  and  at  the  cold  end  of  the  secondary  loop  is  by  convection  between  the  fluid  and  the  flow-­‐channel  wall.  For  the  initial  modeling  the  loops  are  assumed  to  be  constant  flow  area  and  irreversible  local  pressure  losses  are  ignored.  These  idealizations  are  easily  removed  by  straightforward  algebra.    For  the  first  model,  the  wall  temperature  in  the  regions  of  energy  exchange  is  constant  at  Tsrc for  the  source  at  the  bottom  of  the  primary  loop,  and  Tsnk at  the  top  of  the  secondary  loop.  Relative  to  Figure  1,  this  assumption  means  that  the  following  relationship  holds  for  the  temperatures  shown  in  the  figure    Tsrc ≥Thp ≥Tp,hex ≥Ts,hex ≥Tcs ≥Tsnk       (1.1)  

 The  geometrical  description  as  shown  in  Figure  1,  which  applies  also  to  the  second  case,  is  summarized  as  follows:         Vertical  height  of  the  Primary  Loop  

      Horizontal  length  of  the  Primary  Loop       Horizontal  length  of  the  Energy  Source  at  the  Primary  Loop       Horizontal  length  of  the  Coupling  Heat  Exchanger         Vertical  height  of  the  Secondary  Loop       Horizontal  length  of  the  Secondary  Loop       Horizontal  length  of  the  energy  Sink  at  the  Secondary  Loop  

   

Hp

LpLhexpLhexHs

LsLhexs

Page 3: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 Energy Input

Energy Sink

Heat Exchanger

Primary Loop

Secondary Loop

Hp

Lp

Lhex

Ls

Hs

Psec

Ppri

Tsrc

Tsnk

Thp

Ths

Ths

Tcs

Tcs

Tcp

Thp Tcp

Page 4: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

The  temperature  at  certain  locations  round  the  loops,  also  indicated  in  Figure  1  is  summarized  as  follows:    Tsrc     Temperature  of  the  source  Tcp     Temperature  of  the  cool  primary  fluid  Thp       Temperature  of  the  hot  primary  fluid  Tcs       Temperature  of  the  cool  secondary  fluid  Ths       Temperature  of  the  hot  secondary  fluid  Tsnk       Temperature  of  the  sink.    The  temperature  of  energy  supply  at  the  bottom  of  the  primary  loop,  Tsrc  and  the  energy  sink  at  the  top  of  the  secondary  loop,  Tsnk  are  specified  constants.  For  the  second  case,  Tsnk is  replaced  by  Tcin ,  the  temperature  at  the  inlet  to  the  sink  HEX.  When  referring  to  the  fluid  temperature  in  the  loop  at  the  boundaries  of  the  energy  exchange  locations,  the  subscripts  ‘p’  and  ‘s’,  for  primary  and  secondary,  respectively,  will  be  appended  to  differentiate  loop  states  from  fluid  states  external  to  the  loop.  Some  of  the  compound  mnemonics  are  very  frequently  used  in  subscripts  are  constructed  with;  hex refers  to  the  coupling  HEX,   shex refers  to  the  HEX  at  the  sink,   snk refers  to  the  sink  fluid.  An  example  symbol  is  Stsnk,shex ,  which  represents  the  Stanton  number  for  the  fluid  on  the  sink  side  of  the  sink  HEX.    A  detailed  list  of  the  Nomenclature  is  given  at  the  end  of  these  notes.      The  flow  directions  shown  in  the  figure  are  clockwise  for  the  hot  primary  loop  and  counter-­‐clockwise  for  the  cool  secondary  loop.  This  flow-­‐direction  arrangement  gives  co-­‐current  flow  conditions  in  the  coupling  HEX.  Other  flow  directions  in  both  loops  are  possible,  and  either  of  the  loops  in  the  Figure  can  flow  in  the  opposite  direction.  Because  the  temperature  distribution  in  the  loops  is  a  function  of  the  flow  directions,  the  analysis  in  these  notes  will  consider  only  this  case.  Other  cases  might  be  considered  in  future  notes.    

Locations and Boundary Conditions The  locations  along  the  loops  are  measured  in  the  direction  to  the  right  from  the  left-­‐hand  edge  of  the  coupling  HEX.  A  notation  for  the  following  locations  and  corresponding  fluid  temperature  will  simplify  the  equation  processing.    Primary  Loop   Description   Temperature   Description  

ssrc,i = Lp +Hp   Source  Inlet   Tp ssrc,i = Lp + Hp( ) = Tcp   Cold  Primary  ssrc,o = 2Lp +Hp   Source  Outlet   Tp ssrc,o = 2Lp + Hp( ) = Thp   Hot  Primary  sphex,i = 0   HEX  Inlet   Tp sphex ,i = 0( ) = Thp   Hot  Primary  sphex,o = Lp   HEX  Outlet   Tp sphex,o = Lp( ) = Tcp   Cold  Primary  

Page 5: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Secondary  Loop   Description   Temperature   Description  sshex,i = 0   HEX  Inlet   Ts sshex ,i = 0( ) = Tcs   Cold  Secondary  sshex,o = Ls   HEX  Outlet   Ts sshex,o = Ls( ) = Ths   Hot  Secondary  ssnk,i = Ls +Hs   Sink  Inlet   Ts ssnk ,i = Ls + Hs( ) = Ths   Hot  Secondary  ssnk,o = 2Ls +Hs   Sink  Outlet   Ts ssnk ,o = 2Ls + Hs( ) = Tcs   Cold  Secondary  

           The  locations  and  fluid  states  summarized  above  provide  Boundary  Conditions  (BCs)  for  the  model  equations.    

General Transient Model Equations The  model  equations  for  balance  of  mass,  momentum,  and  energy  for  each  loop  are  developed  in  the  following  discussions.  This  initial  effort  will  consider  only  constant-­‐diameter  loops  and  all  the  usual  assumptions  and  idealizations  applied  to  natural-­‐circulation  loop  flows.    These  idealizations  include:  (1)  constant  thermophysical  and  transport  properties  for  the  fluid,  (2)  uniform  distributions  of  all  flow-­‐field  quantities  across  the  flow  channels,  (3)  the  fluid  is  thermally  expandable:  variations  in  density  with  pressure  are  neglected,    (4)  buoyancy  forces  due  to  fluid  density  variations  are  accounted  for  by  the  linear  Bousinesq approximation,  (5)  conduction  heat  transfer  characteristics  of  all  the  piping-­‐wall  materials  can  be  neglected  when  modeling  transient  response,  (6)  axial  heat  conduction  in  the  working  fluids  and  piping  materials  is  neglected,  (7)  energy  losses  from  the  outside  of  the  piping  are  neglected,  (8)  conversion  of  mechanical  energy  into  thermal  energy  by  means  of  viscous  dissipation  is  neglected,  (9)  pressure-­‐volume  work  terms  in  the  energy  equation  model  are  also  neglected,  and  (10)  parallel  flow  paths  everywhere  in  the  systems  are  not  accounted  for  (11)  the  solid  materials  bounding  the  fluids  are  ignored  (12)  all  hardware  and  engineered  devices,  other  than  the  HEXs,  is  ignored.    With  these  assumptions,  the  one-­‐dimensional  forms  of  the  model  equations  for  fluid  flow  are  as  follows:    ∂∂t M + ∂

∂lW = 0       (1.2)  

 

Page 6: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

for  conservation  of  mass,    1Af

∂∂tW + ∂

∂lW 2

ρAf2 = − ∂

∂l P− RwfW WρAf

2 + ρgcosθ     (1.3)  

 for  a  momentum  balance  model,  where  the  resistance  to  flow  is    

Rf =18 Awf fw       (1.4)  

 for  distributed  wall  friction,  where  Awf  is  the  wetted  wall  area  per  unit  volume  of  fluid  for  friction.    Local  irreversible  losses  will  be  included  into  the  flow  resistance  as  specific  models  are  developed.  Generally,  the  wetted  wall  area  per  unit  volume  is  related  to  the  equivalent  hydraulic  diameter  by    

Awf =4Dhy

      (1.5)  

where    

Dhy =4Af

pw       (1.6)  

 is  the  equivalent  hydraulic  diameter.      Conservation  of  energy,  written  in  terms  of  the  fluid  temperature,  is    ∂∂tAfρCpT + ∂

∂lWCpT = Af Awh ′′qwf +

∂∂tP + W

ρAf

∂∂lP + fw

2Dhy

W WρAf

2

⎣⎢⎢

⎦⎥⎥     (1.7)  

 where  Awh  is  the  heated  wall  area  for  heat  transfer  per  unit  fluid  volume,      

Awh =4Dhe

      (1.8)  

where    

Dhe =4Af

ph       (1.9)  

 and  Dhe  is  the  heated  equivalent  diameter.  The  wall-­‐to-­‐fluid  heat  flux,  the  first  term  on  the  tight-­‐hand  side  of  Eq.  (1.7)  is  

Page 7: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 ′′qwf = hcwf Tw −T( )       (1.10)  

 and  hcwf  is  the  wall-­‐to-­‐fluid  heat  transfer  coefficient.  Special  cases  for  the  wall-­‐to-­‐fluid  energy  exchange  will  be  considered  as  the  analyses  are  developed  later  in  these  notes.      The  last  two  terms  on  the  right-­‐hand  side  of  Eq.  (1.7)  are  almost  always  neglected  for  applications  to  natural  circulation  flows,  and  we  will  do  so.    The  Equation  of  State  (EoS)  returns  the  fluid  density  given  the  pressure  and  temperature    

      (1.11)    Generally,  for  applications  to  natural  circulation  loops,  the  EoS  is  evaluated  at  a  reference  pressure  and  the  fluid  density  taken  to  be  a  function  of  only  the  temperature    

      (1.12)  

 and  is  represented  by  a  linear  EoS      

      (1.13)  

 where    is  the  coefficient  of  thermal  expansion.    For  analyses  of  two-­‐phase  fluid  states  the  independent  properties  used  in  the  EoS  must  be  other  than  pressure  and  temperature.    The  model  equations  for  analyses  of  transients  will  be  the  subject  of  later  analyses.  The  steady  state  forms  are  developed  next.    

Steady State Model Equations The  steady  state  equations  are    ∂∂lW = 0       (1.14)  

 for  mass  conservation,  

ρ = ρ P,T( )

ρ = ρ Pref ,T( )

ρ = ρ0 1−β T −T0( )⎡⎣

⎤⎦

β

Page 8: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 ∂∂lW 2

ρAf2 = −

∂∂l P− Rwf

W WρAf

2 + ρgcosθ       (1.15)  

 for  a  momentum  balance,  and    ∂∂lWCpT = Af Awh ′′qwf       (1.16)  

 for  energy  conservation.    Equation  (1.14)  indicates  that  the  mass  flow  rate  is  everywhere  the  same  in  the  loop.  The  flow  rate  is  given  by  the  solutions  of  the  coupled  momentum  and  energy  equations.  For  a  constant  flow  area,  and  small  changes  in  the  fluid  density,  the  term  on  the  left-­‐hand  side  of  the  momentum  balance  can  be  neglected,  and  the  momentum  model  reduces  to  a  balance  between  the  pressure  and  buoyancy  and  the  friction  losses.    

Momentum Balance The  fluid  density  is  given  by  Eq.  (1.13),  and  putting  that  equation  into  the  momentum  balance  gives    ∂∂lW 2

ρAf2 = −

∂∂l P− Rwf

W Wρ0Af

2 + ρ0 1−β T −T0( )⎡⎣

⎤⎦gcosθ     (1.17)  

 Integrating  the  momentum  balance  around  a  loop,  neglecting  the  momentum  flux  term  on  the  left-­‐hand  side,  gives      

Af Rwf

W Wρ0Af

2 = Afρ0 1−β T −T0( )⎡⎣

⎤⎦gcosθ dl!∫     (1.18)  

 where  variations  in  the  fluid  density  are  included  in  only  the  gravitational  term.  Evaluation  of  the  integral  around  the  loops  requires  that  the  temperature  distribution  first  be  evaluated  so  that  the  integral  on  the  right-­‐hand  side  can  be  evaluated.  Note  that  the  integral  only  has  non-­‐zero  values  in  the  vertical  segments  of  the  loops.  This  property  leads  to  the  geometric  arrangement  of  Figure  1  that  is  used  in  these  notes.    The  flow-­‐resistance  factor,  Rwf ,  for  distributed  wall  friction  and  local  irreversible  losses,  has  the  general  form      

Page 9: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Rwf =18 Awf fw +

12Kllδ l − lll( )⎡

⎣⎢⎤⎦⎥       (1.19)  

 where  the  first  contribution  is  due  to  distributed  wall  friction  and  the  second  due  to  local  irreversible  losses,  and  δ l − lll( )  is  the  Dirac-­‐delta  function.  The  wall-­‐to-­‐fluid  friction  factor  can  be  represented  in  general  form  by    fw =Cwf /Rem       (1.20)    where  Cwf = 64.0 and m =1  for  laminar  flow,  and  Cwf = 0.3164 and m = 0.25  for  lower  values  of  the  Reynolds  number  (Re <105 )  and  Cwf = 0.184 and m = 0.20 for  fully-­‐developed  turbulent  flow  (Re >105 ).  The  numerical  value  of  the  local  loss  factor,  Kll ,  depends  on  the  geometry  of  the  flow  channel  and  fluid  flow  rate  at  the  location  of  the  loss.    For  the  fluid  flow  and  energy  exchange  arrangement  shown  in  Figure  1,  the  momentum  balance  of  Eq.  (1.18)  gives    

AfpRwfpWp Wp

ρ0 pAfp2 = Afpρ0 pβ pg Thp −Tcp( )       (1.21)  

 for  the  hot  primary  loop,  and    

AfsRwfsWs Ws

ρ0sAfs2 = Afsρ0sβsg Ths −Tcs( )       (1.22)  

 for  the  secondary  loop.  Neglecting  the  local  irreversible  losses  and  using  Eq.  (1.20)  for  the  distributed  wall  friction  factor,  Eqs.  (1.21)  and  (1.22)  can  be  written    

Rep =2Cwf

⎝⎜

⎠⎟

1 (3−m)

Grp( )1 3−m( )       (1.23)  

and  

Res =2Cwf

⎝⎜

⎠⎟

1 (3−m)

Grs( )1 3−m( )       (1.24)  

where      

Page 10: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Re =WDhy

Afµ       (1.25)  

 is  the  Reynolds  Number,  and    

Gr = Dhe3 ρ02βgµ2

Th −Tc( )       (1.26)  

 is  the  Grashof  Number.    The  temperature  difference,   Thp − Tcp( )  and   Ths −Tcs( ) ,  needed  to  complete  the  solution  is  developed  in  the  flowing  discussions.    

Temperature Distributions The  temperature  distribution  around  the  loops,  necessary  for  integration  of  the  momentum  model,  is  obtained  by  integration  of  the  steady-­‐state  energy  equation  around  the  loops.  The  energy  equation  is  of  interest  only  in  the  sections  over  which  energy  exchange  occurs,  i.e.  the  bottom  of  the  hot  primary  loop  and  the  top  of  the  cool  secondary  loop.  For  all  the  adiabatic  sections      ∂∂l T = o       (1.27)  

 and  the  temperature  is  constant  at  the  value  that  the  fluid  attains  at  the  exit  from  the  energy-­‐exchange  sections;  the  primary  loop  energy  source  and  the  secondary  loop  energy  sink.    The  distance  along  the  loop  is  measured  to  the  right  from  the  inlet  of  the  coupling  HEX.  In  the  coupling  HEX  section  the  distance  along  the  loops  is  the  same  and  the  energy  conservation  model  of  Eq.  (1.16)  is    

WpCp,p∂∂sTp = Afp,hexAwhp,hexUp Ts −Tp( )     (1.28)  

 for  the  primary  loop,  and    

WsCp,s∂∂sTs = Afs,hexAwhs,hexUs Tp −Ts( )     (1.29)  

 for  the  secondary  loop.  Along  the  direction  of  flow  the  fluid  temperature  in  the  primary  loop  decreases,  and  in  the  secondary  loop  increases.    

Page 11: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Equations  (1.28)  and  (1.29)  can  be  written    ∂∂sTp = St p,hex Ts −Tp( )       (1.30)  

 and    ∂∂sTs = Sts,hex Tp −Ts( )       (1.31)  

 respectively,  where   St is  a  Stanton  Number  per  unit  length.  The  initial  conditions  are  Tp sphex,i = 0( ) = Tph for  the  primary  side,  and    Ts sshex,i = 0( ) = Tsc for  the  secondary  side.  At  steady  state  conditions,        St p,hex Ts −Tp( ) = Sts,hex Tp −Ts( )       (1.32)  

 In  the  primary  loop  from  the  outlet  from  the  coupling  HEX  around  to  the  entrance  to  the  energy  source  the  fluid  temperature,  by  Eq.  (1.27),  is    Tp =Tpc       (1.33)    For  the  energy  source  at  the  bottom  of  the  primary  loop,  the  source  temperature  is  taken  to  be  constant  and  the  energy  equation  model  becomes    

WpCp,p∂∂lp

Tp = AfpAwhphc,src Tsrc,p −Tp( )     (1.34)  

or    ∂∂lp

Tp = Stsrc Tsrc,p −Tp( )       (1.35)  

 which  holds  from  the  entrance  to  exit  of  the  energy-­‐source  section;      Lp + Hp( ) ≤ lp ≤ 2Lp + Hp( ) ,  and  the  initial  condition,  by  Eq.  (1.33),  is    Tp Lp +Hp( ) = Tpc       (1.36)  

 For  the  first  simple  case  considered  in  these  notes,  the  length  of  the  energy-­‐source  section  is  taken  to  occupy  the  total  horizontal  length  of  the  primary  loop.  This  is  

Page 12: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

merely  for  convenience,  and  can  be  assigned  to  be  a  fraction  of  that  total  length:  Lsrc,p = Fsrc,pLp ,  for  example.      From  the  outlet  of  the  coupling  HEX  in  the  cool  secondary  loop  to  the  inlet  to  the  energy  sink  section,  the  fluid  temperature,  by  Eq.  (1.27)  is    Ts = Ths       (1.37)    For  the  energy  sink  at  the  top  of  the  secondary  loop    

WsCp,s∂∂lsTs = AfsAwhshc,snk Tsnk,s −Ts( )       (1.38)  

 or    ∂∂lsTs = Stsnk Tsnk,s −Ts( )       (1.39)  

 which  holds  for   (Ls +Hs )≤ ss ≤ 2Ls +Hs( )( ) ,  with  the  energy  sink  temperature  taken  to  be  a  constant,  and  the  initial  condition  by  Eq.  (1.37),    is    Ts Hs( ) = Ths       (1.40)    

Steady State Temperature Distribution The  temperature  distribution  in  the  various  sections  of  the  loops  is  determined  with  the  equation  specifications  in  the  previous  section.  Starting  with  the  energy  source  segment,  Eq.  (1.35)  and  initial  condition  Eq.  (1.37),  integration  and  applying  the  initial  condition  gives  the  fluid  temperature  distribution  in  the  energy-­‐source  segment    

Tp = Tsrc + e− Stsrclp Tpc −Tsrc( )       (1.41)  

 for   ssrc,i ≤ lp ≤ ssrc,o( ) .  This  gives  the  primary  fluid  temperature  at  the  exit  from  the  energy-­‐source  segment    Thp =Tsrc + e−Stsrc Tcp −Tsrc( )       (1.42)  

 where    

Page 13: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Stsrc = StLsrc       (1.43)    The  same  approach  applied  to  the  energy-­‐sink  segment  in  the  secondary  loop,  Eqs.  (1.39)  and  (1.40)  give  the  secondary  side  fluid  temperature  distribution  within  the  sink  segment    

Ts =Tsnk + e−Stsnkls Ths −Tsnk( )       (1.44)  

 which  holds  for   ssnk,i ≤ ls ≤ ssnk,o( ) .      The  temperature  at  the  exit  from  the  energy-­‐sink  segment  is    Tcs =Tsnk + e

−Stsnk Ths −Tsnk( )       (1.45)    The  temperature  distribution  in  the  primary  and  secondary  sides  of  the  coupling  HEX  is  obtained  by  solving  the  coupled  Eqs.  (1.30)  and  (1.31)  and  initial  conditions  Tp sphex,i = 0( ) = Tph for  the  primary  side,  and    Ts sshex,i = 0( ) = Tsc .      The  temperature  distribution  in  the  primary  side  of  the  coupling  HEX  is    

Tp,hex =StsThp + St pTcsSt p + Sts

+St p

St p + StsThp −Tcs( )e−(Stp+Sts )lp     (1.46)  

 and  the  temperature  at  the  outlet,   lp = LHEX ,  is    

Tp,hexo =StsThp + St pTcsSt p + Sts

+St p

St p + StsThp −Tcs( )e−(Stp+Sts )LHEX     (1.47)  

 The  temperature  distribution  in  the  secondary  side  of  the  coupling  HEX  is    

Ts,hex =StsThp + St pTcsSt p + Sts

+ StsSt p + Sts

Tcs −Thp( )e−(Stp+Sts )ls     (1.48)  

 and  the  temperature  at  the  outlet,   ls = LHEX ,      

Ts,hexo =StsThp + St pTcsSt p + Sts

+ StsSt p + Sts

Tcs −Thp( )e−(Stp+Sts )LHEX     (1.49)  

 

Page 14: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

The  four  equations  for  Thp ,  Tcs ,  Tp,hexo = Tcp ,  and  Ts,hexo = Ths ,  Eqs.  (1.42),  (1.45),  (1.47),  and  (1.49),  respectively  can  be  solved  to  obtain  expressions  that  involve  the  thermal  performance  of  the  energy-­‐exchange  devices  and  the  source  and  sink  temperatures  which  are  the  boundary  conditions  for  the  system.  These  are  mighty  complex  expressions.  I’m  considering  how  to  display  those  expressions.  In  the  meantime,  the  quantities  needed  for  the  momentum  balance  models  for  the  primary  and  secondary  sides,  Eqs.  (1.23)  and  (1.24)  need  only  the  temperature  differences  Thp −Tcp( )and   Ths −Tcs( ) ,  respectively.  So  we  will  focus  on  those  for  the  time  being.    Those  equations  contain  the  following  common  factor  in  the  numerator      

FACT = eStsrc −1( ) eStsnk −1( ) e Stp,hex+Sts,hex( ) −1⎛⎝⎜

⎞⎠⎟          

(1.50)  

 Those  equations  also  contain  the  following  common  expression  for  the  denominator    

DEN = Sts,hex eStsrc −1( ) eStsnk e Stp,hex+Sts,hex( ) −1⎡

⎣⎢⎤⎦⎥

+St p,hex eStsnk −1( ) eStsrce Stp,hex+Sts,hex( ) −1⎡

⎣⎢⎤⎦⎥

    (1.51)  

 Both  of  the  above  can  be  re-­‐arranged  in  a  multitude  of  different  ways.  In  particular  the  positive  exponents  can  be  converted  to  negative  exponents  and  a  common  factor  cancelled  in  the  numerator  and  denominator.    With  Eqs.  (1.50)  and  (1.51)  the  temperature  difference  for  the  hot  primary  loop,  ΔTpri = Thp −Tcp is    

ΔTpri =St p,hexDEN FACT Tsrc −Tsnk( )       (1.52)  

 The  temperature  difference  for  the  cool  secondary  loop,  ΔTsec = Ths −Tcs ,  is    

ΔTsec =Sts,hexDEN FACT Tsrc −Tsnk( )       (1.53)  

 Putting  Eqs.  (1.52)  and  (1.53)  into  the  momentum  model  solutions  of  Eqs.  (1.23)  and  (1.24)  gives    

Page 15: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Rep =2Cwfp

⎝⎜

⎠⎟

1 (3−m)Dhep3 ρ0 p2 β pgµp2 St p,hex

FACTDEN

Tsrc −Tsnk( )⎛

⎝⎜

⎠⎟

1 3−m( )

    (1.54)  

 for  the  primary  loop,  and    

Res =2Cwfs

⎝⎜

⎠⎟

1 (3−m)Dhes3 ρ0s2 βsgµs2 Sts,hex

FACTDEN

Tsrc −Tsnk( )⎛⎝⎜

⎞⎠⎟

1 3−m( )     (1.55)  

 for  the  secondary  loop.  Equations  (1.54)  and  (1.55)  can  be  written  in  the  usual  form  for  these  results  as      

Rep =2Cwfp

⎝⎜

⎠⎟

1 (3−m)Dhep3 ρ0 p2 βpgµp2 Tsrc −Tsnk( )

⎝⎜⎜

⎠⎟⎟

1 3−m( )St p,hex

FACTDEN

⎛⎝⎜

⎞⎠⎟

1 3−m( )     (1.56)  

 and    

Res =2Cwfs

⎝⎜

⎠⎟

1 (3−m)Dhes3 ρ0s2 βsgµs2

Tsrc −Tsnk( )⎛

⎝⎜

⎠⎟

1 3−m( )

Sts,hexFACTDEN

⎛⎝⎜

⎞⎠⎟

1 3−m( )     (1.57)  

 Note  that  while  explicit  equations  have  been  obtained  application  requires  an  iterative  procedure  because  each  of  the  thermal  and  hydrodynamic  variables  are  dependent  on  all  other  thermal  and  hydrodynamic  variables.    

Specified, Constant, Energy Source with HEX Sink Consider  the  case  of  specified  energy  addition  at  the  source  with  a  HEX  at  the  sink.  A  sketch  of  the  system  is  given  in  Figure  2.  For  the  flow  directions  indicated  on  the  Figure  both  the  coupling  HEX  and  the  HEX  at  the  sink  are  co-­‐current.  In  this  regard,  the  model  equations  developed  in  the  previous  section  will  be  useful.  The  momentum  equation  models  of  Eqs.  (1.21)  and  (1.22)  apply  to  this  case.  The  energy  equation  model  for  the  source,  Eq.  (1.41)  and  the  temperature  of  the  primary-­‐loop  fluid  at  the  exit  from  the  source,  Eq.  (1.42)  also  apply.  The  energy  balance  for  the  coupling  HEX,  Eqs.  (1.28)  and  (1.29),  adapted  to  the  sink  HEX  also  apply.    

Page 16: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 Energy Input

Energy Sink

Heat Exchanger

Primary Loop

Secondary Loop

Hp

Lp

Lhex

Ls

Hs

Psec

Ppri

Tsrc

TcinTcout

Thp

Ths

Ths

Tcs

Tcs

Tcp

Thp Tcp

Lhexs

Page 17: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

     We  first  look  at  the  primary-­‐loop  fluid  temperature.  The  steady  state  temperature  distribution  in  the  energy  source  segment  is  given  by  Eq.  (1.16)    ∂∂lp

Tp =AfpAwhpWpCp,p

′′qwp(lp )       (1.58)  

 which  holds  for   Lp + Hp( ) ≤ lp ≤ 2Lp + Hp( )( )  and  where  the  specified  energy  source,  ′′qwp(lp ) ,  can  be  a  function  of  the  location  within  the  source.  The  source  will  be  taken  

to  be  a  constant  for  this  first  case  and  integration  gives    

Tp lp( ) = Tcp + AfpAwhpWpCpp

lp ′′qwp       (1.59)  

 At  the  exit  from  the  source  segment,  the  fluid  temperature  is    

Thp = Tcp +Qwfp

WpCpp       (1.60)  

 where  Qwfp = PwfpLsrc ′′qwp  is  the  power  added  into  the  fluid  across  the  entire  source.  Equation  (1.60)  gives  the  temperature  difference  that  is  the  driving  potential  in  the  primary  loop.  The  mass  flow  rate,  Wp ,  however,  is  a  function  of  the  performance  of  the  complete  system  and  is  not  yet  known.    Applying  the  HEX  energy  balance  of  Eqs.  (1.30)  and  (1.31)  to  the  HEX  at  the  sink  gives    

WsCp,s∂∂sTs = Afs,snkAwhs,snkUs Tsnk −Ts( )     (1.61)  

 for  the  secondary-­‐loop  side  of  the  HEX,  and    

WsnkCp,snk∂∂sTsnk = Afsnk,snkAwhsnk,snkUsnk Ts −Tsnk( )     (1.62)  

 for  the  sink  side  of  the  HEX.  The  solutions  for  the  distributions  are    

Page 18: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Ts,snk =StsnkThs + Sts,snkTcinStsnk + Sts,snk

+Sts,snk

Stsnk + Sts,snkThs −Tcin( )e−(Stsnk+Sts ,snk )lsnk ,hex     (1.63)  

 for  the  secondary-­‐loop  fluid.  The  secondary  side  fluid  temperature  at  the  sink  HEX  outlet  is    

Tcs =StsnkThs + Sts,snkTcinStsnk + Sts,snk

+Sts,snk

Stsnk + Sts,snkThs −Tcin( )e−(Stsnk+Sts ,snk )     (1.64)  

 where   St = StLsnk ,hex .  The  temperature  distribution  on  the  sink  side  of  the  sink  HEX  is    

Tsnk =StsnkThs + Sts,snkTcinStsnk + Sts,snk

+ StsnkStsnk + Sts,snk

Tcin −Ths( )e−(Stsnk+Sts ,snk )lsnk ,hex     (1.65)  

 and  the  sink  coolant  outlet  temperature  is    

Tcout =StsnkThs + Sts,snkTcinStsnk + Sts,snk

+ StsnkStsnk + Sts,snk

Tcin −Ths( )e−(Stsnk+Sts ,snk )     (1.66)  

 Equations  (1.47),  (1.49),  (1.60),  (1.64),  and  (1.66)  for  the  solutions  Thp ,  Tp,hexo = Tcp ,  Ts,hexo = Ths , Tcs and  Tcout .      

Thp = Tcin −Qwfp

WpCpp

ℑ •( )St p,hexSts,shex

e Stp,hex+Sts ,hex( ) −1⎛⎝⎜

⎞⎠⎟−1

e Sts ,shex+Stsnk ,shex( ) −1⎛⎝

⎞⎠

−1

    (1.67)  

 for  the  high  temperature  in  the  primary  loop,  where    ℑ •( ) = ℑ St p,hex , Sts,hex , St ps,shex , Stsnk,shex ,Stp,hex ,Sts,hex ,Stps,shex ,Stsnk,shex( )

= St p,hexSts,shex e Sts,shex+Stsnk ,shex( ) −1⎛⎝⎜

⎞⎠⎟eStp,hex+Sts,hex⎛⎝

⎞⎠⎛

⎝⎜⎞

⎠⎟

+Sts,hexSts,shex eStp,hex+Sts,hex+Sts,shex+Stsnk ,shex( ) −1⎛

⎝⎜⎞⎠⎟

+Sts,hexStsnk,shexeSts,shex+Stsnk ,shex( ) e Stp,hex+Sts,hex( ) −1⎛

⎝⎜⎞⎠⎟

    (1.68)  

Page 19: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Tcp = Tcin +Qwfp

WpCpp

eStp,hex+Sts ,hex( )

−1⎛⎝⎜

⎞⎠⎟−1

+Stsnk ,shex

St p,hexSts,shex1− e− Sts ,shex+Stsnk ,shex( )( )−1⎡

⎣⎢⎢

⎦⎥⎥

+Qwfp

WpCpp

Sts,hexSt p,hex

e Stp ,hex+Sts ,hex+Sts ,shex+Stsnk ,shex( ) −1( )e Stp ,hex+Sts ,hex( ) −1( ) e Sts ,hex+Stsnk ,hex( ) −1( )

      (1.69)  

 for  the  cool  temperature  in  the  primary  loop,    

Ths = Tcin +Sts,hexSt p,hex

Stsnk,shex + Sts,shexSts,shex

1− e− Sts,shex+Stsnk ,shex( )⎛⎝⎜

⎞⎠⎟−1 Qwfp

WpCpp     (1.70)  

 for  the  high  temperature  in  the  secondary  loop,    

Tcs = Tcin +Sts,hexSt p,hex

Qwfp

WpCpp

Stsnk,shexSts,shex

+Stsnk,shex + Sts,shex

Sts,shexe Sts,shex+Stsnk ,shex( ) −1⎛

⎝⎜⎞⎠⎟−1⎡

⎣⎢⎢

⎦⎥⎥     (1.71)  

 for  the  cool  temperature  in  the  secondary  loop,  and    

Tcout =Tcin +Sts,hexSt p,hex

Stsnk,shexSts,shex

Qwfp

WpCpp       (1.72)  

 for  the  fluid  temperature  at  the  outlet  from  the  sink  HEX.    These  give  the  driving  potential  in  the  primary  and  secondary  loops    

ΔTp =Qwfp

WpCpp       (1.73)  

and    

ΔTsec =Sts,hexSt p,hex

Qwfp

WpCpp       (1.74)  

 respectively.  The  primary  loop  is  not  directly  coupled  to  the  secondary  loop:  the  coupling  is  indirect  through  the  effects  of  the  mass  flow  rate.  Plus  I  need  to  check  some  end  conditions  to  see  if  the  equations  correctly  produce  these.    Putting  Eqs.  (1.73)  and  (1.74)  into  the  momentum  model  solutions  of  Eqs.  (1.23)  and  (1.24)  gives    

Page 20: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Rep =2Cwfp

⎝⎜

⎠⎟

1 (3−m)Dhep3 ρ0 p2 βpgµp2

Qwfp

WpCpp

⎝⎜⎜

⎠⎟⎟

1 3−m( )     (1.75)  

 and    

Res =2Cwfs

⎝⎜

⎠⎟

1 (3−m)Dhes3 ρ0s2 βsgµs2

Qwfp

WpCpp

⎝⎜

⎠⎟

1 3−m( )Sts,hexSt p,hex

⎝⎜⎜

⎠⎟⎟

1 3−m( )     (1.76)  

 

HEXs at the Source and Sink A  sketch  of  this  case  is  shown  in  Figure  3.    

Page 21: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 

Energy Input

Energy Sink

Heat Exchanger

Primary Loop

Secondary Loop

Hp

Lp

Lhexp

Lhex

Ls

Hs

Psec

Ppri

Thout Thin

TcinTcout

Lhexs

Thp

Ths

Ths

Tcs

Tcs

Tcp

Thp Tcp

Page 22: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Conclusions Not  many.        

Page 23: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

SYMBOLS  AND  ABBREVIATIONS  

Nomenclature    

A   area,  m2  

A     area  per  unit  fluid  volume,  1/m  

Af     flow  area,  m2  

Cp     specific  heat  at  constant  pressure,  

J/kg  K  

D   diameter,  m  

Dhe     heated  equivalent  diameter,  m  

Dhy     wetted  equivalent  diameter,  m  

fw     friction  factor  

g   gravitational  body  force,  kg  m/s2  

G   mass  flux,  kg/m2  s  

Gr   Grashof  Number,   gβΔTDhe3

υ 2    

h     enthalpy,  J/kg  

hc     heat  transfer  coefficient,  W/m2  K  

hg     vapor  phase  enthalpy,  J/kg  

hfg     enthalpy  of  evaporation,  J/kg  

hl     liquid  phase  enthalpy,  J/kg  

H   vertical  height,  m  

Kll   local  pressure  loss  factor  

Subscripts  

c   cool,  cooled,  coupling  

cp   cool  temperature  primary  loop  

cs   cool  temperature  secondary  loop  

ext   external  

g   vapor    

gs   saturated  vapor  state  

h   hot,  heated  

hp   hot  temperature  primary  loop  

hs   hot  temperature  secondary  loop  

hex   heat  exchanger  

i,  in   inlet  

int     internal  

l   liquid    

ls   saturated  liquid  state  

lam   laminar  

lgs   saturated  liquid  and  vapor  

ls   saturated  liquid  state  

0   reference  state  

o,     out,  outlet  

p   primary  loop  

Page 24: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

l     distance  along  loop,  m  

L   horizontal  length,  m  

M   mass,  kg  

Npch     phase  change  number  

Nsub     subcooling  number  

p   perimeter,  m  

P   pressure,  N/m2  

′′qw     wall  heat  flux,  W/m2  

Q   power,  W  

Rw   flow  resistance  factor  

Re   Reynolds  Number,  WDhy

Afµ    

St   Stanton  Number,   hcρuCp

   

t   time,  s  

T   temperature,  K  

u   speed,  m/s  

U   overall  heat  transfer  factor,  W/m2  

K  

V   fluid  volume,  m3  

VSL     slip  velocity,  m/s  

W   mass  flow  rate,  kg/s  

pri   primary  side  of  HEX  

s   secondary  loop  

sec   secondary  side  of  HEX  

snk   sink  

src   source  

ss   steady  state  

t     total  length  

tur   turbulent  

w   wall,  wetted  

wh   wall  heat  

wf   wall  friction  

   

Greek  

α     void  fraction  

β     coefficient  of  thermal,  1/K  

expansion  

δ     Dirac  delta  function  

µ     dynamic  viscosity  ,  kg/m  sec  

ρ     density,  kg/m3  

υ   kinematic  viscosity,  m2/s  

Page 25: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Xm     mass  fraction  

z   axial  direction,  m  

   

 

   

Page 26: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

References    Dipankar  N.  Basu,  Souvik  Bhattacharyya  and  P.  K.  Das,  A  review  of  modern  advances  in  analyses  and  applications  of  single-­‐phase  natural  circulation  loop  in  nuclear  thermal  hydraulics,  Nuclear  Engineering  and  Design,  Vol.  280,  pp.  326-­‐348,  2014.    Leonardo  Carlos  Ruspini,  Christiona  Pablo  Marcel  and  Alejandro  Clausse,  Two-­‐phase  flow  instabilities:  A  review,  International  Journal  of  Heat  and  Mass  Transfer,  V0l.  71,  pp.  521-­‐548,  2014.    Milan  K.  S.  Sarkar,  Abhilash  K.  Tilak,  and  Dipankar  N.  Basu,  A  state-­‐of-­‐the-­‐art  review  of  recent  advance  in  supercritical  natural  circulation  loops  for  nuclear  applications,  Annals  of  Nuclear  Energy,  Vol.  73,  pp.  250-­‐263,  2014.    Octavio  Slaazar,  Mihir  Sen,  and  Eduardo  Ramos,  Flow  in  conjugate  natural  circulation  loops,  Journal  of  Thermophysics,  Vol.  2,  pp.  180-­‐183,  1988.    Zhuo  Wenbin,  Huang  Yanping,  Xiao  Zejun,  Peng  Chuanxin,  and  Lu  Sanan,  Experimental  research  on  passive  residual  heat  removal  system  of  Chinese  advanced  PWR,  Science  and  Technology  of  Nuclear  Installations,  Vol.  2014,  Article  ID  325356,  2014.    S.  Kim,  Byoung-­‐Uhn  Bae,  Yun-­‐Je  Cho,  Yu-­‐Sun  Park,  Kyoung-­‐Ho  Kang,  and  Byong-­‐Jo  Yun,  “An  experimental  study  on  the  validation  of  cooling  capability  for  the  passive  auxiliary  feedwater  system  (PAFS)  condensation  heat  exchanger,”  Nuclear  Engineering  and  Design,  vol.  260,  pp.  54–63,  2013.    P.K.  Vijayan,  Manish  Sharma,  and  D.S.  Pilkhwal,  Steady  state  and  stability  characteristics  of  a  Supercritical  Pressure  Natural  Circulation  Loop  (SPNCL)  with  CO2,  Bhabha  Atomic  Research  Centre  Mumbai,  India  Report,  BARC/2013/E/003,  2013.    Jin  Der  Lee,  Chin  Pan,  Shaw  Wen  Chen,  Nonlinear  dynamic  analysis  of  a  two-­‐phase  natural  circulation  loop  with  multiple  nuclear-­‐coupled  boiling  channels,  Annals  of  Nuclear  Energy,  Vol.  80,  pp.  77-­‐94,  2015.    C.  T’Joen  and  M.  Rohde,  Experimental  study  of  the  coupled  thermo-­‐hydraulic-­‐neutronic  stability  of  a  natural  circulation  HPLWR,  Nuclear  Engineering  and  Design,  Vol.  242,  pp.  221-­‐232,  2012.    Dae-­‐Hyun  Hwang,  Hyouk  Kwon,  and  Seong-­‐Jin  Kim,  investigation  of  two-­‐phase  flow  instabilities  under  advanced  PWR  conditions,  Annals  of  Nuclear  Energy,  Vol.  80,  pp.  135-­‐143,  2015.    

Page 27: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

A.  K.  Nayak  and  P.  K.  Vijayan,  Flow  instabilities  in  boiling  two-­‐phase  natural  circulation  systems:  A  review,  Science  and  Technology  of  Nuclear  Installations,  Volume  2008,  Article  ID  573192  doi:  10.1155/2008/573192,  2008.    Walter  Ambrosini,  Lesson  learned  from  the  adoption  of  numerical  techniques  in  the  analysis  of  nuclear  reactor  thermal-­‐hydraulic  phenomena,  Progress  in  Nuclear  Energy,  Vol.  50,  pp.  866-­‐876,  2008.    Juan  Carlos  Ferreri  and  Walter  Ambrosini,  On  the  analysis  of  thermal-­‐fluid-­‐dynamic  instabilities  via  numerical  discretization  of  conservation  equations,  Nuclear  Engineering  and  Design,  Vol.  215,  pp.  153-­‐170,  2002.    V.  Chatoorgoon,  A.  Voodi,  and  D.  Fraser,  The  stability  boundary  for  supercritical  flow  in  natural  circulation  loops  Part  I:  H2O  studies,  Nuclear  Engineering  and  Design,  Vol.  235,  pp.  2570-­‐2580,  2005.    J.  C.  Ferreri,  Computation  of  unstable  flows  using  system  codes,  FLUIDOS  2010:  XI  Meeting  on  Recent  Advances  in  the  Physics  of  Fluids  and  their  Applications,  Journal  of  Physics:  Conference  Series  296,  2011.    M.R.  Gartia,  D.S.  Pilkhwal,  P.K.  Vijayan,  and  D.  Saha,  Analysis  of  metastable  regimes  in  a  parallel  channel  single  phase  natural  circulation  system  with  RELAP5/MOD3.2,  International  Journal  of  Thermal  Sciences,  Vol.  46,  pp.  1064-­‐1074,  2007.    Qiming  Men,  Xuesheng  Wang,  Xizng  Zhou,  and  Xiangyu  Meng,  Heat  transfer  analysis  of  passive  residual  heat  removal  heat  exchanger  under  natural  convection  condition  in  tank,  Science  and  Technology  of  Nuclear  Installations,  Vol.  2014,  Article  ID  279791,  2014.    Gonella  V.  Durga  Prasad,  Manmohan  Pandey,  and  Manjeet  S.  Kalra,  Review  of  research  on  flow  instabilities  in  natural  circulation  boiling  systems,  Progress  in  Nuclear  Energy,  Vol.  49,  pp.  429-­‐451,  2007.    Hyun-­‐Sik  Park,  Ki-­‐Yong  Choi,  Seok  Cho,  Sung-­‐Jae  Yi,  Choon-­‐Kyung  Park,  and  Moon-­‐Ki  Chung,  Experimental  study  on  the  natural  circulation  of  a  passive  residual  heat  removal  system  for  an  integral  reactor  following  a  safety  related  event,  Annals  of  Nuclear  Energy,  Vol.  35,  pp.  2249-­‐2258,  2008.    Amit  Mangal,  Vikas  Jain,  and  A.  K.  Nayak,  Capability  of  the  RELAP5  code  to  simulate  natural  circulation  behavior  in  test  facilities,  Progress  in  Nuclear  Energy,  Vol.  61,  pp.  1-­‐16,  2012.    G.  Prasad,  M.  Pandley,  M.  Kalra,  Review  of  research  on  flow  instabilities  in  natural  circulation  boiling  systems,  Progress  in  Nuclear  Energy,  Vol.  49,  (2007)  pp.  429–451.    

Page 28: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

L.  Tadrist,  Review  on  two-­‐phase  flow  instabilities  in  narrow  spaces,  International  Journal  of  Heat  and  Fluid  Flow,  Vol.  28,  (2007)  pp.  54–62.    A.  Nayak,  P.  Vijayan,  Flow  instabilities  in  boiling  two-­‐phase  natural  circulation  systems:  A  Review,  Science  and  Technology  of  Nuclear  Installations  (2008),  1–15.    S.  Kakac,  B.  Bon,  A  Review  of  two-­‐phase  flow  dynamic  instabilities  in  tube  boiling  systems,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  51,  (2007)  pp.  399–433.    J.  March-­‐Leuba,  J.  Rey,  Coupled  thermo-­‐hydraulic-­‐neutronic  instabilities  in  boiling  water  nuclear  reactors:  a  review  of  the  state  of  the  art,  Nuclear  Engineering  and  Design,  Vol.  145,  (1993)  pp.  97–111.    V.  Chatoorgoon  Stability  of  supercritical  fluid  flow  in  a  single-­‐channel  natural-­‐convection  loop,  International  Journal  of  heat  and  Mass  transfer,  Vol.  44,  pp.  1963-­‐1972,  2001.    Walter  Ambrosini  and  Medhat  Beshir  Sharabi,  Assessment  of  stability  maps  for  heated  channels  with  supercritical  fluids  versus  the  predictions  of  a  system  code,  Nuclear  Engineering  and  Technology,  Vol.  39,  pp.  627-­‐636,  2007.    Donghua  Lu,  Zejun  Xiao,  and  Bingde  Chen,  A  new  method  to  derive  one  set  of  scaling  criteria  for  reactor  natural  circulation  at  single  and  two-­‐phase  conditions,  Nuclear  Engineering  and  Design,  Vol.  240.  (2010)  pp.  3851–3861.    D.  D.  B.  van  Bragt  and  T.  H.  J.  J.  van  der  Hagen,  “Stability  of  natural  circulation  boiling  water  reactors—II:  parametric  study  of  coupled  neutronic-­‐thermohydraulic  stability,”  Nuclear  Technology,  Vol.  121,  pp.  52–62,  1998.    IAEA,  Heat  Transfer  Behaviour  and  Thermohydraulics  Code  Testing  for  SCWRs,  IAEA  TECDOC  Series,  IAEA-­‐TECDOC-­‐1746,  2014,  September,  Vienna,  Austria.  Free  download  from:  http://www-­‐pub.iaea.org/books/IAEABooks/10731/Heat-­‐Transfer-­‐Behaviour-­‐and-­‐Thermohydraulics-­‐Code-­‐Testing-­‐for-­‐Supercritical-­‐Water-­‐Cooled-­‐Reactors-­‐SCWRs.    IAEA,  “Status  of  advanced  light  water  reactor  designs  2004,”  IAEA-­‐TECDOC-­‐  1391,  IAEA,  Vienna,  Austria,  2004.    IAEA,  “Natural  circulation  phenomena  and  modelling  for  advanced  water  cooled  reactors,”  IAEA-­‐TECDOC-­‐1677,  Vienna,  Austria,  2012.    IAEA,  “Status  of  advanced  light  water  reactor  designs  2004,”  IAEA-­‐TECDOC-­‐  1391,  IAEA,  Vienna,  Austria,  2004.    

Page 29: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

IAEA,  “Natural  circulation  phenomena  and  modelling  for  advanced  water  cooled  reactors,”  IAEA-­‐TECDOC-­‐1677,  Vienna,  Austria,  2012.    International  Atomic  Energy  Agency,  Heat  transfer  behaviour  and  Thermalhydraulics  code  testing  for  supercritical  water  cooled  reactors  (SCWRs),  International  Atomic  Energy  Agency  Report,  IAEA-­‐TECDOC-­‐1746,  2014.    International  Atomic  Energy  Agency,  Natural  Circulation  in  Water  cooled  Nuclear  Power  Plants:  Phenomena,  Models,  and  Methodology  for  System  Reliability  Assessments,  IAEA-­‐TECDOC-­‐1474,  IAEA,  Vienna,  2005.    International  Atomic  Energy  Agency,  Passive  Safety  Systems  and  Natural  Circulation  in  Water  Cooled  Nuclear  Power  Plants,  IAEA-­‐TECDOC-­‐1624,  IAEA,  Vienna,  2009.    Darrel  G.  Harden,  Transient  behavior  of  a  natural-­‐circulation  loop  operating  near  the  thermodynamic  critical  point,  Argonne  National  Laboratory  Report,  ANL-­‐6710,  1963.    Archie  Junior  Cornelius,  An  investigation  of  instabilities  encountered  during  heat  transfer  to  a  supercritical  fluid,  Argonne  National  Laboratory  Report,  ANL-­‐7032,  1965.    Y.  Zvirin,  A  review  of  natural  circulation  loops  in  pressurized  water  reactors  and  other  systems,  Nuclear  Engineering  and  Design,  Vol.  67,  pp.  203-­‐225  (1981).    Y.  Zvirin.  P.  R.  Jeuck,  III,  C.  W.  Sullivan  and  R.  B.  Duffey,  Experimental  and  analytical  investigation  of  a  natural  circulation  system  with  parallel  loops,  Transaction  of  the  ASME  Journal  of  Heat  Transfer,  Vol.  103,  pp.  645-­‐652  (1981).    P.  R.  Jeuck,  III,  L.  Lennert  and  R.  L.  Kiang,  Single-­‐phase  natural  circulation  experiments  on  small  break  accident  heat  removal,  EPRI  Reports  NP-­‐2006,  NP-­‐81-­‐18-­‐LD  (1981).    Y.  Zvirin  and  Y.  Rabinovitz,  On  the  behavior  of  natural  circulation  loops  with  parallel  channels,  Proc.  7th  Jnt.  Heat  Transfer  Conference,  Munich,  F.R.G.,  Vol.  2,  pp.  299-­‐304  (1982).    A.  Ronen  and  Y.  Zvirin,  The  behavior  of  a  toroidal  thermosyphon  at  high  Graetz  (and  Grashof)  numbers,  Transaction  of  the  ASME  Journal  of  Heat  Transfer,  Vol.  107,  pp.  254-­‐258  (1985).    Y.  Zvirin,  The  onset  of  flows  and  instabilities  in  a  thermosyphon  with  parallel  loops,  Nuclear  Engineering  and  Design,  Vol.  92,  pp.  217-­‐226,  1986.    Elizabeth  Burroughs,  Convection  in  a  thermosyphon:  Bifurcation  and  stability  analysis,  PhD  Disseration,  University  of  New  Mexico,  Albuquerque,  NM,  2003.  

Page 30: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 E.  A.  Burroughs,  E.  A.  Coutsias,  and  L.  A.  Romero,  A  reduced-­‐order  partial  differential  equation  model  for  the  flow  in  a  thermosyphon,  Journal  of  Fluid  Mechanics,  Vol.  543,  pp.  203-­‐237,  2005.    L.  Chen,  X.-­‐R.  Zhang,  H.  Yamaguchi,  H.,  and  Z.-­‐S.  Liu,  Effect  of  heat  transfer  on  the  instabilities  and  transitions  of  supercritical  CO2  flow  in  a  natural  circulation  loop,  Int.  J.  Heat  Mass  Transfer,  Vol.  53,  pp.  4101–4111,  2010.    Emmanuel  Ampomah-­‐Amoako  and  Walter  Ambrosini,  Developing  a  CFD  methodology  for  the  analysis  of  flow  stability  in  heated  channels  with  fluids  at  supercritical  pressures,  Annals  of  Nuclear  Energy,  Vol.  54,  pp.  251-­‐262,  2013.    Gilles  Desrayaud,  Alberto  Fichera,  and  Guy  Lauriat,  Two-­‐dimensional  numerical  analysis  of  a  rectangular  closed-­‐loop  thermosiphon,  Applied  Thermal  Engineering,  Vol.  50,  pp.  187-­‐196,  2013.    M.  Misale,  P.  Ruffino,  and  M.  Frogheri,  The  influence  of  the  wall  thermal  capacity  and  axial  conduction  over  a  single-­‐phase  natural  circulation  loop:  2-­‐D  numerical  study,  Heat  Mass  Transfer,  Vol.36,  pp.  533-­‐539,  2000.    D.S.  Pilkhwal,  W.  Ambrosini,  N.  Forgione,  P.K.  Vijayan,  D.  Saha,  and  J.C.  Ferreri,  Analysis  of  the  unstable  behavior  of  a  single-­‐phase  natural  circulation  loop  with  one-­‐dimensional  and  computational  fluid-­‐dynamic  models,  Annals  of  Nuclear  Energy,  Vol.  34,  pp.  339-­‐355,  2007.    Ajay  Kumar  Yada,  M.  Ram  Gopal,  and  Souvik  Bhattacharyya,  CFD  analysis  of  a  CO2  based  natural  circulation  loop  with  end  heat  exchangers,  Applied  Thermal  Engineering,  Vol.  36,  pp.  288-­‐295,  2012a.    Ajay  Kumar  Yada,  M.  Ram  Gopal,  and  Souvik  Bhattacharyya,  CO2  based  natural  circulation  loops:  New  correlations  for  friction  and  heat  transfer,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  55,  pp.  4621-­‐4630,  2012b.    K.  Kiran  Kumar  and  M.  Ram  Gopal,  Steady-­‐state  analysis  of  CO2  based  natural  circulation  loops  with  end  heat  exchangers,  Applied  Thermal  Engineering,  Vol.  29,  pp.  1893-­‐1903,  2009.    X.  Zhang,  L.  Chen,  and  H.  Yamaguchi,  Natural  convective  flow  and  heat  transfer  of  supercritical  CO2  in  a  rectangular  circulation  loop,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  53,  pp.  4112-­‐4122,  2010.    L.  Chen,  X.  Zhang,  H.  Yamaguchi,  and  Z.  (Simon)  Liu,  Effect  of  heat  transfer  on  the  instabilities  and  transitions  of  supercritical  CO2  flow  in  a  natural  circulation  loop,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  53,  pp.  4101-­‐4111,  2010.    

Page 31: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Xingtuan,  Yang,  Yanfei  Sun,  Zhiyong  Liu,  and  Shengyao  Jiang,  Natural  circulation  characteristics  of  a  symmetric  loop  under  inclined  conditions,  Science  and  Technology  of  Nuclear  Installations,  Volume  2014,  Aricle  ID  925760,  doi.org/10.1155/2014/925760,  2014.    Thomas  Hohne,  Soren  Kliem,  Ulrich  Rohde,  and  Frank-­‐Peter  Weiss,  Boron  dilution  transients  during  natural  circulation  flow  in  PWR-­‐Experiments  and  CFD  simulations,  Nuclear  Engineering  and  Design,  Vol.  238,  pp.  1987-­‐1995,  2008.    El  Hassan  Ridouane,  Christopher  M.  Danforth,  and  Darren  L.  Hitt,  A  2-­‐D  numerical  study  of  chaotic  flow  in  a  natural  convection  loop,  ,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  53,  pp.  76-­‐84,  2010.    Leyuan  Yu,  Arita  Sur,  and  Dong  Liu,  Flow  boiling  heat  and  two-­‐phase  flow  instability  of  nanofluids  in  a  minichannel,  Transactions  of  the  ASME  Journal  of  Heat  Transfer,  Vol.  137,  pp.  051502-­‐1  thru  051502-­‐11,  2015.    Sami  Penttila  (Editor),  7th  International  symposium  on  supercritical  water-­‐cooled  reactors,  ISSCWR-­‐7,  March  15-­‐18,  2015,  Helsinki,  Finland,  VTT  Technology  Report  VTT  216,  2015.    Milan  K.  S.  Sarkar,  Abhilash  K.  Tilak,  and  Dipankar  N.  Basu,  A  state-­‐of-­‐the-­‐art  review  of  recent  advances  in  supercritical  natural  circulation  loops  for  nuclear  applications,  Annals  of  Nuclear  Energy,  Vol.  73,  pp.  250-­‐264,  2014.    P.  K.  Vijayan,  Manish  Sharma,  and  D.  S.  Pilkhwal,  Steady  state  and  stability  characteristics  of  a  supercritical  pressure  natural  circulation  loop  (SCNCL)  with  CO2,  Bhabha  Atomic  Research  Centre  Report,  BARC/2013/E/003.  2013.    Weifeng  Xu,  Jiejin  Cai,  Shichang  Liu,  and  Qi  Tang,  Analysis  of  the  influences  of  thermal  correlations  on  neutronic-­‐thermohydraulic  coupling  calculation  of  SCWR,  Nuclear  Engineering  and  Design,  Vol.  284,  pp.  50-­‐59,  2015.    B.  T.  Swapnalee,  P.  K.  Vijayan,  M.  Sharma,  and  D.  S.  Pilkhwal,  Steady  state  flow  and  static  instability  of  supercritical  natural  circulation  loops,  Nuclear  Engineering  and  Design,  Vol.  245,  pp.  99-­‐112,  2012.    P.  A.  Lottes,  R.  P.  Anderson,  B.  M.  Hoflund,  J.  F.  Marchaterre,  M.  Petrick,  G.  F.  popper,  and  R.  J.  Weatherhead,  Boiling  water  reactor  Technology  status  of  the  art  report,  Argone  National  Laboratory  Report,  ANL-­‐6561,  1962.    Computer  Simulation  &  Analysis,  Inc.,  RETRAN-­‐3D-­‐A  program  for  theansient  thermal-­‐hydraulic  analysis  of  complex  fluid  flow  systems.  Volume  1:  theory  and  numeric,  Electric  Power  Research  Institute  Report,  NP-­‐7405,  Volume  1,  Revision  3,  1998.    

Page 32: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Information  Systems  Laboratories,  Inc.,  RELAP5/MOD3.3  Code  Manual  Volume  I:  Code  structure,  system  models,  and  solution  methods,  United  States  Nuclear  Regulatory  Commission  Report,  NUREG/CR-­‐5535/Rev  1-­‐  Vol  I,  2001.    NEDE-­‐32176P,  Rev.  2,  “TRACG  Model  Description,”  December  1999.      U.  S.  Rohatgi,  H.  S.  Cheng,  H.  J.  Khan,  A.  N.  Mallen,  and  L.  Y.  Neymotin,  RAMONA-­‐4B  a  computer  code  with  three-­‐dimensional  neutron  kinetics  for  BWR  and  SBWR  system  transient  –  models  and  correlations,  Brookhaven  National  Laboratory  Report  BNL-­‐NUREG-­‐52471  –  Vol.  1,  1998.    Alberto  Escrivá,  José  Luis  Munoz  Cobo,  José  Melara  San  Roman,  Manuel  Albendea  Darriba,  and  José  March-­‐Leuba,  LAPUR  6.0  Manual  Oak  Ridge  National  Laboratory  Report  NUREG/CR-­‐6958,  2008.    S.  J.  Peng,  M.  Z.  Podowski,  R.  T.  Lahey,  Jr.,  and  M.  Becker,  NUFREQ  -­‐NP:  A  Computer  Code  for  the  Stability  Analysis  of  Boiling  Water  Nuclear  Reactors,  Nuclear  Science  and  Engineering,  Vol.  88,  pp.  404-­‐41,  1984.    J.W.  Spore,  M.W.  Giles,  G.L.  Singer  and  R.W.  Shumway,  TRAC-­‐BD1/MOD1:  an  advanced  best  estimate  computer  program  for  boiling  water  reactor  transient  analysis.  Volume  1.  Model  description,  Idaho  National  Engineering  Laboratory  Report,  NUREG/CR-­‐2178,  EGG-­‐2109,  1981.    D.  J.  Richards,  B.  N.  Hanna,  N.  Hobson,  and  K.  H.  Ardron,  "ATHENA  :  A  two-­‐fluid  code  for  CANDO  LOCA  Analysis,'  Third  International  Topical  Meeting  on  Reactor  Thermal  Hydraulics,  Newport,  Rhode  Island,  USA,  Oct  15-­‐18,  1985,  pp  .  7.E-­‐1  thru  7.E-­‐14.  (CATHENA  formerly  named  ATHENA),  1985.    Hwang,  Y.D.,  Yang,  S.H.,  Kim,  S.H.,  Lee,  S.W.,  Kim,  H.K.,  Yoon,  H.Y.,  Lee,  G.H.,  Bae,  K.H.,  Chung,  Y.J.,  2005.  Model  description  of  TASS/SMR  code.  Korea  Atomic  Energy  Research  Institute.  KAERI/TR-­‐3082/2005.    Hwang,  Y.D.,  Lee,  G.H.,  Chung,  Y.J.,  Kim,  H.C.,  Chang,  D.J.,  2006.  Assessment  of  the  TASS/SMR  code  using  basic  test  problems.  Korea  Atomic  Energy  Research  Institute.  KAERI/TR-­‐3156/2006.    Soo  Hyung  Yang,  Young-­‐Jong  Chung,  and  Keung-­‐Koo  Kim,  Experimental  validation  of  the  TASS/SMR  code  for  an  integral  type  pressurized  water  reactor,  Annals  of  Nuclear  Energy,  Vol.  35,  pp.  1903-­‐1911,  2008.    Hyun-­‐Sik  Park,  Byung-­‐Yeon  Min,  Youn-­‐Gyu  Jung,  Yong-­‐Cheol  Shin,  Yung-­‐Joo  Ko,  and  Sung-­‐Jae  Yi,  Design  of  the  VISTA-­‐ITL  test  facility  for  an  integral  type  reactor  of  SMART  and  a  post-­‐test  simulation  of  a  SBLOCA  test,  Science  and  Technology  of  Nuclear  Installations,  Volume  2014,  Article  ID  840109,  14  pages,  2014.    

Page 33: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

S.  Kim,  Byoung-­‐Uhn  Bae,  Yun-­‐Je  Cho,  Yu-­‐Sun  Park,  Kyoung-­‐Ho  Kang,  and  Byong-­‐Jo  Yun,  “An  experimental  study  on  the  validation  of  cooling  capability  for  the  Passive  Auxiliary  Feedwater  System  (PAFS)  condensation  heat  exchanger,”  Nuclear  Engineering  and  Design,  vol.  260,  pp.  54–63,  2013.    Hyun-­‐Sik  Park,  Ki-­‐Yong  Choi,  Seok  Cho,  Sung-­‐Jae  Yi,  Choon-­‐Kyung  Park,  and  Moon-­‐Ki  Chung,  Experimental  study  on  the  natural  circulation  of  a  passive  residual  heat  removal  system  for  an  integral  reactor  following  a  safety  related  event,  Annals  of  Nuclear  Energy,  Vol.  35,  pp.  2249-­‐2258,  2008.    Qiming  Men,  Xuesheng  Wang,  Xiang  Zhou,  and  Xiangyu  Meng,  Heat  Transfer  analysis  of  passive  heat  removal  heat  exchanger  under  natural  convection  condition  on  tank,  Science  and  Technology  of  Nuclear  Installations,  Volume  2014,  Article  ID  279791,  8  Pages,  2014.    Zhuo  Wenbin,  Huang  Yanping,  Xiao  Zejun,  Peng  Chuanxin,  and  Lu  Sansan,  Experimental  research  on  passive  residual  heat  removal  system  of  Chinese  advanced  PWR,  Science  and  Technology  of  Nuclear  Installations,  Volume  2014,  Article  ID  325356,  8  Pages,  2014.      Historical    D.C.  Hamilton,  F.E.  Lynch,  L.D.  Palmer,  The  nature  of  flow  of  ordinary  fluids  in  a  thermal  convection  harp,  ORNL-­‐1624,  March  16,  1954.    K.  Garlid,  N.  R.  Amundson  and  H.  S.  Isbin,  A  Theoretical  Study  of  the  Transient  Operation  and  Stability  of  Two-­‐Phase  Natural  Circulation  Loops,  Argonne  National  Laboratory  Report,  ANL-­‐6381,  1961.    R.  P.  Anderson,  L.  T.  Bryant,  J.  C.  Carter  and  J.  F.  Marchaterre,  Transient  Analysis  of  Two-­‐Phase  Natural-­‐Circulation  Systems,  Argonne  National  Laboratory  Report,  ANL-­‐6653,  1962.    E.  N.  Lorenz,  Deterministic  non-­‐periodic  flow,  J.  Atmos.  Sci.,  Vol.  20,  pp.  130–141,  1963.    H.  F.  Creveling  and  R.  J.  Schoenhals,  Steady  Flow  Characteristics  of  a  Single-­‐Phase  Natural  Circulation  Loop,  Technical  Report  No.  15,  Purdue  Research  Foundation,  COO-­‐1177-­‐15,  1966.      J.  B.  Keller,  Periodic  oscillations  in  a  model  of  thermal  convection,  Journal  of  Fluid  Mechanics,  26,  Part  3,  599–606,  1967,  1966.    P.  Welander,  On  the  oscillatory  instability  of  a  differentially  heated  fluid  loop,  Journal  of  Fluid  Mechanics,  vol.  29,  part.  1,  pp.  17-­‐30,  1967.    

Page 34: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

C.  D.  Alstad,  H.  S.  Isbin,  and  N.  R.  Amundson,  The  transient  behavior  of  single-­‐phase  natural  circulation  water  loop  systems,  Argonne  National  Laboratory  Report,  ANL-­‐5409,  1956.    Eugene  H.  Wissler,  H.  S.  Isbin,  and  N.  R.  Amundson,  The  oscillatory  behavior  of  a  two-­‐phase  natural  circulation  loop,  Presented  at  the  Nuclear  Engineering  and  Science  Congress,  Cleveland,  Ohio,  AIChE  Preprint  59,  1955.  See  also  American  Institute  of  Chemical  Engineers  Journal,  Vol.  2,  pp.  157-­‐162,  1956.    M.  Ledinegg,  Instability  of  flow  during  natural  and  forced  circulation,  Die  Warme,  Vol.  61,  pp.  891-­‐898,  1938,  AEC-­‐tr-­‐1861,  1954.    Archie  Junior  Cornelius,  An  investigation  of  instabilities  encountered  during  heat  transfer  to  a  supercritical  fluid,  Argonne  National  Laboratory  Report,  ANL-­‐7032,  1965.    J.  A.  Boure,  A.  E.  Bergles,  and  L.  S.  Tong,  Review  of  two-­‐phase  flow  instabilities,  National  Heat  Transfer  Conference,  Tulsa,  Oklahoma,  1971.    J.A.  Boure,  A.E  ergles,  L.S.  Tong,  Review  of  two-­‐phase  flow  instability,  Nuclear  Engineering  and  Design,  Vol.  25,  pp.  165-­‐192,  1973.  B    P.  J.  Berenson,  Flow  stability  in  multi-­‐tube  forced-­‐convection  vaporizers,  Air  Force  Aero  Propulsion  Laboratory  Report  APL  TDR  64-­‐117,  1964.          The  1970s  and  1980s  H.F.  Creveling,  J.  F.  De  Paz,  J.Y.  Baladi  and  R.J.  Schoenals,  "Stability  Characteristics  of  a  Single-­‐Phase  Free  Convection  Loop",  Journal  of  Fluid  Mechanics,  Vol.  67,  part  1,  pp.  65-­‐84,  1975.      Y.  Zvirin,  The  effect  of  dissipation  on  free  convection  loops.  International  Journal  of  Heat  and  Mass  Transfer,  22,  1539–1545,  1979.    Y.  Zvirin,  and  R.  Greif,  Transient  behaviour  of  natural  circulation  loops:  two  vertical  branches  with  point  heat  source  and  sink.  International  Journal  of  Heat  and  Mass  Transfer,  22,  499–504,  1979.      R.  Greif,  Y.  Zvirin,  and  A.  Mertol,  "The  Transient  and  Stability  Behavior  of  a  Natural  Convection  Loop",  Journal  of  Heat  Transfer,  Transactions  of  the  ASME,  Vol.  101,  pp.  684-­‐688,  1979.      A.  Mertol,  Heat  Transfer  and  Fluid  Flow  in  Thermosyphons,  PHD  Dissertation,  Univ.  of  California  at  Berkeley,  1980.    

Page 35: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

Y.  Zvirin,  A  review  of  natural  circulation  loops  in  pressurized  water  reactors  and  other  systems,  Nuclear  Engineering  and  Design,  Vol.  67,  pp.  203-­‐225,  1981.    Y.  Zvirin,  P.  R.  Jeuck  III,  C.  W.  Sullivan  and  R.  B.  Duffey,  Experimental  and  Analytical  Investigations  of  a  Natural  Circulation  System  with  Parallel  Loops,  Transactions  ASME,  Journal  of  heat  Transfer,  Vol.  103,  pp.  645-­‐652,  1981.      H.  H.  Bau  and  K.  E.  Torrance,  "Transient  and  Steady  Behaviour  of  an  Open,  Symmetrically  Heated,  Free  convection  Loop",  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  24,  pp.  597-­‐609,  1981.    M.  J.  Gruszczynski  and  R.  Viskanta,  Heat  Transfer  To  Water  From  A  Vertical  Tube  Bundle  Under  Natural-­‐Circulation  Conditions,  Argonne  National  Laboratory  Report,  NUREG/CR-­‐3167,  ANL-­‐83-­‐7,  1983.    J.  E.  Hart,  A  new  analysis  of  the  closed  loop  thermosyphon,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  27,  No.  1,  pp.  125–136,  1984.    J.  C.  Ferreri  and  A.  S.  Doval,  On  the  Effects  of  Discretization  in  the  Computation  of  Natural  Circulation  in  Loops  (In  Spanish),  Seminars  of  the  Argentine  Committee  Heat  &  Mass  Transfer,  24,  pp.  181-­‐212,  1984.    S.J.  Peng,  M.Z.  Podowski,  R.T.  Lahey,  Jr.,  and  M.  Becker,  "NUFREQ-­‐NP:  A  Computer  Code  for  the  Stability  Analysis  of  Boiling  Water  Nuclear  Reactors",  Nuclear  Science  and  Engineering,  Vol.  88,  pp.  404-­‐  411,  1984.    J.  E.  Hart,  A  note  on  the  loop  thermosyphon  with  mixed  boundary  conditions.  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  28,  No.  5,  pp.  939–947,  1985.    M.  Sen,  E.  Ramos  and  C.  Treviño,  "The  Toroidal  Thermosyphon  with  Known  Heat  Flux",  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  28,  No.  1,  pp.  219-­‐233,  1985.    K.  Chen,  "On  the  Oscillatory  Instability  of  Closed  Loop  Thermosyphons",  Transaction  of  the  ASME,    Journal  of  Heat  Transfer,  Vol.  107,  pp.  826-­‐832,  1985.    Rizwan-­‐uddin  and  Dorning,  "Some  Non-­‐Linear  Dynamics  of  a  Heated  Channel",  Nuclear  Engineering  and  Design,  Vol.  93,  pp.  1-­‐14,  1986.    S.J.  Peng,  M.Z.  Podowski  and  R.T.  Lahey,  Jr.,  "BWR  Linear  Stability  Analysis",  Nuclear  Engineering  and  Design,  93,  pp.  25-­‐37,  1986.    March-­‐Leuba,  D.G.  Cacuci  and  B.  Perez,  "Nonlinear  Dynamics  and  Stability  in  Boiling  Water  Reactors:  Part  1  -­‐  Qualitative  Analysis",  Nuclear  Science  and  Engineering,  Vol.  93,  pp.  111-­‐123,  1986.    

Page 36: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

R.  B.  Duffey  and  J.  P.  Sursock,  Natural  Circulation  Phenomena  Relevant  to  Small  Breaks  and  Transients,  Nuclear  Engineering  and  Design,  Vol.  102,  pp.  115-­‐128,  1987.    M.  Misale,  and  L.  Tagliafico,  "The  Transient  and  Stability  Behaviour  of  Single-­‐Phase  Natural  Circulation  Loops",  Heat  and  Technology,  Vol.  5,  No.  1-­‐2,  1987.    J.  C.  Ferreri  and  A.  S.  Doval,  On  the  Effects  of  Discretization  in  the  Time  Evolution  of  Perturbations  in  a  Closed  Loop,  presented  to  the  Technical  Committee/Workshop  on  Computer  Aided  Safety  Analysis,  IAEA,  Poland,  IAEA-­‐TC-­‐560.02,  pp.  72-­‐78,  1988.      K.S.  Chen  and  Y.R.  Chang,  Steady-­‐state  analysis  of  two-­‐phase  natural  circulation  loop,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  31,  No.  5,  pp.  931–940,  1988.      The  1990s  K.  Svanholm  and  J.  Friedly,  “An  Elementary  Introduction  to  the  Problem  of  Density-­‐wave  Oscillations”,  Proc.  International  Workshop  on  BWR  Stability,  Holtsville  NY,  USA,  17-­‐19  October  1990,  CSNI  Report  178,  pp.  317-­‐336,  1990.    R.T.  Lahey,  Jr.,  M.Z.  Podowski,  A.  Clausse  and  N.  DeSanctis,  "A  Linear  Analysis  of  Channel-­‐to-­‐  Channel  Instability  Modes",  Chem.  Eng.  Communications,  Vol.  93,  p.  75,  1990.    P.  K.  Vijayan  and  A.  W.  Date,  Experimental  and  theoretical  investigations  on  the  steady-­‐state  and  transient  behaviour  of  a  thermosyphon  with  throughflow  in  a  figure-­‐of-­‐eight  loop.  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  33  No.  11,  pp.  2479–2489,  1990.    P.  Di  Marco,  A.  Clausse,  R.T.  Lahey  Jr.,  and  D.A.  Drew  A  Nodal  Analysis  of  Instabilities  in  Boiling  Channels,  Int.  J.  Heat  and  Technology,  Vol.  8,  No.  1-­‐2,  1990.    P.K.  Vijayan  and  S.K.  Mehta,  On  the  steady-­‐state  performance  of  natural  circulation  loops,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  34,  No.  9,  2219–2230,  1991.    P.  Di  Marco,  A.  Clausse  and  R.T.  Lahey,  Jr.,  An  Analysis  of  Non-­‐Linear  Instabilities  in  Boiling  Systems,  Dynamics  and  Stability  of  Systems,  Vol.  6,  No.  3,  1991.    G.  M.  Grandi  and  J.  C.  Ferreri,  Limitations  of  the  use  of  a  Heat  Exchanger  Approximation  for  a  Point  Heat  Source",  Internal  Memo.  CNEA,  Gerencia  Seg.  Rad.  y  Nuclear,  Div.  Modelos  Físicos  y  Numéricos,  Argentina,  1991.    F.  D'Auria,  G.  M.  Galassi,  P.  Vigni,  and  A.  Calastri,  Scaling  of  Natural  Circulation  Flows  in  PWR  Systems,  Nuclear  Eng.  and  Design,  Vol.  132,  pp.  187-­‐205,  1991.  

Page 37: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 R.  B.  Duffey  and  E.  D.  Hughes,  Static  Flow  Instability  Onset  in  Tubes,  Channels,  Annuli  and  Rod  Bundles,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  34,  No.10,  pp.  2483-­‐2496,  1991.    P.  K.  Vijayan  and  A.  W.  Date,  The  limits  of  conditional  stability  for  single-­‐phase  natural  circulation  with  through-­‐flow  in  a  figure-­‐of-­‐eight  loop.  Nuclear  Engineering  and  Design,  Vol.  136,  pp.  361–380,  1992.    H.  H.  Bau  and  Y.  Z.  Wang,  Chaos:  a  heat  transfer  perspective,  in  Annual  Review  of  Heat  Transfer,  4,  Edited  by  C.  L.  Tien,  Hemisphere  Publishing  Co.,  1992.    P.  K.  Vijayan  and  A.  W.  Date,  The  limits  of  conditional  stability  for  single-­‐phase  natural  circulation  with  through-­‐flow  in  a  figure-­‐of-­‐eight  loop,  Nuclear  Engineering  and  Design,  Vol.  136,  pp.361-­‐380,  1992.    J.  March-­‐Leuba  and  J.M.  Rey,  "Coupled  Thermo-­‐Hydraulic-­‐Neutronic  Instabilities  in  Boiling  Water  Nuclear  Reactors:  A  Review  of  The  State  of  the  Art",  Nuclear  Engineering  and  Design,  Vol.  145,  pp.  97-­‐111,  1993.    P.  K.  Vijayan  and  H.  Austregesilo,  Scaling  laws  for  single-­‐phase  natural  circulation  loops,  Nuclear  Engineering  and  Design,  Vol.  152,  pp.  331-­‐347,  1994.    Cheng-­‐Chi  Wu  and  K.  Almenas,  RELAP5  computations  of  flow  instabilities  in  a  circular  torodial  thermosyphon,  RELAP5  International  User  Seminar,  Baltimore  (Maryland),  August  29-­‐September  1,  1994.    J.  J.  Velazquez,  "On  the  Dynamics  of  a  Closed  Thermosyphon",  SIAM  J.  Appl.  Math.,  Vol.  54,  pp.  1561-­‐1593,  December  1994.    Raj  V.  Venkat,  Experimental  studies  related  to  thermosyphon  cooling  of  nuclear  reactors––a  review.  In:  Proceedings  of  the  First  ISHMT-­‐ASME  Heat  and  Mass  Transfer  Conference  and  Twelfth  National  Heat  and  Mass  Transfer  Conference,  January  5–7,  1994,  Bhabha  Atomic  Research  Centre,  Bombay,  India,  1994.    U.  S.  Rohatgi  and  R.  B.  Duffey,  Natural  Circulation  and  Stability  Limits  in  Advanced  Plants:  The  Galilean  Law,  Proceedings  of  the  International  Conference  on  New  Trends  in  Nuclear  System  Thermal  Hydraulics,  Pisa,  Italy,  May,  Vol.1,  pp.  177-­‐185,  1994.    A.  Rodriguez-­‐Bernal,  Attractors  and  inertial  manifolds  for  the  dynamics  of  a  closed  thermosyphon,  J.  Math.  Anal.  Appl.  Vol.  193,  pp.  942–965,  1995.    P.  K.  Vijayan.,  H.  Austregesilo  and  V.  Teschendorff,  Simulation  of  the  unstable  behavior  of  single-­‐phase  natural  circulation  with  repetitive  flow  reversals  in  a  

Page 38: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

rectangular  loop  using  the  computer  code  ATHLET.  Nuclear  Engineering  and  Design,  Vol.  155,  pp.  623–641,  1995.    J.  C.  Ferreri,  W.  Ambrosini  and  F.  D'Auria,  On  the  Convergence  of  RELAP5  Calculations  in  a  Single-­‐Phase,  Natural  Circulation  Test  Problem,  Proceedings  of  X-­‐ENFIR,  7-­‐11th  August  1995,  Aguas  de  Lindoia,  S.P.,  Brazil,  pp.  303-­‐307,  1995.    R.  B.  Duffey  and  U.  S.  Rohatgi,  Physical  Interpretation  of  Geysering  Phenomena  and  Periodic  Boiling  Instability  at  Low  Flows,  Fourth  International  Conference  on  Nuclear  Engineering,  ICONE  4,ASME/JSME,  New  Orleans,  1996.    M.  Frogheri,  M.  Misale,  P.  Ruffino,  and  F.  D'Auria,  "Instabilities  in  Single-­‐phase  Natural  Circulation:  Experiments  and  System  Code  Simulation,  Proc.  Of  5th  UK  National  Conference  on  Heat  Transfer,  London,  September  17-­‐18,  1997.    F.  D’Auria  (Editor)  et  al.,  "State-­‐of-­‐the-­‐Art  Report  on  Boiling  Water  Reactor  Stability",  NEA/CSNI/R(96)21,  OCDE/GD(97)13,  OECD/NEA  Paris,  1997.    M.  Frogheri,  M.  Misale,  and  F.  D’Auria,  Experiments  in  single  phase  natural  circulation.  In:  15th  UIT  National  Heat  Transfer  Conference  1997,  Torino,  June  19–20,  1997.    F.  D'Auria,  et  al.,  State-­‐of-­‐the-­‐art  report  on  boiling  water  reactor  stability,  NEA/CSNI/R(96)21,  OCDE/GD(97)13,  January  1997.    W.  Ambrosini  and  J.  C.  Ferreri,  Numerical  analysis  of  single-­‐phase,  natural  circulation  in  a  simple  closed  loop,  Proceedings  of  11th  Meeting  on  Reactor  Physics  and  Thermal  Hydraulics,  Pocos  de  Caldas,  M.G.,  Brazil,  August  18-­‐22th  1997,  pp.  676-­‐681,  1997a.    W.  Ambrosini  and  J.  C.  Ferreri,  Stability  analysis  of  single-­‐phase  thermo-­‐syphon  loops  by  finite-­‐difference  numerical  methods,  Proceedings  of  Post  SMIRT  14  Seminar  18  on  'Passive  Safety  Features  in  Nuclear  Installations',  Pisa,  August  25-­‐27th  1997,  pp.  E2.1-­‐E2.10,  1997b.    M.  Frogheri,  M.  Misale,  and  F.  D'Auria,  "Experiments  in  Single-­‐Phase  Natural  Circulation",  15th  UIT  National  Heat  Transfer  Conference  1997,  Torino,  June  19-­‐20,  1997.    A.K.  Nayak,  P.K.  Vijayan,  D.  Saha,  V.  Venkat  Raj  and  M.  Aritomi,  "Adequacy  of  Power-­‐to-­‐Volume  Scaling  Philosophy  to  Simulate  Natural  Circulation  in  Integral  Test  Facilities",  Nuclear  Science  and  Engineering,  Vol.  35,  No.  10,  pp.  712-­‐722,  1998.    A.  Susanek,  Analysis  of  flow  Instabilities  in  a  Boiling  Channel  by  a  Finite-­‐Difference  Numerical  Method,  Università  degli  Studi  di  Pisa,  DCMN  NT  355(98)  July  1998,  'Semesterarbeit'  Thesis,  Tutors:  P.  Vigni,  W.  Ambrosini,  P.  Di  Marco.,  1998.  

Page 39: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 Challberg,  R.C.,  Cheung,  Y.K.,  Khorana,  S.S.,  Upton,  H.A.,  1998.  ESBWR  evolution  of  passive  features.  In:  6th  International  Conference  on  Nuclear  Engineering  (ICONE-­‐6),  San  Diego,  USA,  May  10–15,  1998.    F.  D'Auria  and  G.  M.  Galassi,  Code  Validation  and  Uncertainties  in  System  Thermalhydraulics,  Progress  in  Nuclear  Energy,  33,  No.  1/2,  pp.  175-­‐216,  1998.    W.  Ambrosini  and  J.C.  Ferreri,  "The  Effect  of  Truncation  Error  on  Numerical  Prediction  of  Stability  Boundaries  in  a  Natural  Circulation  Single-­‐Phase  Loop",  Nuclear  Engineering  and  Design,  Vol.  183,  pp.  53-­‐76,  1998.    J.  C.  Ferreri  and  W.  Ambrosini,  Verification  of  RELAP5/MOD3  with  theoretical  and  numerical  stability  results  on  single-­‐phase,  natural  circulation  in  a  simple  loop,  United  States  Nuclear  Regulatory  Commission,  NUREG  IA/151,  1999.    M.  Misale,  M.  Frogheri,  and  F.  D’Auria,  Experiments  in  natural  circulation:  influence  of  scale  factor  on  the  stability  behavior.  In:  Eurotherm  Seminar  No.  63  on  Single  and  Two-­‐Phase  Natural  Circulation,  September  6–8,  1999,  Genoa,  Italy,  1999.    J.C.  Ferreri,  Single-­‐Phase  Natural  Circulation  in  Simple  Circuits  -­‐  Reflections  on  its  Numerical  Simulation,  Invited  Lecture  at  the  Eurotherm  Seminar  No.  63  on  Single  and  Two-­‐  Phase  Natural  Circulation,  September  6-­‐8  1999,  Genoa,  Italy.    J.C.  Ferreri  and  W.  Ambrosini,  Verification  of  RELAP5/MOD3.1  with  Theoretical  Stability  Results,  NUREG-­‐IA-­‐0151,  February  1999.    P.K.  Vijayan,  "Experimental  Observations  on  the  General  Trends  of  the  Steady  State  and  Stability  Behaviour  of  Single-­‐Phase  Natural  Circulation  Loops",  Invited  Lecture  at  the  Eurotherm  Seminar  No.  63  on  Single  and  Two-­‐Phase  Natural  Circulation,  September  6-­‐8  1999,  Genoa,  Italy,  1999.    M.  Misale,  M.  Frogheri  and  F.  D'Auria,  "Experiments  in  Natural  Circulation:  Influence  of  Scale  Factor  on  the  Stability  Behavior",  Eurotherm  Seminar  No.  63  on  Single  and  Two-­‐Phase  Natural  Circulation,  September  6-­‐8  1999,  Genoa,  Italy,  1999.    W.  Ambrosini,  P.  Di  Marco  and  A.  Susanek,  "Prediction  of  Boiling  Channel  Stability  by  a  Finite-­‐Difference  Numerical  Method",  2nd  International  Symposium  on  Two-­‐Phase  Flow  Modelling  and  Experimentation,  Pisa,  Italy,  May  23-­‐26,  1999.    J.  M.  Doster  and  P.  K.  Kendall,  "Stability  of  One-­‐Dimensional  Natural-­‐Circulation  Flows",  Nuclear  Science  and  Engineering,  Vol.  132,  pp.  105-­‐117,  1999.    J.C.  Ferreri  and  W.  Ambrosini,  "Sensitivity  to  Parameters  in  Single-­‐Phase  Natural  Circulation  Via  Automatic  Differentiation  of  FORTRAN  Codes",  Eurotherm  Seminar  

Page 40: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

No.  63  on  Single  and  Two-­‐Phase  Natural  Circulation,  September  6-­‐8  1999,  Genoa,  Italy.    The  2000s  W.  Ambrosini  and  J.C.  Ferreri,  "Stability  Analysis  of  Single-­‐Phase  Thermosyphon  Loops  by  Finite  Difference  Numerical  Methods",  Nuclear  Engineering  and  Design,  Vol.  201,  pp.  11-­‐23,  2000.    W.  Ambrosini,  P.  Di  Marco  and  J.C.  Ferreri,  "Linear  and  Non-­‐Linear  Analysis  of  Density  Wave  Instability  Phenomena",  Heat  and  Technology,  Vol.  18,  No.  1,  2000.    W.  Ambrosini  and  J.  C.  Ferreri,  Stability  analysis  of  single-­‐phase  thermosyphon  loops  by  finite-­‐difference  numerical  methods.  Nuclear  Engineering  and  Design,  Vol.  201,  pp.  11–23,  2000.    Romney  B.  Duffey,  Natural  Convection  and  Natural  Circulation  Flow  and  Limits  in  Advanced  Reactor  Concepts,  Paper  for  the  IAEA  Technical  Committee  Meeting  Vienna,  July  18-­‐21,  2000.    W.  Ambrosini,  F.  D’Auria,  A.  Pennati  and  J.C.  Ferreri,  "Numerical  Effects  in  the  Prediction  of  Single-­‐Phase  Natural  Circulation  Stability",  XIX  National  Heat  Transfer  Conference  of  UIT,  Modena  (I),  June  25-­‐27,  2001.    W.  Ambrosini,  On  some  physical  and  numerical  aspects  in  computational  modelling  of  one-­‐dimensional  flow  dynamics.  In:  7th  International  Seminar  on  Recent  Advances  in  Fluid  Mechanics,  Physics  of  Fluids  and  Associated  Complex  Systems  (Fluidos  2001),  Buenos  Aires,  Argentina,  October  17–19,  2001.    Petruzzi,  F.  D'Auria  and  M.  Misale  "Sensitivity  Analysis  on  the  Stability  of  the  Natural  Circulation  in  a  Thermosyphon  Loop",  XIX  National  Heat  Transfer  Conference  of  UIT,  Modena  (I),  June  25-­‐27,  2001.    M.  Misale  and  M.  Frogheri,  Stabilization  of  a  Single-­‐Phase  Natural  Circulation  Loop  by  Pressure  Drops,  Experimental  Thermal  and  Fluid  Science,  Vol.  25,  pp.  277-­‐282,  2001.    P.K.  Vijayan,  Experimental  observations  on  the  general  trends  of  the  steady  state  and  stability  behavior  of  single  phase  natural  circulation  loops,  Nuclear  Engineering  and  Design,  Vol.  215,  Nos.  1–2,    pp.  139–152,  2002.    P.K.  Vijayan,  Experimental  observations  on  the  general  trends  of  the  steady  state  and  stability  behaviour  of  single-­‐phase  natural  circulation  loops,  Nuclear  Engineering  and    Design,  Vol.  215,  pp.  139-­‐152,  2002.    

Page 41: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

G.R.  Dimmick,  V.  Chatoorgoon,  H.F.  Khartabil,  and  R.B.  Duffey,  Natural-­‐convection  studies  for  advanced  CANDU  reactor  concepts,  Nuclear  Engineering  and  Design,  Vol.  215,  pp.  27–38,  2002.    Y.  Y.  Jiang  and  M.  Shoji,  Flow  Stability  in  a  Natural  Circulation  Loop:  Influences  of  Wall  Thermal  Conductivity,”  Nuclear  Engineering  and  Design,  Vol.  222,  pp.  16–28,  2003.    S.  K.  Mousavian,  M.  Misale,  F.  D’Auria,  and  M.  A.  Salehi,  2004,  Transient  and  Stability  Analysis  in  Single-­‐Phase  Natural  Circulation,  Annals  of  Nuclear  Energy,  Vol.  31,  pp.  1177–1198,  2004.    W.  Ambrosini,  N.  Forgione,  J.C.  Ferreri,  M.  Bucci,  The  effect  of  wall  friction  in  single-­‐phase  natural  circulation  stability  at  the  transition  between  laminar  and  turbulent  flow,  Annals  of  Nuclear  Energy,  Vol.  31,  pp.1833-­‐1865,  2004.    S.K.  Mousavian,  M.  Misale,  F.  D  Auria,  M.A.  Salehi,  Transient  and  stability  analysis  in  single-­‐phase  natural  circulation,  Annals  of  Nuclear  Energy,  Vol.  31,  No.  10,  pp.  1177-­‐1198,  2004.    W.  Ambrosini,  N.  Forgione,  J.  Ferreri,  and  M.  Bucci,  The  effect  of  wall  friction  in  single-­‐phase  natural  circulation  stability  at  the  transition  between  laminar  and  turbulent  flow,  Annals  of  Nuclear  Energy,  Vol.  31,  No.  16,  pp.  1833–1865,  2004.    IAEA,  Natural  Circulation  in  Water  Cooled  Nuclear  power  Plants,  IAEA  Report  IAEA-­‐TECDOC-­‐1474,  2005.    N.M.  Rao,  B.  Maiti,  P.K.  Das,  Pressure  variation  in  a  natural  circulation  loop  with  end  heat  exchangers,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  48  ,  pp.  1403–1412,  2005.    N.  M.  Rao,  B.  Maiti,  and  P.  K.  Das,  Stability  Behaviour  of  a  Natural  Circulation  Loop  With  End  Heat  Exchangers,  ASME  Journal  of  Heat  Transfer,  Vol.  127,  pp.  749–759,  2005.    M.  Furuya,  F.  Inada,  and  T.H.J.J.  Hagen,  Flashing-­‐induced  density  wave  oscillations  in  a  natural  circulation  BWR-­‐mechanism  of  instability  and  stability  map,  Nuclear  Engineering  and  Design,  Vol.  235,  pp.  1557–1569,  2005.    Y.  Malo,  C.  Bassi,  T.  Cadiou,  M.  Blanc,  A.  Messie,  A.  Tosselo,  and  P.  Dumaz,  Gas-­‐cooled  fast  reactors-­‐DHR  systems,  preliminary  design  and  thermal-­‐hydraulics  studies,  Nuclear  Engineering  and  Technology  Vol.  38,  No.  2,  pp.  129–138,  2006.    M.R.  Gartia,  P.K.  Vijayan,  and  D.S.  Pilkhwal,  A  generalized  flow  correlation  for  two  phase  natural  circulation  loops,  Nuclear  Engineering  and  Design,  Vol.  236,  pp.  1800–1809,  2006.  

Page 42: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 N.M.  Rao,  Ch.  C.  Sekhar,  B.  Maiti,  P.K.  Das,  Steady-­‐state  performance  of  a  two-­‐phase  natural  circulation  loop,  International  Communications  in  Heat  Mass  Transfer,  Vol.  33,  pp.  1042–1052,  2006.    Y.J.  Chung,  H.C.  Kim,  B.D.  Chung,  M.K.  Chung,  and  S.Q.  Zee,  Two-­‐phase  natural  circulation  and  the  heat  transfer  in  the  passive  residual  heat  removal  system  of  an  integral  type  reactor,  Annals  of  Nuclear  Energy,  pp.  262–270,  2006.    P.K.  Vijayan,  M.  Sharma,  D.  Saha,  Steady  state  and  stability  characteristics  of  single  phase  natural  circulation  in  a  rectangular  loop  with  different  heater  and  cooler  orientations,  Experimental  Thermal  and  Fluid  Science,  Vol.  31,  pp.  925–945,  2007.    C.P.  Marcel,  M.  Rohde,  T.H.J.J.V.  Hagen,  Fluid-­‐to-­‐fluid  modeling  of  natural  circulation  boiling  loops  for  stability  analysis,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  51,  pp.  566–575,  2008.    P.K.  Vijayan,  A.K.  Nayak,  D.  Saha,  M.R.  Gartia,  Effect  of  loop  diameter  on  the  steady  state  and  stability  behavior  of  single  phase  and  two  phase  natural  circulation  loops,  Science  and  Technology  of  Nuclear  Installations,  Vol.  2008,  article  ID:  672704,  17  pages,  doi:10.1155/2008/672704.    ]  P.K.  Vijayan,  M.  Sharma,  D.  Saha,  Steady  state  and  stability  characteristics  of  single  phase  natural  circulation  in  a  rectangular  loop  with  different  heater  and  cooler  orientation,  Exp.  Thermal  Fluid  Sci.,  Vol.  31,  pp.  925-­‐945,  2007.    M.  Misale,  P.  Garibaldi,  J.C.  Passos,  and  G.G.  de  Bitencourt,  Experimental  Thermal  and  Fluid  Science,  Vol.  31,  No.  8,  pp.  1111-­‐1120,  2007.    A.K.  Nayaka,  P.  Dubey,  D.N.  Chavan,  and  P.K.  Vijayan,  Study  on  the  stability  behaviour  of  two-­‐phase  natural  circulation  systems  using  a  four-­‐equation  drift  flux  model,  Nuclear  Engineering  and  Design,  Vol.  237,  pp.  386–398,  2007.    A.  K.  Nayak  and  P.  K.  Vijayan,  Flow  Instabilities  in  Boiling  Two-­‐Phase  Natural  Circulation  Systems:  A  Review,  Science  and  Technology  of  Nuclear  Installations,  Volume  2008,  15  pages,  Article  ID  573192,  doi:10.1155/2008/573192,  2008.    N.  M.  Rao  and  P.  K.  Das,  Steady  State  Performance  of  a  Single  Phase  Natural  Circulation  Loop  With  End  Heat  Exchangers,  ASME  Journal  of  Heat  Transfer,  Vol.  130,  2008.    Jin  Ho  Song,  Performance  and  scaling  analysis  for  a  two-­‐phase  natural  circulation  loop,  International  Communications  in  Heat  and  Mass  Transfer,  Vol.  35,  pp.  1084–1090,  2008.    

Page 43: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

K.  Kiran  Kumar,  M.  Ram  Gopal,  Steady-­‐state  analysis  of  CO2  based  natural  circulation  loops  with  end  heat  exchangers,  Applied  Thermal  Engineering,  Vol.  29,  pp.  1893-­‐1903,  2009.    Xin-­‐Rong  Zhang,  Lin  Chen,  and  Hiroshi  Yamaguchi,  Natural  convective  flow  and  heat  transfer  of  supercritical  CO2  in  a  rectangular  circulation  loop,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  53,  pp.  4112-­‐4122,  2010.    B.  T.  Swapnalee  and  P.  K.  Vijayan,  A  Generalized  Flow  Equation  for  Single  Phase  Natural  Circulation  Loops  Obeying  Multiple  Friction  Laws,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  xxx,  pp.  yyy-­‐zzz,  2011.    J.  C.  Ferreri,  Engineering  Judgment  and  Natural  Circulation  Calculations,  Science  and  Technology  of  Nuclear  Installations,  Volume  2011,  11  pages,  Article  ID  694583,  doi:10.1155/2011/694583,  2011.    Jin  Ho  Song,  Performance  of  a  Two-­‐Phase  Natural  Circulation  in  a  Rectangular  Loop,  Nuclear  Engineering  and  Design,  Vol.  245,  pp.  125-­‐130,  2012.    G.  Angeloa,  D.A.  Andradea,  E.  Angeloa,  W.M.  Torresa,  G.  Sabundjiana,  L.A.  Macedoa  and  A.F.  Silva,  A  Numerical  And  Three-­‐Dimensional  Analysis  Of  Steady  State  Rectangular  Natural  Circulation  Loop,  Nuclear  Engineering  and  Design,  Vol.  244,  pp.  61-­‐72,  2012.    IAEA,  Natural  Circulation  Phenomena  and  Modelling  for  Advanced  Water  Cooled  Reactors,  IAEA  Report  IAEA-­‐TECODC-­‐16,  2012.    Amit  Mangal,  Vikas  Jain,  and  A.K.  Nayak,  Capability  of  the  RELAP5  code  to  simulate  natural  circulation  behavior  in  test  facilities,  Progress  in  Nuclear  Energy,  Vol.  61,  p.  1-­‐16,  2012.    M.  Misale,  F.  Devia,  and  P.  Garibaldi,  Experiments  with  Al2O3  nanofluid  in  a  single-­‐phase  natural  circulation  mini-­‐loop:  Preliminary  results,  Applied  Thermal  Engineering,  Vol.  40,  pp.  64-­‐70,  2012.    Ajay  Kumar  Yadav,  M.  Ram  Gopal,  and  Souvik  Bhattacharyya,  CFD  analysis  of  a  CO2  based  natural  circulation  loop  with  end  heat  exchangers,  Applied  Thermal  Engineering,  Vol.  36,  pp.  288-­‐295,  2012.    Ajay  Kumar  Yadav,  M.  Ram  Gopal,  and  Souvik  Bhattacharyya,  CO2  based  natural  circulation  loops:  New  correlations  for  friction  and  heat  transfer,  International  Journal  of  Heat  and  Mass  Transfer,  Vol.  55,  pp.  4621–4630,  2012.    W.  Ambrosini,  On  the  analogies  in  the  dynamic  behavior  of  heated  channels  with  boiling  and  supercritical  fluids.  Nuclear  Engineering  and  Design,  Vol.  237,  pp.  1164–1174,  2007.  

Page 44: Coupled Natural Circulation Loops with Source and Sink ... · distribution!first!beevaluatedsothat!theintegral!ontheright Fhandsidecanbe evaluated.Notethattheintegralonlyhasnon Fzero!values!in!the!vertical!segments!of!

 W.  Ambrosini,  Assessment  of  flow  stability  boundaries  in  a  heated  channel  with  different  fluids  at  supercritical  pressure,  Annals  of  Nuclear  Energy,  Vol.  38,  pp.  615–627,  2011.    W.  Ambrosini  and  J.  C.  Ferreri,  Stability  analysis  of  single  phase  thermosyphon  loops  by  finite  difference  numerical  methods.  Nuclear  Engineering  and  Design,  Vol.  201,  pp.  11–23,  2000.    W.  Ambrosini  and  M.  Sharabi,  Dimensionless  parameters  in  stability  analysis  of  heated  channels  with  fluids  at  supercritical  pressures.  Nuclear  Engineering  and  Design,  Vol.  238,  pp.  1917–1929,  2008.    W.  Ambrosini,  W.,  S.  Bilbao  y  Léon,  and  K.  Yamada,  Results  of  the  IAEA  benchmark  exercise  on  flow  stability  in  heated  channels  with  supercritical  fluids.  In:  Proceedings  of  the  5th  International  Symposium  on  SuperCritical  Water  Reactors  (ISSCWR5),  March  13–16,  Vancouver,  Canada,  2011.