coupling the system analysis module to sas4a/sassys-1 · coupling the system analysis module with...

38
ANL/NE-16/22 (ANL-ART-74) Coupling the System Analysis Module with SAS4A/SASSYS-1 Nuclear Engineering Division

Upload: others

Post on 30-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

ANL/NE-16/22 (ANL-ART-74)

Coupling the System Analysis Module with SAS4A/SASSYS-1

Nuclear Engineering Division

About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via DOE’s SciTech Connect (http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS):

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandra, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected]

Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected]

Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/NE-16/22 (ANL-ART-74)

Coupling the System Analysis Module with SAS4A/SASSYS-1

prepared by T. H. Fanning and R. Hu Nuclear Engineering Division, Argonne National Laboratory September 30, 2016

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

i ANL/NE-16/22

ABSTRACT

SAS4A/SASSYS-1isasimulationtoolusedtoperformdeterministicanalysisofanticipatedeventsaswellasdesignbasisandbeyonddesignbasisaccidentsforadvancedreactors,withanemphasisonsodiumfastreactors.SAS4A/SASSYS-1hasbeenunderdevelopmentandinactiveusefornearlyforty-fiveyearsandiscurrentlymaintainedbytheU.S.DepartmentofEnergyundertheOfficeofAdvancedReactorTechnology.AlthoughSAS4A/SASSYS-1containsaverycapableprimaryandintermediatesystemmodelingcomponent,PRIMAR-4,italsohassomeshortcomings:outdateddatamanagementandcodestructuremakesextensionofthePRIMAR-4modulesomewhatdifficult.TheuserinputformatforPRIMAR-4alsolimitsthenumberofvolumesandsegmentsthatcanbeusedtodescribeagivensystem.

TheSystemAnalysisModule(SAM)isafairlynewcodedevelopmenteffortbeingcarriedoutundertheU.S.DOENuclearEnergyAdvancedModelingandSimulation(NEAMS)program.SAMisbeingdevelopedwithadvancedphysicalmodels,numericalmethods,andsoftwareengineeringpractices,howeveritiscurrentlysomewhatlimitedinthesystemcomponentsandphenomenathatcanberepresented.Forexample,componentmodelsforelectromagneticpumpsandmulti-layerstratifiedvolumeshavenotyetbeendeveloped.Noristheresupportforabalanceofplantmodel.Similarly,system-levelphenomenasuchascontrol-roddrivelineexpansionandvesselelongationarenotrepresented.

Thisreportdocumentsfiscalyear2016workthatwascarriedouttocouplethetransientsafetyanalysiscapabilitiesofSAS4A/SASSYS-1withthesystemmodelingcapabilitiesofSAMunderthejointsupportoftheARTandNEAMSprograms.ThecouplingeffortwassuccessfulandisdemonstratedbyevaluatinganunprotectedlossofflowtransientfortheAdvancedBurnerTestReactor(ABTR)design.Therearedifferencesbetweenthestand-aloneSAS4A/SASSYS-1simulationsandthecoupledSAS/SAMsimulations,butthesearemainlyattributedtothelimitedmaturityoftheSAMdevelopmenteffort.

ThesevereaccidentmodelingcapabilitiesinSAS4A/SASSYS-1(sodiumboiling,fuelmeltingandrelocation)willcontinuetoplayavitalroleforalongtime.Therefore,theSAS4A/SASSYS-1modernizationeffortshouldremainahighprioritytaskundertheARTprogramtoensurecontinuedparticipationindomesticandinternationalSFRsafetycollaborationsanddesignoptimizations.Ontheotherhand,SAMprovidesanadvancedsystemanalysistool,withimprovednumericalsolutionschemes,datamanagement,codeflexibility,andaccuracy.SAMisstillinearlystagesofdevelopmentandwillrequirecontinuedsupportfromNEAMStofulfillitspotentialandtomatureintoaproductiontoolforadvancedreactorsafetyanalysis.TheefforttocoupleSAS4A/SASSYS-1andSAMisthefirststepontheintegrationofthesemodelingcapabilities.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 ii

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

iii ANL/NE-16/22

TABLEOFCONTENTS

Abstract....................................................................................................................................................................iTableofContents................................................................................................................................................iiiListofFigures.......................................................................................................................................................ivListofTables........................................................................................................................................................iv1 Introduction...................................................................................................................................................52 SAS/SAMCoupling......................................................................................................................................6

2.1 Strategy.................................................................................................................................................62.2 DataExchangeRequirements.....................................................................................................8

3 CodeModifications......................................................................................................................................93.1 SASCodeModifications..................................................................................................................93.2 SAMCodeModifications.............................................................................................................13

4 CouplingResults........................................................................................................................................174.1 ABTRReferenceModel...............................................................................................................174.2 SAMSystemModel........................................................................................................................224.3 VerificationofCouplingInterface...........................................................................................234.4 UnprotectedLossofFlowTransientSequence................................................................254.5 TransientSimulationResultsofUnprotectedLossofFlow........................................25

5 PathForward..............................................................................................................................................326 References....................................................................................................................................................33

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 iv

LISTOFFIGURES

Figure1:TightCouplingSchemeforaGenericTimeStep................................................................7Figure 2:SAS4A/SASSYS Time Step Hierarchy........................................................................................7Figure3:SequentialTwo-WayCouplingSchemeduringaTransient..........................................8Figure4:RelationshipbetweenPRIMAR-4andtheSAS4A/SASSYS-1

Thermal-HydraulicsSolvers....................................................................................................10Figure5:SummaryofSAS4A/SASSYS-1InputRequiredforSAS/SAM

Coupling...........................................................................................................................................12Figure6:ExampleofSAStoSAM.datfileforSAS/SAMCoupling..................................................15Figure7:ExampleofSAMtoSAS.datfileforSAS/SAMCoupling..................................................16Figure8:ExecutionProcessFlowChartofCoupledSASSteadyExecutioner.........................16Figure9:ExecutionProcessFlowChartofCoupledSASTransientExecutioner....................17Figure10:ReferenceABTRCoreConfiguration.................................................................................18Figure11:ChannelAssignmentsfortheSAS4A/SASSYS-1CoreModel..................................19Figure12:ElevationviewoftheABTRPrimarySystem.................................................................20Figure13:PRIMAR-4RepresentationofthePrimary,Intermediate,and

DecayHeatCoolantSystems...................................................................................................21Figure14:SchematicsoftheABTRmodelforcoupledSAS/SAMsimulations.....................23Figure15:CoupledSAS/SAMsimulationresultsofABTRnulltransient................................24Figure16:NormalizedpowerandcoreflowduringtheABTRULOFtransient...................27Figure17:Pooltemperaturesduringthetransient..........................................................................27Figure18:TransienttemperaturesforChannel5.............................................................................28Figure19:Corechannelflowvelocitiesduringthetransient.......................................................28Figure20:TotalcoreflowdifferencesbetweenSAMsurrogatemodeland

SAS4A/SASSYS-1corechannelsimulationresults........................................................29Figure21:Transientreactivityfeedback...............................................................................................29Figure22:Normalizedpowerandcoreflow,comparisonbetweenstand-

aloneSASandcoupledSAS/SAMsimulationresults....................................................31Figure23:TransienttemperaturesforChannel5,stand-aloneSASsimulation..................31Figure24:Transientreactivityfeedback,stand-aloneSASsimulation....................................32

LISTOFTABLES

Table1:DataexchangeflowforSAS/SAMcouplingatthecouplinginterface........................9

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

5 ANL/NE-16/22

1 IntroductionSAS4A/SASSYS-1isasimulationtoolusedtoperformdeterministicanalysisof

anticipatedeventsaswellasdesignbasisandbeyonddesignbasisaccidentsforadvancedliquid-metal-coolednuclearreactors.[1]WithitsoriginasSAS1Ainthelate1960s,theSASseriesofcodeshasbeenundercontinuoususeanddevelopmentforoverforty-fiveyearsandrepresentsacriticalinvestmentinsafetyanalysiscapabilitiesfortheU.S.DepartmentofEnergy.Incontrast,theUSDOENuclearEnergyAdvancedModelingandSimulationProgram(NEAMS)hasmaderecentinvestmentstoexplorenewsystemsmodelingcapabilitiesinasoftwaretoolreferredtoastheSystemAnalysisModule(SAM).[2]Thisreportdocumentsfiscalyear2016activitiesthatwerecarriedouttocouplethetransientsafetyanalysiscapabilitiesofSAS4A/SASSYS-1withthesystemmodelingcapabilitiesofSAMunderthejointsupportoftheAdvancedReactorTechnology(ART)andNEAMSprograms.

SAS4A/SASSYS-1containsacapableprimaryandintermediatesystemmodelingcomponent,PRIMAR-4.PRIMAR-4canrepresentcomplexarrangementsofcoolantsystemcomponentsincludingpumps,piping,valves,intermediateheatexchangers,airdumpheatexchangers,steamgenerators,etc.SAS4A/SASSYS-1alsocontainsacontrolsystemmodulethatcandynamicallyinteractwithPRIMAR-4basedonuser-definedlogicandcontrols.Controlsignalscanaffectcertainplantstateparameterssuchasscramreactivity,pumpspeed,andvalveactuation.

Inadditiontoitscapabilities,PRIMAR-4hassomeshortcomings.Themostsignificantshortcomingsareintheformofdatamanagement,codestructure,anduserinputlimitations.OutdateddatamanagementandcodestructuremakesextensionofthePRIMAR-4moduledifficult.Addingnewcomponentmodelsrequiresknowledgeofunrelatedcodeinordertoavoidintroducingbugs.Lackofmodularitymeansthatunittestingtovalidateindividualmodelsisnotpossible.TheuserinputformatforPRIMAR-4limitsthenumberofvolumesandsegmentsthatcanbeusedtodescribeagivensystem.CouplingwithSAMwillprovideanalternativetoPRIMAR-4forprimary,secondary,anddecayheatcoolantsystemmodelingcapabilitiesthataremoreflexibleandextensible.

SAMdevelopmentaimsfortheadvancesinphysicalmodeling,numericalmethods,andsoftwareengineeringtoenhanceitsuserexperienceandusability.Tofacilitatethecodedevelopment,SAMutilizesanobject-orientedapplicationframework(MOOSE),anditsunderlyingmeshingandfinite-elementlibrary(libMesh)andlinearandnon-linearsolvers(PETSc),toleveragemodernsoftwareenvironmentsandnumericalmethods.Asanewcodedevelopment,theinitialefforthasbeenfocusedonthemodelingandsimulationcapabilitiesofheattransferandsingle-phasefluiddynamicsresponsesintheadvancedreactorsystems.

DespitetheadvancedsoftwarearchitectureofSAM,itiscurrentlysomewhatlimitedinthesystemcomponentsandphenomenathatcanberepresented.Forexample,componentmodelsforelectromagneticpumpsandmulti-layerstratifiedvolumeshavenotyetbeendeveloped.Noristheresupportforabalanceofplantmodel.Similarly,system-levelphenomenasuchascontrol-roddrivelineexpansionandvesselelongationarenot

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 6

represented.Nevertheless,themodernsoftwaredesignofSAMshouldfacilitaterapiddevelopmentofmodels,andcontinuedinvestmentbyNEAMSwouldeliminatethesegaps.

UntilSAMmaturestoprovidethesamerangeofcomponentsandphenomenathatPRIMAR-4provides,PRIMAR-4willbethepreferredmoduleforprimaryandintermediatecoolantsystemsmodeling.Bycompletingthecoupling,however,apathforwardwillbeavailabletosupportenhancedmodelingcapabilitiesthatarenotcurrentlypossible.

2 SAS/SAMCoupling

2.1 StrategyTocombinetheadvantagesofSAS4A/SASSYS-1andSAM,aninitialcoupling

strategyhasbeendefinedthatretainsthefullcomplementofcore(inthereactorsense)modelingcapabilitiesofSAS4A/SASSYS-1—coolantchannelandsub-channelthermalhydraulics,sodiumboiling,fuelrestructuringandrelocation,in-pinfuelmelting,claddingfailure,andfuelandcladmeltingandrelocation—andaddstheoptiontouseSAMfortheprimary,intermediate,anddecayheatcoolantsystems.Inthisapproach,themodelingcapabilitiesofPRIMAR-4willberetainedtomaintaincontinuityofsimulationcapabilities.

Inallmulti-codecouplingapplications,carefulcontrolofdataexchangeandtimesynchronizationareessentialforanumericallystableandphysicallyvalidsimulation.Whenusingatightcouplingscheme,aninterfaceconsistency,orconvergence,checkisneededtomakesuretheresultsareconsistentatthecouplinginterfacebetweenthetwocodes,asshowninFigure1.Ifthisschemewereadopted,eachtimestepisrepeatedinbothSAMandSAS4A/SASSYS-1untilthedesiredconvergenceisachieved.Tightcouplinginthismannerusuallydoesnotrequiresignificantmodificationstotheunderlyingsolutionschemesofthetwocodes.

However,thisapproachoftenrequiresthemodificationofthetimesteppingcontrolanddatamanagementinthetwocodes,whichisnotalwaysatrivialtask.Forexample,Figure 2showsthatSAS4A/SASSYS-1usesamulti-leveltime-stephierarchytoensurestabilityofthemanydifferentaccidentmodelsavailable.PRIMAR-4itselfusesatheta-weighted,semi-implicitsolutionschemewithtime-stepcut-backcontrolstoavoidexpensiveiterations.Therefore,atightcouplingschemethatrequiresiterationisnotappropriate.

Instead,asequentialtwo-waycouplingschemeisusedforcouplingSAMwithSAS4A/SASSYS-1.ThisapproachisshowninFigure3.Inthisscheme,eachofthetwocodesdrivesitsownportionofthesimulationandcouplinginterfacedataisexchangedatwell-definedpoints.Forsteady-stateinitialization,SAS4A/SASSYS-1willdeterminecoreinletandoutletboundaryconditionsbasedonmodelinput.Thoseconditionswillprovidetheinitialsteady-stateconditionsforSAM.Duringthetransient,theroleswillbereversed.SAMwilldeterminecoolantsystemdynamicchanges,suchaslossoffloworlossofheatsink,andwilldefinetheinterfaceconditionsforthecorechannelmodelsinSAS4A/SASSYS-1.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

7 ANL/NE-16/22

Figure1:TightCouplingSchemeforaGenericTimeStep

Figure 2:SAS4A/SASSYS Time Step Hierarchy

SAM$

SAS$

Interface$data$from$SAS$to$SAM$at$tn01$

Interface$data$from$SAS$to$SAM$for$tn+1$

Internal$itera5ons$

Time$Step$N$

Interface$Convergence$

Yes$

No$

Data$from$SAM$to$SAS$at$tn$

Interface$data$from$SAS$at$tn$

DELT%

DT%

DTPRI%

DTIME%

Transient%Time%

Start%of%Main%Time%Step%

TIMCL2%TIMHT2% TIMPR2% TIME2%

Main%Time%Step%

Primary%Loop%Time%Step%Ends%on%Main%Time%Step%

Heat%Transfer%Time%Step%Ends%on%Main%Time%Step%

Coolant%Time%Step%Ends%on%Primary%Loop%and%Main%Time%Step%

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 8

Figure3:SequentialTwo-WayCouplingSchemeduringaTransient

ThisapproachissimilartotheprovenapproachusedbetweentheSAS4A/SASSYS-1corechannelmodelsandPRIMAR-4.InPRIMAR-4,asurrogatecorechannelmodelisusedtoestimatetherateofchangeinthemassflowrateforeachchannel.Additionally,thedifferencesbetweentheestimatedchannelflowsandcomputedchannelflowsareconsideredintheadjustmentsoftheplenacouplingparameters.Inthisway,thenumericalstabilityofthecoupledcodeisassured,whilethemodificationstoSAS4A/SASSYS-1areminimized.

2.2 DataExchangeRequirements

InSAS4A/SASSYS-1,themulti-channelcoremodeliscoupledwithPRIMAR-4attheinletandoutletplena.Whenthecore-channelthermalhydraulicsmodulesinSAS4A/SASSYS-1completeatimestepforthecoresimulationportionofthetransient,theyalsodefinessurrogatemodelsforeachchannel.ThesurrogatemodelsareusedduringthePRIMAR-4timesteptoestimatechangesincorechannelflowratesduringthenextprimarycoolantsystemtimestep.

Thesurrogatemodelsaredefinedbasedonthefollowingequationthatrelateschangesinthecorechannelflowratestochangesintheplenumpressures:

𝑑𝑤𝑑𝑡 = 𝐶! − 𝐶!𝑝in + 𝐶!𝑝out + 𝐶!𝑤 𝑤 (1)

Thecoefficients𝐶!through𝐶!areprovidedbythecorechannelmodeltoPRIMAR-4,whilethepressure(𝑝inand𝑝out)andflow(𝑤)variablesaresolvedbyPRIMAR-4duringtheprimarycoolanttimestep.Solutionsforpressureandflowareestimatesbecausetheyarebasedonthesurrogatemodel.

Fortransientsinwhichthecorechannelcoolantremainssinglephase,theseestimateswillbequiteaccurate.Ifboilinginitiates,theprocessofvoidformationandcoolantexpulsionintroducerapid,non-linearchangesthatrequiresignificantreductionsintime-stepsizesinordertomaintainaccuracy.Also,PRIMAR-4willneedtoadjustplenummass,pressure,temperature,andcover-gasinterfaceelevationstoaccountfordifferencesbetweentheestimatedchannelflowsbasedonthelinearsurrogatemodelandtheactualflowscomputedbythecoolantdynamicsmodels.

! 4!

&Figure 2: Sequential Two-Way Coupling Scheme for a Generic Time Step

This& approach& is& similar& to& the& proven& approach& used& between& the& SAS4A/SASSYSP1&core&channel&models&and&PRIMARP4.&In&PRIMARP4,&a&surrogate&core&channel&model&is&used&to& estimate& the& rate& of& change& in& the&mass& flow& rate& for& each& channel.& Additionally,& the&differences& between& the& estimated& channel& flows& and& computed& channel& flows& are&considered&in&the&adjustments&of&the&plena&coupling&parameters.&In&this&way,&the&numerical&stability& of& the& coupled& code& is& assured,&while& the&modifications& of& SAS4A/SASSYSP1& are&minimized.&

Data*Exchange*Requirements*

In& SAS4A/SASSYSP1,& the& multiPchannel& core& model& is& coupled& with& PRIMARP4& at& the&inlet& and& outlet& plenums.& When& the& corePchannel& thermal& hydraulics& module& in&SAS4A/SASSYSP1&completes&a&time&step&for&the&core&simulation&portion&of&the&transient,&it&also&defines&surrogate&models&for&each&channel.&The&surrogate&models&are&used&during&the&PRIMARP4& time& step& to& approximate& changes& in& core& channel& flow& rates& during& the& next&primary&coolant&system&time&step.&

The&surrogate&models&are&defined&based&on&the&following&equation&that&relates&changes&in&the&core&channel&flow&rates&to&changes&in&the&plenum&pressures:&

!"!" = !! − !!!in + !!!out + !!! ! & (1)&

The&coefficients&!!&through&!!&are&provided&by&the&core&channel&model&to&PRIMARP4,&while&the&pressure&and&flow&variables&are&solved&by&PRIMARP4&during&the&primary&coolant&time&step.&Solutions&for&pressure&and&flow&are&estimates&because&they&are&based&on&the&surrogate&model.&

For&transients&in&which&the&core&channel&coolant&remains&single&phase,&these&estimates&will& be& quite& accurate.& If& boiling& initiates,& the& process& of& void& formation& and& coolant&expulsion& introduce&rapid,&nonPlinear&changes& that&require&significant&reductions& in& timePstep&sizes&in&order&to&maintain&accuracy.&Also,&PRIMARP4&will&need&to&adjust&plenum&mass,&pressure,& temperature,& and& coverPgas& interface& elevations& to& account& for& differences&between&the&estimated&channel& flows&based&on&the& linear&surrogate&model&and&the&actual&flows&computed&by&the&coolant&dynamics&models.&&

SAM& tn* tn+1*

SAS& tn* tn+1*

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

9 ANL/NE-16/22

Followingcompletionofatimestepfortheprimaryandintermediatecoolantloops,PRIMAR-4providesthefollowinginformationbacktothecorechannelcoolantdynamicsroutinesinSAS4A/SASSYS-1:

𝑝in 𝑡! =inletplenumpressureatthebeginningofthePRIMAR-4timestep

𝑝out 𝑡! =outletplenumpressureatthebeginningofthePRIMAR-4timestep

𝑑𝑝in𝑑𝑡 ,

𝑑𝑝out𝑑𝑡 =timederivativesoftheinletandoutletplenumpressures

𝑇in,𝑇out =inletandoutletplenumtemperatures

Theseparametersprovidetheboundaryconditionsneededtoupdatethecorechannelsolution.

AsimilarcouplingmethodisusedtocoupleSAS4A/SASSYS-1withSAM.Thedataexchangebetweenthetwocodesateachcouplinginterface(corechannel/plenum)issummarizedinTable1.

Table 1: Data exchange flow for SAS/SAM coupling at the coupling interface SAS→SAM(atthebeginningofSAMtimestep)

Foreverychannel: 𝐶!,𝐶!,𝐶!,and𝐶! InletandOutletMassFlowRate InletandOutletTemperature

SAM→SAS(attheendofSAMtimestep)

Foreveryplenum: Pressure Pressurederivatives Temperature

3 CodeModifications

3.1 SASCodeModifications

InSAS4A/SASSYS-1,thePRIMAR-4moduletraditionallycarriesoutthesimulationoftheprimaryandintermediatecoolantloops.ThegoalofthisworkistodevelopacapabilitytousetheNEAMSSystemAnalysisModule(SAM)asanalternativetoPRIMAR-4.ItisfortunatethattheearlydevelopmentofSASwasimplementedastwoseparatecodes:SAS1AthroughSAS4AforsevereaccidentsandSASSYS(includingPRIMAR)forsystemthermalhydraulics.Althoughthecodeshavelongsincemerged,therearestilldiscernableboundariesbetweenthecorechannelmodelsandthePRIMARsystemmodels.ThetraditionalrelationshipbetweenPRIMAR-4andthecorechannelmodelsisillustratedinFigure4.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 10

Figure4:RelationshipbetweenPRIMAR-4andtheSAS4A/SASSYS-1Thermal-HydraulicsSolvers.

Figure4suggeststhatonlyboundaryconditionsarepassedbetweenPRIMAR-4andthecorechannelmodels.Intheabsenceofobject-orientedprogrammingcapabilities,decadesofdevelopmenthaveresultedinmixedcodesharedbetweenthedifferentmodels.Thiswasparticularlytrueinthemaindriverforsteady-stateinitialization.Overtime,newfeatureswereintroduced—suchascontrol-roddrivelineexpansion,supportformultipleinletandoutletplena,andstructuralgrid-plateexpansion—thatblurredthedistinctionbetweenprimarycoolantsystemandcorechannelsourcecode.

TosupportcouplingwithSAM,thatdistinctionneededtobereinforced.Anewapproachwasbuiltuponmodularobject-orientedconceptsavailableinFortran2003.Anewmodule,namedCoupleSYS,wasdevelopedthatmanagesallboundaryconditioninformationforboththecoreandtheprimarycoolantloop(seeTable1).Foreachcorechannel,themodulemaintainsinformationaboutchannelflow,inletandoutlettemperatures,surrogatemodelparameters,andsodiumvaporenergydischarge.Foreachplenum,themodulemaintainselevation,temperature,pressure,andpressurederivativeinformation.Themodulealsomaintainsamap-typedatastructurethatlinksanynumberofcorechannelstoanynumberofinletandoutletplena.AlthoughthenumberandcomplexityofconnectionsislimitedinPRIMAR-4,theCoupleSYSmoduleimposesnolimitationsonthecomplexityofaSAMmodel.

InSAS4A/SASSYS-1terminology,acoresegmentiscomposedofoneormorechannelsorchannelgroupstorepresentassembliesinthecore.Asegmentalsodefines

SystemThermalHydraulicsPRIMAR-4

Pre-VoidingHydraulics

SodiumBoilingHydraulicsTSBOIL

PointKine:csTSPK

TransientCoreHeatTransferTSHTRNandTSHTRV

corechann

elflow

s

plenumpressuresandtemperatures

corechannelflows

plenumpressuresandtem

peratures

voidingreacEvity

reacEvity

power

iniEalflowsandpressures

coolantflow

coolanttemperatures

cladsurfa

ceheatflux

cladtemperatures

plenumtem

peratures

corechanneloutlettemperatures

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

11 ANL/NE-16/22

connectionstooneinletandoneoutletplenum.Bycombiningmultiplesegmentsandmultipleplena,morecomplexcoredesignscanberepresented.Anexamplewouldbethehigh-andlow-pressureinletplenainEBR-IIthatresultsintwocoresegments.Userinput,eitherfromPRIMARorforSAM,controlstheseconnectionsthroughcallstoLinkGroupToSegmentIDandLinkSegmentToPlenaIDthatarepartoftheCoupleSYSinterface.

ThecorechannelmodelsincludenotonlythoseinFigure4(transientcoreheattransferandpre-voidingandboilinghydraulics)butalsothefuelmeltingandrelocationmodelsdefinedbyPLUTOandLEVITATE.AllofthesemodelsweremodifiedtocommunicateboundaryconditionstotheCoupleSYSmoduleinsteadoftoPRIMAR.Likewise,thesteady-stateandtransient-statethermal-hydraulicsdrivers(SSTHRMandTSTHRMrespectively)weremodifiedtofetchprimarysystemboundaryconditionsfromCoupleSYSandapplythemtoeverychannel.

Significantcomplicationswereencounteredwhileupdatingthesteady-statedriver,SSTHRM.Unlikemanyothersystemcodes,SAS4A/SASSYS-1directlysolvesthesteady-stateequationsratherthaniterateonthetransientequationsuntilanequilibriumisfound(althoughthatisanoption).Thissimplifiesinputrequirementsfortheuser.Inadditiontopowerandflowdistributions,theuseronlyhastosupplytheinletplenumtemperatureandtheoutletplenumpressure.SSTHRMdeterminesthesolutionforinitialtemperatureandpressuredistributionsandautomaticallyadjuststheorificecoefficientsforeverychannel.Thisapproachrequirescoordinationbetweenthecorechannelmodelsandthesystemmodelsfortheinletandoutletplena.Asaresult,thesourcecodeforthecorechannelandsystemplenummodelshadblendedtogetherinmanyplaces,breakingtheencapsulationthatisneededforobject-orientedprogrammingconstructs.

Toresolvethisissue,nearlyallofthePRIMAR-relatedsteady-statesupportroutinesusedbySSTHRM,particularlythosethatsupportmultipleinletandoutletplenaconfigurations,hadtoberewritten.Inaddition,SSTHRMcantakeoneofseveraldifferentpathsdependingonthetypeandcombinationofcorechannelsbeingused—single-pin(traditional),multiple-pin,andsub-channel—andwhetheranulltransientisneededtoinitializeassembly-to-assemblyheattransfer.Fortunately,therewriteledtotheeliminationofspecializedcodethathandledmultiplecoresegmentsandplenaseparatelyfromtraditional,singlesegmentdesigns.

TocouplewithSAM(oranysystemcodethatsatisfiestherequirementsdefinedinSection0),twoadditionalmoduleswerewritten.Thefirstisaplug-inadditiontotheinputprocessorthathandlesnewinputfordescribingsegmentandplenumconnections.ThesecondisamodulethathandlescommunicationsbetweenSASandSAM.

SAS4A/SASSYS-1inputconsistsofinputblocks.Anewblock,SAMSYS,definestheinputrequirementsforcouplingwithSAM.TheSAMSYSblockallowstwotypesofsub-blocks:PLENUMandSEGMENT.ThePLENUMblockdefinesthezelevationandeithertheinlettemperatureoroutletpressureforaninletoroutletplenum,respectively.TheSEGMENTblockdefinestheassociationbetweenacoresegmentanditsinletandoutletplena.Figure5illustratestheinputrequiredfortheSAMSYSblock.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 12

TheSAMSYSinputblockundergoesextensiveinputverification.Forexample,aplenumcannotbedefinedmorethanonce,norcanitdefinebothaninlettemperatureandanoutletpressure.Temperaturesandpressuresmustbepositivevalues,andeachsegmentmustconnecttovalidinletandoutletplena.

EachSEGMENTmusthaveauniqueid.Theexistingchannel-dependentinput,NSEGMP,isusedtoassociateacorechannelwithasegmentbasedontheID.Ifleftblank,thesegmentIDwilldefaulttoitssequencenumberintheSAMSYSblock(startingwith1),andNSEGMPwilldefaulttoone(1).Thisallowsthemostcommoncaseofasinglecoresegmenttobedefinedwithminimalinput.

Thefinalmodule,CoupleSAM,launchestheSAMexecutableandhandlescommunicationsbetweenthetwocodes.ItalsohandlesupdatestotheboundaryconditionsmaintainedbytheCoupleSYSmodule.Threekeyinterfacesaredefined.InitWithSurrogateinitializestheCoupleSAMmoduleandpassesareferencetothesurrogateboundaryconditionsinCoupleSYS.Neartheendofthesteady-stateinitializationinSSTHRM,SSInitiscalledtosendtheresolvedsteady-stateboundaryconditionstoSAMforitsownsteady-stateinitialization.Duringeachtransienttimestep,TSStepiscalledtoprovideupdatedsurrogatechannelparameterstoSAMandreceiveupdatedinletandoutletboundaryconditionsforSAS.Additionalinterfacesaredefinedtohandlejobterminationorrestartsituations.

Figure5:SummaryofSAS4A/SASSYS-1InputRequiredforSAS/SAMCoupling

Page 1/1SampleInput.inpSaved: 9/15/16, 10:06:31 PM Printed for: Thomas H. Fanning

SAMSYS "<name>"1

2

path = "<SAM executable path>"3

4

! Define an inlet plenum:5

PLENUM "<name>"6

Zref = Z ! inlet plenum elevation7

Tin = T ! inlet plenum temperature8

END9

10

! Define an outlet plenum:11

PLENUM "<name>"12

Zref = Z ! outlet plenum elevation13

Pout = P ! outlet plenum pressure14

END15

16

! Define a core segment17

SEGMENT "<name>"18

id = # ! needed for core channel models19

inlet = "<name of inlet plenum>"20

outlet = "<name of outlet plenum>"21

END22

23

! [...]24

25

END26

27

28

29

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

13 ANL/NE-16/22

3.2 SAMCodeModifications

SignificantcodeupdateshavebeenmadefortheimplementationoftheSAS/SAMcouplingstrategyanddataexchangediscussedintheaboveSections.Majorcodeupdatesinclude:

• Implementationofsurrogatecore-channelflowmodelsinSAM;

• Developmentofnewcouplingboundarycomponents,CoupledVolumeBranchandCoupledLiquidVolume,includingadditionalphysicsmodelingassociatedwiththenewComponents;

• DataexchangeandfileI/O;

• DevelopmentofCoupledSASSteadyExecutionerandsteady-stateinitialization;

• DevelopmentofCoupledSASTransientExecutioner.Asurrogatemodel,asdescribedinEq.(1),isimplementedinSAMtoapproximate

theSAScorechannelflowratebasedoncoefficientsC!throughC!providedbySAS,andthestatevariablesintheSAMprimaryloop.

NewcomponentsweredevelopedinSAMtomodelavolumewithadditionalmasssourcesorsinks,whichrepresenttheconnectingpipesmodeledintheothercodessuchasSAS4A/SASSYS-1.ThegoverningequationsofmassandenergyconservationfortheCoupledVolumeBranchandCoupledLiquidVolumeComponentsare

−𝑑 𝜌𝑉𝑑𝑡 + 𝜌𝑢𝐴𝑛 !

!

!!!

+ 𝑚coupled

!

!!!

+𝑚!"# = 0(1)

−𝑑 𝜌𝑉ℎ𝑑𝑡 + 𝜌𝑢𝐴ℎ𝑛 !

!

!!!

+ 𝑚coupledℎcoupled

!

!!!

+𝑚!"#ℎ = 0(2)

where𝜌 = density of the volume component

𝑉 = volume of the volume component

𝑡 = time

𝜌𝑢 = mass flux at the connecting nodes

𝑢 = flow velocity at the connecting nodes

𝐴 = flow area of the connecting components

ℎ = fluid enthalpy of the volume component

𝑚coupled = coupled pipe flow rate

ℎcoupled = coupled pipe flow enthalpy.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 14

WhencoupledwithSAS4A/SASSYS-1,thecorechannelflowratecalculatedfromthesurrogatemodelwillbeusedas𝑚coupledinthecoupledvolumecomponentmodel.Amassadjustmentterm𝑚!"# isalsoincludedtoaccountforthedifferencesbetweentheSAMsurrogatemodelandtheSAS4A/SASSYS-1corechannelmodelresults.

BecauseSAMisdevelopedinanobject-orientedprograminglanguage,mostofthetermsinthecoupledvolumegoverningequationswereavailablefromthedevelopmentoftheoriginalPBVolumeBranchandPBLiquidVolumecomponents.Onlythenewterms,

m!"#$%&'!!!! and m!"#$%&'h!"#$%&'!

!!! ,areimplementedasnewNodalScalarKernelsinSAM.

ThedataexchangerequirementsdefinedinSection2.2arecurrentlyimplementedinbothSAS4A/SASSYS-1andSAMthroughfileinputsandoutputs.Directdataexchangethroughmemorycouldbeimplementedinthefuturetoimprovethecouplinginterface.Theexamplesofthedatatransferfiles“SAStoSAM.dat”and“SAMtoSAS.dat”areshowninFigure6andFigure7.Afterthedataisexchanged,itwillbepropagatedintoallrelatedMOOSEobjectsinSAM,includingScalarKernelsandAuxScalarKernelstocalculatethesurrogatecorechannelflowratesandtheflowrateadjustments.

AspecialMOOSEExecutioner,CoupledSASSteady,wasdevelopedtoimplementthecouplingstrategybetweenSAMandSASforsteadystateinitialization.ItinheritsmethodsfromtheregularSteadyExecutioner,butaddssimplifiedmodelsforcouplingboundarycomponentsandadditionalprocessesforcommunicatingwiththeSAScode.ItsprocessflowchartisdepictedinFigure8,wheretheregularprocessesinaSteadyExecutionerareontheleft,andthedashedlinesandblocksontherightareadditionalprocessesforthecoupledcodeexecution.

SpecialmodelingoptionsarealsousedintheCoupledVolumeBranchandCoupledLiquidVolumecomponentsforsteady-stateinitialization.Insteadofusingthesurrogatemodeltocalculatethecorechannelflowrates,constantcorechannelflowratesfromSASareused.Additionally,constantpressureandtemperatureareassumedfortheoutletplenum,whilethepressureandtemperatureoftheinletplenumwillbecalculatedbythecode.Onceaconvergedsimulationisobtained,theinletplenumconditionswillbecheckedwithSASresultsforconsistency.

Similarly,atransientExecutioner,CoupledSASTransient,wasdevelopedforcoupledSAM/SAStransientsimulation.ItinheritsmethodsfromtheregularMOOSETransientExecutioner,butaddsadditionalprocessesforcommunicatingwiththeSAScode,asdepictedinFigure9.Ateachtime-step,SAMwillreadintheSASsimulationresults(fromtheprevioustimestep)andcompleteitsowninneriterationsforthetime-step.Itwillalsocheckifthesimulationtimeissynchronizedinthetwocodes.WhentheSAMtimestepisconverged,SAMwillsendtheresultsatthecouplinginterfaces(inletandoutletplenum)toSAS.ThisisthesameprocessasdepictedinFigure3.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

15 ANL/NE-16/22

Figure6:ExampleofSAStoSAM.datfileforSAS/SAMCoupling

STEP0.00000000E+002.50000000E-01NSEG1ISEG112NCHN5ICHN11DATA5.02738439E+025.02738439E+026.28150000E+027.92070772E+02-8.98160471E+02-8.98160471E+023.76658339E-023.76658339E-02-3.76658339E-02-3.76658339E-02-5.09810775E-02-5.09810775E-020.00000000E+000.00000000E+000.00000000E+000.00000000E+00ICHN21DATA1.29659670E+021.29659670E+026.28150000E+027.77447007E+02-2.34923308E+02-2.34923308E+029.82586971E-039.82586971E-03-9.82586971E-03-9.82586971E-03-1.99906354E-01-1.99906354E-010.00000000E+000.00000000E+000.00000000E+000.00000000E+00ICHN31DATA5.74500990E+025.74500990E+026.28150000E+027.75603758E+02-1.17500736E+03-1.17500736E+034.91293485E-024.91293485E-02-4.91293485E-02-4.91293485E-02-5.09113676E-02-5.09113676E-020.00000000E+000.00000000E+000.00000000E+000.00000000E+00ICHN41DATA3.34098683E+013.34098683E+016.28150000E+027.96439451E+02-1.22363928E+03-1.22363928E+035.13559913E-025.13559913E-02-5.13559913E-02-5.13559913E-02-1.57402335E+01-1.57402335E+010.00000000E+000.00000000E+000.00000000E+000.00000000E+00ICHN51DATA2.40600920E+012.40600920E+016.28150000E+028.11907475E+02-3.89099428E+01-3.89099428E+011.63764495E-031.63764495E-03-1.63764495E-03-1.63764495E-03-9.68009690E-01-9.68009690E-010.00000000E+000.00000000E+000.00000000E+000.00000000E+00NPLN2IPLN1DATA-6.00000000E-015.48818671E+056.28150000E+020.00000000E+00IPLN2DATA2.30000000E+001.62850000E+057.83578000E+020.00000000E+00DONE

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 16

Figure7:ExampleofSAMtoSAS.datfileforSAS/SAMCoupling

Figure8:ExecutionProcessFlowChartofCoupledSASSteadyExecutioner

preExecute()+

Converged?+

Data+from+SAS+

End+

Solve()+

postSolve()+

postExecute()+

No+

Yes+

Setup+coupling+interface+

Data+to+SAS+

SAS+Execu>on+

Signal+to+SAS+for+SAVE+and+STOP+

STEP999.751000NPLN2IPLN1DATA-0.6194369.17673.627952.5896327IPLN2DATA2.3170465.05817.250982.5916317

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

17 ANL/NE-16/22

Figure9:ExecutionProcessFlowChartofCoupledSASTransientExecutioner

4 CouplingResultsTotestthecouplinginterface,anexistingSAS4A/SASSYS-1modeloftheAdvanced

BurnerTestReactor(ABTR)conceptualdesignwasused.DetailsofthisdesignareavailableinReference3.Inthefollowingsections,abriefsummaryoftheABTRreferencemodelisprovided,includingtheprimaryandintermediatesystemlayout.TheSAMmodelisthendescribed.ItisthismodelthatreplacesthePRIMAR-4modelfromtheoriginalreferencemodel.Finally,resultsforanunprotectedlossofflow(ULOF)accidentsequencearepresented.TheresultsshowthatkeyfeaturesoftheULOFtransientarecapturedbythecoupledcode,butthatsomeimprovementsareneeded.Inparticular,controlroddrivelineexpansionandcertainoptionsforgridplateexpansionarenotyetsupported.Thesedifferenceswereexpectedfortheinitialcouplingimplementation.

4.1 ABTRReferenceModel

TheABTRdesignconceptisa250MWtpool-typesodiumfastreactorwithmetalalloyfuel.Thecoreconsistsof54driverassemblies,78reflectorassemblies,48shieldassemblies,andtencontrol-rodassemblies.Ninetestassemblylocationsarereservedformaterialandfueltesting.ThecoreconfigurationisshowninFigure10.

PreExecute()+

Converged?+

Data+from+SAS+

End+

Take+Timestep+

PostExecute()+

No+

End+of+Transient?+

Yes+

Yes+

No+

Setup+Coupling+interface+

Data+to+SAS+

SAS+ExecuAon+

Signal+to+SAS+

PreStep()+

Time+step+Advancing+?+

No+

Yes+

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 18

Figure10:ReferenceABTRCoreConfiguration

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

19 ANL/NE-16/22

FivecorechannelsareusedtorepresentthecoreassembliesinthereferenceSAS4A/SASSYS-1model.Threeofthechannelsaredefinedbasedonassemblytypeandenrichmentzone.Afourthchannelrepresentsreflectorassemblies,andthefifthchannelrepresentsasingle,inner-corepeakassembly.ChannelassignmentsareshowninFigure11.

TheprimaryvesselconfigurationisshowninFigure12andthePRIMAR-4modelfortheprimary,intermediate,anddecayheatcoolantloopsisillustratedinFigure13.Largesodiumvolumesinthecoolantloopsaremodeledascompressiblevolumes(CVs)inPRIMAR-4.Forexample,CV1istheinletplenum,CV2istheoutletplenum(hotpool)andCV3isthecoldpool.Compressiblevolumesareconnectedbyliquidsegments.Inthismodel,segmentone(S1)isthesegmentrepresentingthecore,anditconnectstheinletplenumtotheoutletplenum.Segmentfour(S4)includestheprimarypumpandpipingthatconnectsthecoldpooltotheinletplenum.

Thecoresegment(S1)isuniquebecausePRIMAR-4usesthesurrogateparametersandEq.(1)toestimatecorechannelflowsduringtheprimarycoolantloopcalculations.Oncetheinletandoutletplenumconditionsareknown,theactualcorechannelflowsaredeterminedbythedetailedtransientcoreheattransferandpre-voidingandboilinghydraulicssolvers.

Figure11:ChannelAssignmentsfortheSAS4A/SASSYS-1CoreModel.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 20

Figure12:ElevationviewoftheABTRPrimarySystem

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

21 ANL/NE-16/22

Figure13:PRIMAR-4RepresentationofthePrimary,Intermediate,andDecayHeatCoolantSystems.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 22

4.2 SAMSystemModel

InacoupledSAS/SAMsimulation,thecoresegmentisstillunique.Inthiscase,however,SAMusesthesurrogateparametersandEq.(1)toestimatecorechannelflowsduringtheprimarycoolantloopcalculations.Oncetheinletandoutletplenumconditionsareknown,theactualcorechannelflowsaredeterminedbythedetailedtransientcoreheattransferandpre-voidingandboilinghydraulicssolversofSAS4A/SASSYS-1.

ThechangestothereferenceSAS4A/SASSYS-1inputarestraightforward.AllPRIMAR-4inputisdeleted,andaSAMSYSinputblockwiththefollowinginputisadded:

Thereferenceelevationsandsteady-stateinlettemperatureandoutletpressurearethesameasthevaluesusedintheoriginalmodel.

Figure14showstheschematicsoftheSAMABTRmodelforthecoupledSAS/SAMsimulation.Theprimarycoolantsystemconsistsoftheinletpiping(pumpoutletandpumpdischarge),thelowerplenum,thereactorcoremodel,theoutletplenum,andtheintermediateheatexchanger.FivecorechannelsweremodeledinSAStodescribethereactorcore.CoupledLiquidVolumeandCoupledVolumeBranchcomponentsareusedtorepresentthecoreoutletplenum(hotpool)andtheinletplenum.BothareconnectedtoimaginarymasssourceandsinksrepresentingtheflowfromandtotheSAScorechannels.Theintermediateloop,thesecondaryloop,andtheDRACSlooparemodeledwithgreatsimplicities.Single-phasecountercurrentheatexchangermodelsareimplementedtomimicthefunctionoftheintermediateloopheatexchanger(IHX),DRACSheatexchanger(DHX),andsecondaryloopheatexchanger(SHX)totransferheatamongtheprimary,intermediate,secondary,andDRACSloops.

Page 1/1untitled text

SAMSYS "ABTR System Model"1

2

path = "<executable path>"3

4

PLENUM "Inlet Plenum"5

Zref = -0.606

Tin = 628.157

END8

9

PLENUM "Outlet Plenum"10

Zref = 2.3011

Pout = 1.6285E+0512

END13

14

SEGMENT "ABTR Core"15

id = 116

inlet = "Inlet Plenum"17

outlet = "Outlet Plenum"18

END19

20

END21

22

23

24

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

23 ANL/NE-16/22

Figure14:SchematicsoftheABTRmodelforcoupledSAS/SAMsimulations

4.3 VerificationofCouplingInterface

SteadystatesimulationoftheABTRmodelwasfirstperformedtoassurethecorrectinitializationoftheoperatingconditionspriortotransientsimulation.TheprimarypumpheadsatnormalconditionsareadjustedintheSAMmodeltomatchthepressureconditionsinthecoreinletandoutletplenafromSAS4A/SASSYS-1steadystateresults.MajorABTRoperationparameterswereconfirmedinthecoupledSAS/SAMmodel.

Additionally,anulltransientsimulationwasperformedtofurtherverifythefunctionalityoftheSAS/SAMcouplinginterface.ThenulltransientresponsesofmajoroperationparametersareshowninFigure15,whichshowsthatthecoupledSAS/SAMmodelholdssteadystateduringthenulltransient.IdenticalcorechannelflowratesareobtainedfromtheSAMsurrogatemodelandSAScorechannelcalculations,asshowninFigure15d.

TDV$

TDJ$

DHX$

Cold$Pool$Inlet$Plenum$

Outlet$Plenum$(Hot$Pool)$

TDV$

TDJ$

Pump$

IHX$ Na9CO2$HX$

Core$Channels$Modeled$in$SAS$

TDV$

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 24

(a)Massflowrates

(b)Pooltemperatures

(c)Poolpressures

(d)DifferenceincorechannelflowratesbetweenSAMsurrogatemodelandSAS

calculationsFigure15:CoupledSAS/SAMsimulationresultsofABTRnulltransient

0"

200"

400"

600"

800"

1000"

1200"

1400"

0"10"

20"

30"

40"

50"

Mass$Flow$Rate$(kg/s)$

Time$(s)$

IHX_

Prim

aryFlow"

CH1_Flow

"CH

2_Flow

"CH

3_Flow

"CH

4_Flow

"CH

5_Flow

"

600#

620#

640#

660#

680#

700#

720#

740#

760#

780#

800#

0#10#

20#

30#

40#

50#

Temperature)(K))

Time)(s))

Hot#P

ool#

Inlet#P

lenu

m#

0.E+00%

1.E+05%

2.E+05%

3.E+05%

4.E+05%

5.E+05%

6.E+05%

0%10%

20%

30%

40%

50%

Pressure&(Pa)&

Time&(s)&

Cold%Poo

l%Ho

t%Poo

l%Inlet%P

lenu

m%

!0.1%

!0.08%

!0.06%

!0.04%

!0.02%0%

0.02%

0.04%

0.06%

0.08%

0.1%

0%10%

20%

30%

40%

50%

Differences)in)Flow)Rates)(kg/s))

Time)(s))

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

25 ANL/NE-16/22

4.4 UnprotectedLossofFlowTransientSequence

Thebasicaccidentsequenceanalyzedisthelossofnormalpowertothereactorandintermediatecoolantpumpswithfailureoftheemergencypowersupplies.Theresultisalossofforcedflowintheprimaryandintermediatecoolantcircuits.Inaddition,itisassumedthattheflowrateinthepowercycleloopisreducetozeroimmediatelyfollowingtheaccidentsothattheonlyheatremovalpathisthroughtheemergencydirectreactorauxiliarycoolingsystem(DRACS).Itisalsoassumedthatthereactorsafetysystemisnotactivated,i.e.controlrodsarenotinsertedtoreducereactorpowerimmediately.Thissequenceisanunprotectedloss-of-flow(ULOF)accident.

ThenaturalcirculationDRACSismodeledasasimpleheatexchangerinthisdemonstrationproblem.Inletflowrate,inlettemperature,andoutletpressurearefixedonthesecondarysideasboundaryconditions.TheDRACSisdesignedtoremove0.5%offullpower(1250kW)atnormaloperatingtemperaturesassumingfailureofoneDRACSunit.Initialconditionsfortheaccidentsequencearenormaloperationsatfullpowerandflow.Withthelossofpumpingpower,flowintheprimarycircuitcoastsdownaccordingtothespinninginertiaofthepumpsandmotors.Followingflowcoastdown,naturalcirculationflowisestablished.Withthelossofpower,forcedflowintheintermediatecoolantsystemisalsolost,andcoastsdownaccordingtothecharacteristicsoftheintermediatepumps,whichisassumedtobesimilartotheprimarypumps.

IntheULOFsequence,thereactorsafetysystemfailstoscramthereactor,thusthereactorremainsatfullpowerinitially.Immediatelyfollowingtheaccident,reactortemperaturesincreaseasthecoolantflowratedecreases,andvariousreactivityfeedbackmechanismsreducethereactorpower.Ascoolantflowcontinuestodecrease,asecondtemperaturepeakoccursafterthefullstopofprimarypumpsandbeforefullnaturalcirculationisestablished.Oncenaturalcirculationisestablishedintheprimaryloop,thetemperaturescontinueincreasingslowlybecausetheDRACShasinsufficientheatremovalcapacitytoovercomeboththeearlydecayheatproductionandthestoredheatintheprimarycoolantsystem.Eventually,thedecayheatfallsbelowtheDRACScapacity,andthesystemtemperaturesdecline.

4.5 TransientSimulationResultsofUnprotectedLossofFlow

ResultsfromanalysisoftheearlypartoftheULOFtransient,duringthepumpcoastdownandtransitiontonaturalcirculation,areshowninFigure16–Figure21.ThenormalizedcorepowerandflowrateareshowninFigure16.Thistransientisinitiatedbyacompletelossofforcedcoolantflowintheprimaryandintermediateloops.Boththeprimaryandintermediatepumpsaredesignedwithsufficientflowinertiaanddonotceaseoperationuntilabout420secondsafterthestartofthetransient,followedbyatransitiontonaturalcirculation.Thepower-to-flowimbalanceresultsinsignificanttransientreactorheatingduringthefirst200seconds.

Thetemperaturesatthecoreinletplenum,outletplenum,andthecoldpoolareshowninFigure17.Shortlyafterthetransient,theonlyheatremovalisthroughtheDRACS.Therapidcoreflowreductionduetothepumptripleadstoarapidincreaseofthecoolantandfuelrodtemperaturesinthecoreandthentheoutletplenum.Thedropin

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 26

reactorpowerduetoinherentreactivityfeedbackstabilizesthehotpooltemperature.ColdpooltemperaturescontinuerisingduringthewholetransientbecausethehotcoolantcontinuesenteringthecoldpoolfromtheIHXoutlet.ThiswillcontinueuntiltheDRACSheatremovalcapabilitybecomesequaltothedecayheatproduction,whichwilloccuratabout5hours.Afterthat,thecoldpooltemperaturewilldecreaseasthewholesystemcools.Theinletplenumtemperatureresponsefollowsthesimilartrendofthecoldpooltemperatureresponse,butwithsomedelay.

Peakfuel,peakclad,andcoolantoutlettemperaturesforchannel5(innercorepeakfuelassembly)areshowninFigure18.Thepeakfuel,cladding,andcoolanttemperaturesremainwellbelowthecoolantsaturation(boiling)temperature,withaminimummargintocoolantboilingofnearly300°C.Thissuggeststhatthecorewouldsurviveanunprotectedloss-of-flowaccidentwithoutpinfailuresorfueldamage.Figure19showsthemassflowrateinallcorechannelsduringthetransient.Similarbehaviorsarefound,andtheestablishmentsofthenaturalcirculationflowsoccuratthesametimeforallchannels.

ThetotalcoreflowdifferencesbetweentheresultsfromtheSAMsurrogatemodelandSAS4A/SASSYS-1corechannelmodelareshowninFigure20.Differencesbetweenthetwomodelsareverysmallthroughoutthetransientandarelessthan0.1kg/smostofthetime.Thisdemonstratesthatthesurrogatemodelisabletoaccuratelyestimatethecorechannelflowrate,whichiscrucialfortheconvergencespeedandtheconsistencyinthecoupledSAS/SAMsimulationusingasequentialtwo-waycouplingscheme(asdiscussedinSection2).

ThereactivityfeedbacksduringthetransientareshowninFigure21.AxialandRadialexpansionarethemaincontributorstotheinitialnegativereactivityfeedback,whichcausespowerandfueltemperaturestodecline.ReducedfueltemperaturesprovideapositiveDopplerfeedback,althoughthemagnitudeismodestduetothehighthermalconductivityandrelativelylowoperatingtemperaturesofmetallicfuel.Notethatthereactivityfeedbackduetothecontrol-roddrivelineexpansionarealwayszerointhecoupledSAS/SAMsimulationasthecontrolroddrivelineexpansionisnotsupportedthecurrentcoupling.Negativereactivityduetocontrol-roddrivelineexpansionwouldbeexpectedasthecontrol-roddrivelinesareheatedbyhighertemperaturecoolantshortlyaftertheonsetofthetransient.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

27 ANL/NE-16/22

Figure16:NormalizedpowerandcoreflowduringtheABTRULOFtransient

Figure17:Pooltemperaturesduringthetransient

0.01$

0.1$

1$

0$ 200$ 400$ 600$ 800$ 1000$

Normalized

+Pow

er+and

+Flow+

Time+(s)+

Normalized$Core$Power$

Normalized$Core$Flow$

600#

650#

700#

750#

800#

850#

0# 200# 400# 600# 800# 1000#

Tempe

rature)(K

))

Time)(s))

Hot#Pool#

Inlet#Plenum#

Cold#Pool#

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 28

Figure18:TransienttemperaturesforChannel5

Figure19:Corechannelflowvelocitiesduringthetransient

600#

700#

800#

900#

1000#

1100#

1200#

1300#

1400#

0# 200# 400# 600# 800# 1000#

Tempe

rature)(K

))

Time)(s))

Satura0on#Peak#Clad#Temperature#Peak#Fuel#Temperature#Outlet#Temperature#Inlet#Temperature#

0.001$

0.01$

0.1$

1$

0$ 200$ 400$ 600$ 800$ 1000$

Normalized

+Mass+F

low+Rate++

Time+(s)+

CH1$CH2$CH3$CH4$CH5$

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

29 ANL/NE-16/22

Figure20:TotalcoreflowdifferencesbetweenSAMsurrogatemodelandSAS4A/SASSYS-1

corechannelsimulationresults

Figure21:Transientreactivityfeedback

!1#

!0.8#

!0.6#

!0.4#

!0.2#

0#

0.2#

0.4#

0.6#

0.8#

1#

0# 200# 400# 600# 800# 1000#

Diffe

rences)in)Flow)Rates)(k

g/s))

Time)(s))

!0.5%

!0.4%

!0.3%

!0.2%

!0.1%

0%

0.1%

0% 200% 400% 600% 800% 1000%

Reac%v

ity*($

)*

Time*(s)*

Net% Doppler% Axial% Radial% CRDL% Coolant%

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 30

Thestand-aloneSAS4A/SASSYS-1simulationresultsoftheABTRULOFtransientarealsocomparedwiththecoupledSAS/SAMresults.ForconsistencywiththeSAMprimaryloopmodeling,theperfectmixingpoolmodelsareusedinthestand-aloneSAS4A/SASSYS-1simulation.

NormalizedcorepowerandflowratearecomparedinFigure22.Verysimilarcorepowersandflowrateswerepredictedthroughoutthetransientinthetwosimulations.Verysmalldifferencesinreactorpowerwerefoundintheinitial50sduetodifferencesinreactivityfeedbackduetocontrol-roddrivelineexpansion,andbetween390and410softhetransientduetodifferencesincoreflowratesandtemperatures.Thecoreflowrateswerealmostidenticalforthefirst150seconds,butdeviateslightlyfromeachotherlaterduetothedifferencesinpumpandloopfrictionmodeling.Thelargerdifferencesinflowratesbetween390and410sareattributedtodifferencesinmodelingthepumpresistanceafterthefullstopofthepumpimpeller.

Peakfuel,peakclad,andcoolantoutlettemperaturesforchannel5inthestand-aloneSAS4A/SASSYS-1simulationareshowninFigure23,andthereactivityfeedbacksareshowninFigure24.Notethatthereactivityfeedbacksduetocontrol-roddrivelineexpansionwereincludedinthestand-aloneSASsimulation.ComparingtheseresultstothecoupledSAS/SAMsimulation(Figure18andFigure21),thetransientresponse(bothtrendsandmagnitudes)areverysimilarbetweenthetwosimulations.

ThisdemonstrationsimulationfocusesontheearlystageoftheULOFtransient.ItshowsthatmajorphysicsphenomenaintheprimarycoolantloopcanbecapturedbythecoupledSAS4A/SASSYS-1andSAMsimulations.SomedifferenceswerefoundinthecoupledSAS/SAMsimulationresults.Thesecanbereducedbyaddressingtheknownmodelingdifferencesbetweenthetwosimulations.

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

31 ANL/NE-16/22

Figure22:Normalizedpowerandcoreflow,comparisonbetweenstand-aloneSASand

coupledSAS/SAMsimulationresults

Figure23:TransienttemperaturesforChannel5,stand-aloneSASsimulation

0.01$

0.1$

1$

0$ 200$ 400$ 600$ 800$ 1000$

Normalized

+Pow

er+and

+Flow+

Time+(s)+

Coupled0Core$Power$

Coupled0Core$Flow$

SAS$StandAlone0Core$power$

SAS$StandAlone0Core$Flow$

600#

700#

800#

900#

1000#

1100#

1200#

1300#

1400#

0# 200# 400# 600# 800# 1000#

Tempe

rature)(K

))

Time)(s))

Satura0on##Peak#Clad#Temperature#Peak#Fuel#Temperature#Outlet#Temperature#Inlet#Temperature#

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1September30,2016

ANL/NE-16/22 32

Figure24:Transientreactivityfeedback,stand-aloneSASsimulation

5 PathForwardSAS4A/SASSYS-1withPRIMAR-4willcontinuetobethemainworkhorseforSFR

safetyanalysisinthenearterm.AndthesevereaccidentmodelingcapabilitiesinSAS4A/SASSYS-1(sodiumboiling,fuelmeltingandrelocation)willcontinuetoplayavitalroleforalongtime.Therefore,theSAS4A/SASSYS-1modernizationeffortshouldremainahighprioritytaskundertheARTprogramtoensurecontinuedparticipationindomesticandinternationalSFRsafetycollaborationsanddesignoptimizations.Ontheotherhand,SAMisanadvancedsystemanalysistool,withimprovednumericalsolutionschemes,datamanagement,codeflexibility,andaccuracy.SAMisstillinearlystagesofdevelopmentandwillrequirecontinuedsupportfromNEAMStofulfillitspotentialandtomatureintoaproductiontoolforadvancedreactorsafetyanalysis.TheefforttocoupleSAS4A/SASSYS-1andSAMisthefirststepontheintegrationofthesemodelingcapabilities.ContinueddevelopmentonSAS/SAMcouplingwillbeneededtoincludethemissingreactivityfeedbacks(controlroddrivelineexpansionandvesselelongation),themissingcomponentmodels,andtoimprovetheefficiencyofthecouplinginterface.Overtime,theadvancedmodelingandsimulationcapabilitiesprovidedbyNEAMSareexpectedtoplaymoreandmoresignificantrolesinadvancedreactorsafetyanalyses.

!0.4%

!0.35%

!0.3%

!0.25%

!0.2%

!0.15%

!0.1%

!0.05%

0%

0.05%

0.1%

0% 200% 400% 600% 800% 1000%

Reac%v

ity*($

)*

Time*(s)*

Net% Doppler% Axial% Radial% CRDL% Coolant%

CouplingtheSystemAnalysisModulewithSAS4A/SASSYS-1 September30,2016

33 ANL/NE-16/22

6 References1. T.H.Fanning,ed.,TheSAS4A/SASSYS-1SafetyAnalysisCodeSystem,ANL/NE-12/4,

NuclearEngineeringDivision,ArgonneNationalLaboratory,January31,2012.2. R.Hu,T.H.Fanning,T.Sumner,Y.Yu,“StatusReportonNEAMSSystemAnalysisModule

Development,”ANL/NE-15/41,ArgonneNationalLaboratory,December2015.

3. Y.Chang,P.Finck,andC.Grandy,“AdvancedBurnerTestReactorPreconceptualDesignReport,”ANL-ABR-1,ArgonneNationalLaboratory,Sept.5,2006.

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division Argonne National Laboratory 9700 South Cass Avenue, Bldg. 208 Argonne, IL 60439-4842 www.anl.gov