crank-nicolson for optimal control problems with evolution equations · pdf filecrank-nicolson...

33
Crank-Nicolson for optimal control problems with evolution equations Optimize then Discretize == Discretize then Optimize Thomas G. Flaig 1 1 Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen März 2009 Thomas Flaig Crank-Nicolson for optimal control 1

Upload: vudat

Post on 26-Mar-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Crank-Nicolson for optimal control problems withevolution equations

Optimize then Discretize == Discretize then Optimize

Thomas G. Flaig1

1Institut für Mathematik und BauinformatikFakultät für Bauingenieur- und Vermessungswesen

März 2009

Thomas Flaig Crank-Nicolson for optimal control 1

Page 2: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 2

Page 3: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Introduction

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 3

Page 4: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Introduction

Problem

min12

T∫0

‖y − yd‖2 + ν‖u‖2 d t

y,t + Ay = uy(0) = 0

A linear, self-adjoint operatorA ∈ Rn×n

A = ∆ + Boundary conditions

Thomas Flaig Crank-Nicolson for optimal control 4

Page 5: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Introduction

Discretization

Optimize then Discretize == Discretize then OptimizeContinuous Optimal Control Problem

Discrete Optimization Problem

Continuous Optimality System

Discrete Optimality System

Discretize Discretize

Optimize

Optimize

initially based on a time stepping scheme

D. Meidner and B. Vexler and others: Space Time FEMinitially based on CG and DG schemes.second order convergence.

Thomas Flaig Crank-Nicolson for optimal control 5

Page 6: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 6

Page 7: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Discretization

min12

TZ0

‖y − yd‖2 + ν‖u‖2 d t

y,t + Ay = u

y(0) = 0

Problem

minτ

2

N−1∑k=0

(yk+1 − yk

2− yd k+1 − yd k

2

)2

+ντ

2

∑u2k+ 1

2

yk+1 − yk

τ+ A

yk+1 + yk

2= uk+ 1

2

y(0) = 0

Thomas Flaig Crank-Nicolson for optimal control 7

Page 8: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Lagrange functional

Lagrange functional

L(y , u, p) =τ

2

N−1∑k=0

(yk+1 − yk

2− yd k+1 − yd k

2

)2

+ντ

2

∑u2k+ 1

2︸ ︷︷ ︸Cost Functional

+

+ τ

N−1∑k=0

(yk+1 − yk

τ+ A

yk+1 + yk

2− uk+ 1

2

)︸ ︷︷ ︸

State Equation

· pk+ 12︸ ︷︷ ︸

Lagrange Multiplier

Thomas Flaig Crank-Nicolson for optimal control 8

Page 9: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

State equation and variational equation

Lagrange functional

L(y , u, p) =τ

2

N−1Xk=0

„yk+1 − yk

2− yd k+1 − yd k

2

«2+ντ

2

Xu2k+ 1

2+

+ τ

N−1Xk=0

„yk+1 − yk

τ+ A

yk+1 + yk

2− uk+ 1

2

«· pk+ 1

2

∂L(y , u, p)

∂pk+ 12

= 0∂L(y , u, p)

∂uk+ 12

= 0

yk+1 − yk

τ+ A

yk+1 + yk

2= uk+ 1

2νuk+ 1

2= pk+ 1

2

Thomas Flaig Crank-Nicolson for optimal control 9

Page 10: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Adjoint equation (inner nodes)Lagrange functional

L(y , u, p) =τ

2

N−1Xk=0

„yk+1 − yk

2− yd k+1 − yd k

2

«2+ντ

2

Xu2k+ 1

2+

+ τ

N−1Xk=0

„yk+1 − yk

τ+ A

yk+1 + yk

2− uk+ 1

2

«· pk+ 1

2

∂L(y , u, p)

∂yk= 0

−pk+ 12

+ pk− 12

τ+ A

pk+ 12

+ pk− 12

2+

12

(yk+1 − yk

2− yd k+1 − yd k

2

)+

12

(yk − yk−1

2− yd k − yd k−1

2

)= 0

Thomas Flaig Crank-Nicolson for optimal control 10

Page 11: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Interpretation of RHSyi

yi−1

yi+1yi−1+yi

2+

yi+yi+12

2

ti−1 ti ti+1ti+ti+1

2ti−1+ti

2

yiyi−1

yi+1

yi−1+yi2

+yi+yi+1

2

2

ti−1 ti ti+1ti+ti+1

2ti−1+ti

2

Idea: Slightly different scheme(yk+1−yk

2 − yd k+1−yd k2

)+(

yk−yk−12 − yd k−yd k−1

2

)2

≈ yk − yd k

Thomas Flaig Crank-Nicolson for optimal control 11

Page 12: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Adjoint equation (last node)

Lagrange functional

L(y , u, p) =τ

2

N−1Xk=0

„yk+1 − yk

2− yd k+1 − yd k

2

«2+ντ

2

Xu2k+ 1

2+

+ τ

N−1Xk=0

„yk+1 − yk

τ+ A

yk+1 + yk

2− uk+ 1

2

«· pk+ 1

2

∂L(y , u, p)

∂yN= 0

pN− 12

τ+ A

pN− 12

2+

12

(yN − yN−1

2− yd N − yd N−1

2

)= 0

No need for ∂L(y ,u,p)∂y0

as y0 is given data.

Thomas Flaig Crank-Nicolson for optimal control 12

Page 13: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Basic facts about the discretization scheme

yk+1 − yk

τ+ A

yk+1 + yk

2= uk+ 1

2

pk+ 12− pk− 1

2

τ− A

pk+ 12

+ pk− 12

2= yk − yd k

−pN− 1

2

τ− A

pN− 12

2=

12

„yN − yN−1

2− yd N − yd N−1

2

«νuk+ 1

2= pk+ 1

2y0 = 0

Based on Crank-NicolsonBased on a time-stepping formulationDifferent discretization points for state and adjoint state

Thomas Flaig Crank-Nicolson for optimal control 13

Page 14: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Discretize then Optimize

Hamilton Systems and Störmer-Verlet-Scheme

Different discretization points for state and adjoint statealso used in Geometric Numerical Integration:Störmer-Verlet method (other names for this Method: see Hairer Lubich Wanner)

Hamilton System: Hamiltonian H(p, q) with

q,t = −H,p(p, q) p,t = H,q(p, q)

Optimal control problems are Hamilton Systems

H(y , p) =12〈y , y〉 − 〈yd , y〉+ 〈Ay , p〉 − 1

2ν〈p, p〉+ C

y,t = −H,p = −Ay +1ν

p

p,t = H,y = Ap + y − yd

Thomas Flaig Crank-Nicolson for optimal control 14

Page 15: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 15

Page 16: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Optimize then Discretize

min12

TZ0

‖y − yd‖2 + ν‖u‖2 d t

y,t + Ay = u y(0) = 0

Lagrange functional

L(y , u, p) =12

T∫0

‖y − yd‖2 + ν‖u‖2 d t

︸ ︷︷ ︸Cost Functional

+

+

∫ T

0(y,t + Ay − u)︸ ︷︷ ︸

State Equation

· p︸︷︷︸Lagrange Multiplier

d t

Thomas Flaig Crank-Nicolson for optimal control 16

Page 17: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Optimality system

Lagrange functional

L(y , u, p) =12

TZ0

‖y − yd‖2 + ν‖u‖2 d t+

+

Z T

0(y,t + Ay − u) · p d t

Optimality system

y,t + Ay = u p,t − Ap = y − yd

y(0) = 0 p(T ) = 0νu = p

Thomas Flaig Crank-Nicolson for optimal control 17

Page 18: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Discretization State and variational equation

Optimality system

y,t + Ay = u p,t − Ap = y − yd

y(0) = 0 p(T ) = 0

νu = p

yk+1 − yk

τ+ A

yk+1 + yk

2= uk+ 1

2

y0 = 0

uk+ 12

=1ν

pk+ 12

Thomas Flaig Crank-Nicolson for optimal control 18

Page 19: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Discretization adjoint state

Optimality system

y,t + Ay = u p,t − Ap = y − yd

y(0) = 0 p(T ) = 0

νu = p

Discretization of p needed in pk+ 12. Therfore:

p,t − Ap = 0 in (T ; T +τ

2]

p,t − Ap = y − yd in (0; T ]

p(T +τ

2) = 0

easy to see p ≡ p in (0; T ]

Thomas Flaig Crank-Nicolson for optimal control 19

Page 20: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Discretization adjoint state (inner nodes)

Crank-Nicolson for

p,t − Ap = 0 in (T ; T +τ

2]

p,t − Ap = y − yd in (0; T ]

p(T +τ

2) = 0

Inner nodes

midpoint rule:pk+ 1

2− pk− 1

2

τ− A

pk+ 12

+ pk− 12

2= yk − yd ,k

trapezoidal rule:pk+ 1

2− pk− 1

2

τ− A

pk+ 12

+ pk− 12

2=

=12

(yk+1 − yk

2− yd k+1 − yd k

2

)+

12

(yk − yk−1

2− yd k − yd k−1

2

)

Thomas Flaig Crank-Nicolson for optimal control 20

Page 21: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Discretization adjoint state (last node)

p,t − Ap = 0 in (T ; T +τ

2]

p,t − Ap = y − yd in (0; T ]

p(T +τ

2) = 0

trapezoidal rule:pN+ 1

2− pN− 1

2

τ− A

pN+ 12

+ pN− 12

2=

=12

(yN+1 − yN

2− yd N+1 − yd N

2

)+

12

(yN − yN−1

2− yd N − yd N−1

2

)

Thomas Flaig Crank-Nicolson for optimal control 21

Page 22: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Discretization adjoint state (last node)

p,t − Ap = 0 in (T ; T +τ

2]

p,t − Ap = y − yd in (0; T ]

p(T +τ

2) = 0

trapezoidal rule: −pN− 1

2

τ− A

pk− 12

2=

=12

(yN − yN−1

2− yd N − yd N−1

2

)

Thomas Flaig Crank-Nicolson for optimal control 21

Page 23: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Derivation of the scheme Optimize then Discretize

Altogether

Again

yk+1 − yk

τ+ A

yk+1 − yk

2= uk+ 1

2

pk+ 12− pk− 1

2

τ− A

pk+ 12

+ pk− 12

2= yk − yd k

−pN− 1

2

τ− A

pN− 12

2=

12

(yN − yN−1

2− yd N − yd N−1

2

)νuk+ 1

2= pk+ 1

2y0 = 0

Thomas Flaig Crank-Nicolson for optimal control 22

Page 24: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 23

Page 25: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples Solution algorithm

System to solveLinear System for the midpoint rule

0BBBBBBBBBBBBBB@

K −Mν

L K. . .

. . .. . .

. . .L K −M

ν

−M −K −L. . .

. . .. . .

−M −K −L−M

4 −M4 −K

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

y1......

yN

pi+ 12

...

...pN− 1

2

1CCCCCCCCCCCCCCCCA=

0BBBBBBBBBBBBB@

−Ly0

0...0

−Myd,1...

−Myd,N−1

−Myd ,N−1+yd ,N

4

1CCCCCCCCCCCCCA.

K =Mτ

+A2, L = −M

τ+

A2

Solution algorithm: Matlab-\Improvement: Parallelization of Matrix-Vector-Multiplication

or Multigrid.

Thomas Flaig Crank-Nicolson for optimal control 24

Page 26: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples Solution algorithm

Error measurement

maxti∈[0:τ :1]

((yh,i − y(ti , xj)

)T M(yh,i − y(ti , xj)

))1/2

maxti∈[0:τ :1]

((ph,i+ 1

2− p(ti+ 1

2, xj)

)TM(ph,i+ 1

2− p(ti+ 1

2, xj)

))1/2

Thomas Flaig Crank-Nicolson for optimal control 25

Page 27: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples PDE Case

Only time disretization error

Problem

min

1∫0

12‖y − yd‖2 +

ν

2‖u‖2 d t

y,t −∆y = u in (0; 1]× (0; 1)2

∂y∂n

= 0 on (0; 1]× ∂(0; 1)2

y(0) = 0 in 0 × (0; 1)2

yd = t3 − 1.5t − 6νt + 3ν in (0; 1]× (0; 1)2

Thomas Flaig Crank-Nicolson for optimal control 26

Page 28: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples PDE Case

ν = 10−5

10−4

10−3

10−2

10−1

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

green: τ, τ2, τ3

τ y y p p

0.25 1.00 0.02 2.00 1.990.2 1.00 0.08 2.00 1.960.1 1.01 0.52 1.99 1.890.05 1.02 1.77 1.97 1.850.02 1.10 2.00 1.86 1.790.01 1.37 2.00 1.64 1.740.005 1.76 2.00 1.59 1.750.002 2.00 2.00 1.75 1.810.001 2.02 2.00 1.88 1.890.0005 2.01 2.00 1.93 1.930.0002 2.00 2.00 1.97 1.970.0001 2.00 2.00 1.99 1.99

red p, blue y for the midpoint rulemagenta p and cyan y for the trapezoidal rule

Thomas Flaig Crank-Nicolson for optimal control 27

Page 29: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples PDE Case

Also spacial error

Problem

min

1∫0

12‖y − yd‖2 +

ν

2‖u‖2 d t

y,t −∆y = u∂y∂n

= 0, y(0) = 0

wa = e−13π

2t cos(πx1) cos(πx2)

wb = e13π

2t cos(πx1) cos(πx2)

yd = c7wa(t, x) + c8wb(t, x)

+ c9wa(0, x) + c10wb(0, x)

+ c11wa(1, x) + c12wb(1, x)

y = y(ν), p = p(ν), u = u(ν) (0; T ]× Ω = (0; 1]× (0; 1)2

Thomas Flaig Crank-Nicolson for optimal control 28

Page 30: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Numerical examples PDE Case

10−2

10−1

100

10−6

10−5

10−4

10−3

10−2

10−1

100

4 space-refinements10

−210

−110

010

−6

10−5

10−4

10−3

10−2

10−1

100

5 space-refinementsgreen: τ, τ2, τ3

red p, blue y for the midpoint rulemagenta p and cyan y for the trapezoidal rule

Thomas Flaig Crank-Nicolson for optimal control 29

Page 31: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Conclusions

time stepping scheme withOptimize then Discretize == Discretize then Optimizebased on Crank-Nicolson-schemerelationship to Störmer-Verlet-scheme / Hamilton systemsnumerical examplesFurther results

I interpretation as continuous Galerkin methodI variable time step sizeI proof of second order convergence

Further researchI constraintsI more efficient solver (multigrid)

Thomas Flaig Crank-Nicolson for optimal control 30

Page 32: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

Thank youfor your attention!

Thomas Flaig Crank-Nicolson for optimal control 31

Page 33: Crank-Nicolson for optimal control problems with evolution equations · PDF fileCrank-Nicolson for optimal control problems with evolution equations OptimizethenDiscretize==DiscretizethenOptimize

1 Introduction

2 Derivation of the schemeDiscretize then OptimizeOptimize then Discretize

3 Numerical examplesSolution algorithmPDE Case

Only time disretization errorAlso spacial error

Thomas Flaig Crank-Nicolson for optimal control 32