cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/posmol05.pdf ·...

24
Cross sections for positron collisions with small molecules Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná [email protected] http://fisica.ufpr.br/bettega

Upload: others

Post on 06-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Cross sections for positron

collisions with small molecules

Márcio H. F. Bettega

Departamento de Física

Universidade Federal do Paraná

[email protected]

http://fisica.ufpr.br/bettega

Page 2: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Curitiba (kur yt yba = many pines)

Population:1.864.416 people

(IBGE/2014)

http://www.curitiba.pr.gov.br/

Page 3: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Collaborators:

Sergio d’A. Sanchez

Fernanda B. Nunes

Alessandra S. Barbosa

Marcio T. do N. Varella

Marco A. P. Lima

Michael J. Brunger

Kate L. Nixon

Gustavo Garcia

Antonio Zecca

Emanuelle Trainotti

Francisco Blanco

Anindya Sarkar

Luca Chiari

Page 4: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Outline:

Motivation.

Schwinger multichannel (SMC) method.

Applications:

HCOOH, CH2O, CH4, C2H4, C2H6, isomers of C3H6,

N2O, C3H4.

Conclusions.

Acknowledgements.

Page 5: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Motivation

What are we missing?

Page 6: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

The Schwinger multichannel (SMC) method:

J. S. E. Germano and M. A. P. Lima, Phys. Rev. A 47, 3976 (1993)

Extension of the Schwinger variational principle for the scattering

amplitude for applications to low-energy positron-molecule

collisions;

Capable of addressing important aspects of these collisions as:

•effects arising from the polarization of the target by the incident

positron (ab initio);

• electronic excitation (multichannel coupling).

Does not take the positronium formation channel into account.

Uses L2 functions (Cartesian Gaussian functions) in the

expansion of the scattering wave function (the Green’s function

accounts for the scattering boundary condition).

Page 7: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: HCOOH

Page 8: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: CH2O

Page 9: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: hydrocarbons (nonpolar)

Potential scattering/partial wave method:

phase-shift

Virtual state

Page 10: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: CH4

Angular discrimination (energy

dependent): distinguish between scattered

from unscattered positrons

Page 11: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: C2H4

Page 12: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: C2H4

Page 13: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: C2H6

Page 14: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: isomers of C3H6

Page 15: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: N2O

Page 16: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: N2O

Page 17: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: N2O

Page 18: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: C3H4

12 extra centers 16 extra centers 24 extra centers

Page 19: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Applications: C3H4

Alessandra Barbosa’s poster!

Page 20: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Conclusions:

RT minimum and virtual state are common features among the

(nonpolar) hydrocarbons.

Discrepancies between the elastic integral cross sections and the

experimental total cross sections at low energies (below the

positronium formation threshold).

Discrepancies between experimental data from different groups

(angular discrimination). The same for theory.

What are we missing?

• single-particle basis set (extra centers)

• poor description of the polarization effects

• f, g etc type functions

• double virtual excitations (polarization)

More experiments and calculations!

Page 21: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

Acknowledgements:

Dr. Carlos de Carvalho for computational support at DFis-UFPR and

at LCPAD-UFPR.

Page 22: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

The SMC method:

Page 23: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

The SMC method:

Page 24: Cross sections for positron collisions with small moleculesfisica.ufpr.br/bettega/POSMOL05.pdf · Anindya Sarkar Luca Chiari . Outline: Motivation. Schwinger multichannel (SMC) method

The SMC method: