crystal structure mndc- 3 and mndc-4

7
Crystal Structure MnDC- 3 and M nDC-4 a c c b MnDC-3 MnDC - 4 c a b c

Upload: taro

Post on 14-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

c. a. c. b. Crystal Structure MnDC- 3 and MnDC-4. c. a. b. c. MnDC-3 MnDC - 4. Edge share. Mn-O-Mn connectivity. Corner share. Mn. Mn. Mn. Mn. Mn. Mn. Mn. Mn. b. a. MnDC-3. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Crystal Structure MnDC- 3 and MnDC-4

Crystal Structure MnDC- 3 and MnDC-4 Crystal Structure MnDC- 3 and MnDC-4

a

c

c

b MnDC-3 MnDC - 4

c

a

b

c

Page 2: Crystal Structure MnDC- 3 and MnDC-4

Mn-O-Mn connectivityMn-O-Mn connectivity

Corner shareEdge share

a

b

Mn

Mn

Mn

Mn

Mn

Mn

Mn

Mn

MnDC-3

Page 3: Crystal Structure MnDC- 3 and MnDC-4

Mn2(H2O)[CO2(CH2)4CO2]2 , Fe2(H2O)[CO2(CH2)4CO2]2 ,[adipate n=4 (even number) in M

2(H2O)[CO2(CH2)4CO2]2 (M= Mn and Fe)]

Kim, Y.J.; Jung, D. Y. Inorg. Chem. 2000, 39, 1470.

Kim, Y.J.; Jung, D. Y. Bull. Korean Chem. Soc. 2000, 21, 656.

Kim, Y. J.; Lee, E. W.; Jung, D. Y. Chem. Mater. 2001, 13, 2684.

Comparison of M2(H2O)[adipate]2 ( M = Mn, Fe)Comparison of M2(H2O)[adipate]2 ( M = Mn, Fe)

Page 4: Crystal Structure MnDC- 3 and MnDC-4

Magnetism of MnDC-n (n=3 to 12) Magnetism of MnDC-n (n=3 to 12)

0 50 100 150 200 250 3000.00

0.02

0.04

0.06

0.08

0.10

0.120.00

0.02

0.04

0.06

0.08

0.10

0.12

M(e

mu/

Mn)

M(e

mu/

Mn)

Temperature(K)

Hiller

Wagner and Friedberg

0 50 100 150 200 250 3000.00

0.02

0.04

0.06

0.08

0.10

0.12

M T

M(e

mu/

Mn)

Temperature(K)

MnDC-3 MnDC-4 MnDC-5 MnDC-6 MnDC-7 MnDC-8 MnDC-9 MnDC-10 MnDC-11 MnDC-12

0

1

2

3

4

100G 5K-300K SQUID

(A=2.9167 B=208.04 C=15.543 and X=|J|/2kT)(U=coth K-1/K, K=JS(S+1)/kT)

[Wagner and Friedberg model]

J = -1.81 ~ -2.04 g = 1.95 ~ 2.01

)1(

)1(

3

)1(22

U

U

kT

SSNgM

[Hiller model]

J = -1.95 ~ -2.16 g = 1.95 ~ 2.02

DXCX

BXA

kT

NgM

1

222

Page 5: Crystal Structure MnDC- 3 and MnDC-4

Dicarboxylic acid Metal Dicarboxylate

Conformation of Terminal Carboxylate GroupsConformation of Terminal Carboxylate Groups

Glutaric (odd)

Adipic (even)

(odd)Mn- -Mn

(even)-MnMn-

Page 6: Crystal Structure MnDC- 3 and MnDC-4

Thermal AnalysesThermal Analyses

Compound TH2O wt loss Torganic Residue wt. Loss Obsd. Calcd. Obsd. Calcd(Mn2O3)

MnDC-3 225-252 5.1 4.6 345-800 47.3 40.7

MnDC-4 228-248 4.3 4.3 306-800 39.9 37.9

MnDC-5 218-248 4.2 4.1 309-800 37.7 35.5

MnDC-6 220-236 4.1 3.8 302-800 34.0 33.4

MnDC-7 208-233 3.8 3.6 297-800 33.8 31.6

MnDC-8 195-229 3.5 3.4 275-800 32.7 29.9

MnDC-9 190-215 3.4 3.2 295-600 27.9 28.4

MnDC-10 160-200 3.2 3.1 260-600 26.8 27.0

MnDC-11 152-173 2.9 2.9 285-600 23.5 25.8

MnDC-12 145-165 2.8 2.8 275-600 24.2 24.7

 

Mn2(H2O)[CO2(CH2)nCO2]2 Mn2[CO2(CH2)nCO2]2 Mn2O3

150-250 oC 600 oC

N2 flow 10oC/min

Dehydration range

Page 7: Crystal Structure MnDC- 3 and MnDC-4

Conclusions Conclusions

We opened a new series of Mn-dicarboxylate compounds, MnDC- n (n = 3 to 12), which contains tunable interlayer distance using various ,-dicarboxylic acids by hydrothermal synthesis.

The manganese-oxygen connectivity of both even and odd members of MnDC-n, are very similar and the resulting magnetic properties is predominantly antiferromagnetic ascribed to the Mn-O-Mn infinite chains.

Acknowledgment

We acknowledge financial support from the Electron Spin Science Center at POSTECH, which established as the excellent science research center by the KOSEF.