crystallization systems - revealing shapes particle morphology … · 2020. 9. 25. · - yonggang...

19
Revealing shapes – particle morphology hints impurity rejection capability during API crystallization Jochen Schöll Technobis webinar on 24 SEP 2020 WAG XLab

Upload: others

Post on 01-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Revealing shapes –particle morphology hints impurity rejection capability during API crystallization

    Jochen Schöll

    Technobis webinar on 24 SEP 2020

    WAG

    XLab

  • MSD Werthenstein BioPharma in Schachen Lucerne

  • 3

    “Medicine is for the people.It is not for the profits.”

    George W. Merck (1950)

  • Main tasks in pharma crystallization

    4

    Process: • Solvent system• Temperature• Addition rates

    • etc…

  • Typical development challenge: limited amount of API

    5

    and 3 ways to make most out of it:

    Miniaturization ParallelizationData-rich

    experimentation

  • Approaches in our lab

    6

    Miniaturization ParallelizationData-rich

    experimentation

  • Unmilled API

    Crystallization issues during 1st GMP delivery (1.5 kg API)

    7

    • Solvent switch crystallization (EtOAC→ Toluene) successfully rejected impurities but failed controlling solid form

    • Additional recrystallization from MeOH/Water was needed to control the crystal form

    • Final micronization step via spiral jet milling yielded 1.5 kg API

    Quantiles [µm]

    x10 1.4

    x50 4.1

    x90 8.1

    Jet-milled API

    Quantiles [µm]

    x10 40.2

    x50 78.0

    x90 152.6

  • Solvent (pre-)selection with HT data

    8

    Solvent Selection Average [mg/ml] Solvent Selection Average [mg/ml] Solvent Selection Average [mg/ml]

    Acetone 90.14 50:50 EtOH:H2O 0.46 2:1 DMF:H2O 8.24

    MeCN 50.41 25:75 EtOH:H2O 0.06 1:1 DMF:H2O 1.10

    EtOH 9.87 8:1 EtOH:H2O 10.20 1:1 DMF:MeOH >100

    H2O 0.00 2:1 EtOH:H2O 3.33 2:1 DMAc:H2O 9.06

    Toluene 3.87 95:5 IPA:H2O 9.45 1:1 DMAc:H2O 0.91

    THF >100 90:10 IPA:H2O 10.27 2:1 NMP:H2O 16.93

    Heptane 0.00 80:20 IPA:H2O 9.01 1:1 NMP:H2O 1.38

    IPAc 22.46 50:50 IPA:H2O 0.12 1:1 Toluene:MeOH 52.46

    DMF >100 25:75 IPA:H2O 0.15 1:1 Toluene:MeCN 73.57

    NMP >100 2:1 IPA:H2O 4.75 1:1 Toluene:EtOH 31.25

    MeOH 17.95 8:1 IPA:H2O 10.61 1:1 Toluene:IPA 22.83

    2-methylTHF 60.72 95:5 THF:H2O >100 1:1 IPAc:MeOH 37.36

    DCM 49.77 90:10 THF:H2O >100 1:1 MeCN:EtOH 54.20

    DMAc >100 80:20 THF:H2O >100 1:1 2-methylTHF:Heptane 1.40

    DMSO >100 50:50 THF:H2O 0.69 1:1 THF:MTBE 32.77

    EtOAc 49.83 25:75 THF:H2O 0.09 1:1 Toluene:MTBE 5.50

    IPA 5.90 2:1 THF:H2O 36.07 1:1 IPAc:MTBE 13.46

    MTBE 3.58 8:1 THF:H2O >100 1:1 IPA:MTBE 7.86

    2-butanol 4.59 90:10 Acetone:H2O >100 2:1 Acetone:Water 60.48

    MEtOAc 76.10 80:20 Acetone:H2O 0.11 1:1 Acetone:Water 15.85

    n-propanol 6.85 50:50 Acetone:H2O 0.07 1:1 EtOH:Heptane 8.32

    Hexane 0.00 25:75 Acetone:H2O 0.07 1:1 THF:Heptane 2.85

    90:10 MeCN:H2O 68.43 2:1 Acetone:H2O 0.08 2:1 THF:Heptane 0.30

    80:20 MeCN:H2O 45.79 8:1 Acetone:H2O 49.13 9:1 THF:Heptane 81.30

    50:50 MeCN:H2O 0.84 95:5 MeOH:H2O 10.17 1:1 IPA:Heptane 3.63

    25:75 MeCN:H2O 0.08 90:10 MeOH:H2O 8.75 1:1 Toluene:Heptane 0.37

    95:5 EtOH:H2O 11.79 50:50 MeOH:H2O 0.17 2:1 IPAc:Heptane 7.81

    90:10 EtOH:H2O 11.59 2:1 MeOH:H2O 0.98 1:1 IPAc:Heptane 3.01

    80:20 EtOH:H2O 7.50 8:1 MeOH:H2O 8.74 1:1 MTBE:Heptane 0.22

    1:1 DCM:Heptane 0.00

    • High-throughput solubility data provides a first set of potential solvent systems:

    ➢ Good solvents

    ➢ Good antisolvents

    ➢ Risky systems

  • API with two known forms

    9

    • Both, polar and apolar solvent systems successfully generated the desired Form 2 at lab scale

    • Seeded process with supersaturation control expected to yield desired form

    Form 2

    Form 1

    EtOAc/Heptane

    MeCN/Water

  • First results at 300 mg scale

    10

    • Particle morphoplogy changes in different solvents– potential for different impurity rejection?

    Apolar solvent systems Polar solvent system

    EtOAc/Heptane IPAc/Heptane MeCN/Water

  • Crystallization and impurities in the literature

    11

    Dichloromethane Ethanol

  • Development work for 2nd GMP delivery

    12

    Apolar solvent systems Polar solvent system

    EtOAc/Heptane 2-MeTHF/Heptane MeCN/Water

    EtOAc/Heptane 2MeTHF/Heptane MeCN/Water

    API purity 99.9% LCAP 99.9% LCAP

  • Data-rich experiment at 3 g scale – EtOAc/Heptane

    13

    Yield ≈ 96 %

    Vol. prod. ≈ 62 g/L

    Cycle time ≈ 18 h

    Form impurity (rods)Temperature

  • Crust formation

    14

    Hot reactor walls induce “creeping”:

    Cool reactor walls avoid “creeping”, but still on probes & stirrer:

  • Activated carbon treatment & rex in 2MeTHF/Heptane

    15

    Pure APICrude API

    Crystallization +

    Activated carbon

  • Successful 2nd GMP delivery (27 kg API)

    16

    • Improved chemistry reduced RM cost by 40x

    • New API crystallization process

    • Eliminates the need for recrystallization due to improved impurity rejection

    • Ensures robust API form control (lower seed mass was compensated by extended seed age)

    • Rejects color using AC

    • Delivered 27 kg API with a higher crystallization yield of +13%

    Quantiles [µm]

    x10 1.4

    x50 4.1

    x90 8.1

    Jet-milled API

  • Potential to eliminate jet milling?

    17

    • Unseeded high-shear reverse additions have been performed in MeCN/Water and EtOAc/Heptane API crystallization process

    • Polar and apolar systems yielded mix of forms

    • Ongoing work with seeded reverse addition

  • Summary

    18Thank you!

    • Different particle morphologies can indicate impurity rejection differences (lower aspect ratio correlates with higher purity)

    • Combination of miniaturization and data-rich experiments allowed for an optimized process design regarding impurity rejection, form control, de-coloring, and process yield

    • Further work on bottom-up process with form control ongoing

  • Acknowledgements- Erica Schwalm- Eric Ashley- Eric Sirota- Siwei Zhang- Yonggang Chen

    Q&A