crystallography 10

47
Diffraction: Intensity rom Chapter 4 of Textbook 2 and Chapter 9 of Textbo Electron atoms group of atoms or structure Crystal (poly or single)

Upload: vudan

Post on 31-Dec-2016

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Crystallography 10

Diffraction: Intensity(From Chapter 4 of Textbook 2 and Chapter 9 of Textbook 1)

Electron atoms group of atoms or structure Crystal (poly or single)

Page 2: Crystallography 10

Scattering by an electron:

r

P

= /2

2

202

22

420

0 sinsin4 r

KIrm

eII

0: 410-7 mkgC-2

a single electron charge e (C), mass m (kg), distance r (meters)

by J.J. Thomson

Page 3: Crystallography 10

x

y

z

O

P

Randompolarized

2r

222zy EEE

00022

21

21 IIIEEE zyzy 2

y component

z component

= yOP = /2 20 rKII yPy

2cos220 r

KII zPz = zOP = /2 -2

22cos12cos

2

202

2020

rKI

rKI

rKIIII zyPzPyP

Polarization factor

Page 4: Crystallography 10

0 20 40 60 80 100 120 140 160 1800.4

0.6

0.8

1.0

Po

lariz

atio

n Fa

ctor

2 (Degrees)

Page 5: Crystallography 10

Pass through a monochromator first (Bragg angle M) the polarization factor is ?

M

M

2cos12cos2cos1

2

22

(Homework)

x

y

z

O

P

polarization isnot complete

randomanymore

2

r

x

y

z

O

PRandompolarized

2M

r P

22cos12cos

2

202

2020M

MzyzPyPP rKI

rKI

rKIIII

Page 6: Crystallography 10

0 20 40 60 80 100 120 140 160 1800.4

0.5

0.6

0.7

0.8

0.9

1.0

Po

lariz

atio

n Fa

ctor

2 (Degrees)

Si (111) as monochromatorCu K; = 28.44o

M

Page 7: Crystallography 10

Atomic scattering (or form) factor

a single free electron atoms

electron singlea by scattered amplitudeatomby scattered amplitudefactor scattering atomic

Page 8: Crystallography 10

Differential atomic scattering factor (df) :

dVerE

df i

e

)]()[/2( 0)(1 ssr Ee: the magnitude of the wave from a bound electron

Os0

R

r

x1dV

s

x2

2

path different (O and dV):R-(x1 + x2).

srsr Rxx 201 ;

Electron density Phase difference

Page 9: Crystallography 10

Spherical integration dV = dr(rd) (rsind)

http://pleasemakeanote.blogspot.tw/2010/02/9-derivation-of-continuity-equation-in.html

r: 0 - : 0 - : 0 - 2

rsind

rsin(+d)dr

dr

d

d

Page 10: Crystallography 10

rr

ddrrdrrddr

0

2

0

2

0

sin2)sin)((

3

34 r

= 23

3r

r

r

drdrddrr

0

2

0

2 sin2sin2

Page 11: Crystallography 10

S0

S S-S0

2

Evaluate (S - S0)r = | S - S0||r|cos |(S - S0)|/2 = sin.

cossin2)( 0 r rSS

dVerE

dff i

e

)]()[/2( 0)(1)( ssr

r

r

ri

e

drdrerE

dff0 0

2/cossin4 sin2)(1)(

Let /sin4kcosd

r

r

kri

e

dedrrrE

f0 0

cos2 cos2)(1)(

krkr

ikree

ikre ikrikrikr sin2

cos

0cos

cos

Page 12: Crystallography 10

r

re

drkr

krrrE

f0

2 sin)(41)(

For = 0, only k = 0 sinkr/kr = 1.

For n electrons in an atom

electrons n0

2 sin)(41)(r

re

drkr

krrrE

f

ZdrrrE

fr

re

electrons n

0

2 )(41)0( Number of electronsin the atom

equal to 1 boundelectrons

Tabulated

Page 13: Crystallography 10
Page 14: Crystallography 10

Anomalous Scattering:Previous derivation: free electrons!Electrons around an atom: free?

kxFdt

xdm 2

2 free electronharmonic oscillator

m

k

tiex 0Assumekmkeeim titi 2

02

000)( 2/1

0 )/( mk

)(2

2

tFkxdt

xdm Forced oscillator

tieFtF 0)( Assume

tiCex Assumetititi eFkCeeiCm 0

2)( 02 FkCCm

20mk

020

2 FCmCm )(

)( 220

00

220

m

FCFmC

Resonance frequency

Page 15: Crystallography 10

tiem

Fx

)( 220

0

tiCex

Same frequency as F(t), amplitude(, 0) = 0 C is ; in reality friction term exist no

tieFtFkxdtdxc

dtxdm

02

2

)(

Oscillator with damping (friction v)

assume c = m

Fxmdtdxm

dtxdm 2

02

2

mFxmxixi /)( 002000

2

Assume x = x0eit

)( 220

00 im

Fx

Real part and imaginary part

Page 16: Crystallography 10

f +f + if

real imaginary

2

220 )(

1 i

0 E

if 0

Resonance: X-ray frequency; 0: bounded electrons around atoms 0 electron escape # of electrons around an atom f (f correction term)

imaginary part correction: f (linear absorption coefficient)

Page 17: Crystallography 10

Examples: Si, 400 diffraction peak, with Cu K (0.1542 nm)

nm 13577.04/54309.0400 d6.341542.0sin2 400 d

1

368.0sin

sin 0.3 0.48.22 7.20

526.7368.03.04.03.0

22.820.722.8

ff

Anomalous Scattering correction 4.0 ;2.0 ff

Atomic scattering factor in this case: 7.526-0.2+0.4i = 7.326+0.4i

f and f: International Table for X-ray Crystallography V.III

Page 18: Crystallography 10

Structure factor

atoms unit cell

plane(h00)

A

B

C

N M

S R

1 13 3

2 2

apath difference:11 and 22 (NCM) sin2 001122 hdNCM

How is an atom located in a unit cell affect the h00 diffraction peak?

why:? Meaningful!

AChadh /00

How is the diffraction peaks (hkl) of a structure named? Unit cell

Miller indices (h00):

x̂path difference: 11 and 33 (SBR)

ahx

hax

ACABSBR /1133

Page 19: Crystallography 10

phase difference (11 and 33) ahx

ahx

22

1133

position of atom B: fractional coordinate of a: u x/a.

huahx 22

1133

the same argument B: x, y, z x/a, y/b, z/c u, v, wDiffraction from (hkl) plane

)(2 lwkvhu

electron singlea by scattered amplitudecellunit a of atoms allby scattered amplitude F

F: amplitude of the resultant wave in terms of the amplitude of the wave scattered by a single electron.

Page 20: Crystallography 10

)(2)(22

)(21

222111 NNN lwkvhuiN

lwkvhuilwkvhui efefefF

N

n

lwkvhuinhkl

NNNefF1

)(2

F (in general) a complex number.

N atoms in a unit cell; fn: atomic form factor of atom n

How to choose the groups of atoms to represent a unit cellof a structure? 1. number of atoms in the unit cell2. choose the representative atoms for a cell properly (ranks of equipoints).

Page 21: Crystallography 10

Example 1: Simple cubic 1 atoms/unit cell; 000 and 100, 010, 001, 110, 101, 011, 111: equipoints of rank 1; Choose any one will have the same result!

ffeF lkhihkl )000(2

22 fFhkl for all hkl

Example 2: Body centered cubic 2 atoms/unit cell; 000 and 100, 010, 001, 110, 101, 011, 111: equipoints of rank 1; ½ ½ ½: equipoints of rank 1; Two points to choose: 000 and ½ ½ ½.

)1( )()21

21

21(2)000(2 lkhilkhilkhi

hkl effefeF

fFhkl 2 when h+k+l is even 22 4 fFhkl

0hklF when h+k+l is odd 02 hklF

Page 22: Crystallography 10

Example 3: Face centered cubic 4 atoms/unit cell; 000 and 100, 010, 001, 110, 101, 011, 111: equipoints of rank 1; ½ ½ 0, ½ 0 ½, 0 ½ ½, ½ ½ 1, ½ 1 ½, 1 ½ ½: : equipoints of rank 3; Four atoms chosen: 000, ½ ½ 0, ½ 0 ½, 0 ½ ½.

]1[ )()()(

)21

210(2)

210

21(2)0

21

21(2)000(2

lhilkikhi

lkhilkhilkhilkhihkl

eeef

fefefefeF

fFhkl 4 when h, k, l is unmixed (all evens or all odds)

22 16 fFhkl

0hklF when h, k, l is mixed 02 hklF

Page 23: Crystallography 10

Example 4: Diamond Cubic 8 atoms/unit cell; 000 and 100, 010, 001, 110, 101, 011, 111: equipoints of rank 1;

½ ½ 0, ½ 0 ½, 0 ½ ½, ½ ½ 1, ½ 1 ½, 1 ½ ½: equipoints of rank 3;¼ ¼ ¼, ¾ ¾ ¼, ¾ ¼ ¾, ¼ ¾ ¾: equipoints of rank 4;Eight atoms chosen: 000, ½ ½ 0, ½ 0 ½, 0 ½ ½ (the same as FCC),¼ ¼ ¼, ¾ ¾ ¼, ¾ ¼ ¾, ¼ ¾ ¾!

)43

43

41(2)

43

41

43(2)

41

43

43(2)

41

41

41(2

)21

210(2)

210

21(2)0

21

21(2)000(2

lkhilkhilkhilkhi

lkhilkhilkhilkhihkl

fefefefe

fefefefeF

)41

41

41(2

)21

210(2)

210

21(2)0

21

21(2

1

1

lkhi

lkhilkhilkhi

hkl

e

eeefF

FCC structure factor

Page 24: Crystallography 10

)1(4 ifFhkl when h, k, l are all odd 22 32 fFhkl fFhkl 8 when h, k, l are all even and h + k + l = 4n

22 64 fFhkl 0)11(4 fFhkl

when h, k, l are all even and

02 hklFh + k + l 4n

0hklF when h, k, l are mixed 02 hklF

Page 25: Crystallography 10

Example 5: HCP 2 atoms/unit cell 8 corner atoms: equipoints of rank 1; 1/3 2/3 ½: equipoints of rank 1; Choose 000, 1/3 2/3 1/2.

(000)

(001)

(100)(010)

(110)

( 1/3 2/3 1/2)

equipoints

)21

32

31(2)000(2 lkhilkhi

hkl fefeF

Set [h + 2k]/3+ l/2 = g

Page 26: Crystallography 10

)1( 2 ighkl efF

gfgfeefF igighkl 2222222 cos4)2cos22()1)(1(

)

232(cos4cos4 22222 lkhfgfFhkl

h + 2k l

3m3m

3m13m1

evenoddevenodd

)23

2(cos2 lkh 2hklF

10

0.250.75

4f 2

0f 2

3f 2

Page 27: Crystallography 10

Multiplicity FactorEqual d-spacings equal B

E.g.: Cubic (100), (010), (001), (-100), (0-10), (00-1): Equivalent Multiplicity Factor = 6 (110), (-110), (1-10), (-1-10), (101), (-101), (10-1),(-10-1), (011), (0-11), (01-1), (0-1-1): Equivalent Multiplicity Factor = 12

lower symmetry systems multiplicities .

E.g.: tetragonal (100) equivalent: (010), (-100), and (0-10) not with the (001) and the (00-1). {100} Multiplicity Factor = 4 {001} Multiplicity Factor = 2

Page 28: Crystallography 10

Multiplicity p is the one counted in the point groupstereogram.In cubic (h k l)

}{hkl p = 48 3x2x23 = 48}{hhl p = 24 3x23 = 24}0{ kl p = 24 3x23 = 24

}0{ kk p = 12 3x22 = 12

}{hhh p = 8 23 = 8}00{h p = 6 3x2 = 6

Page 29: Crystallography 10

Lorentz factor:

dependence of the integrated peak intensities

1. finite spreading of the intensity peak

2. fraction of crystal contributing to a diffraction peak

3. intensity spreading in a cone

2sin1

cos

2sin1

Page 30: Crystallography 10

2B

Inte

nsity

Diffraction Angle 2

Imax

Imax/2

2

IntegratedIntensity

B

2 1 2

A Ba

2

C D

Na

1N

B2

1

2 B1

B2

1

path difference for 11-22= AD – CB = acos2 - acos1

= a[cos(B-) - cos (B+)]= 2asin()sinB ~ 2a sinB.

2Na sinB = completelycancellation (1- N/2, 2- (N/2+1) …)

1

Page 31: Crystallography 10

BNa sin2

Maximum angular range of the peak

Imax 1/sinB, Half maximum B 1/cosB (will be shown later) integrated intensity ImaxB (1/sinB)(1/cosB) 1/sin2B.

2

number of crystals orientated at or near the Bragg angle

crystal plane

rrN B )90sin(2

2cos

4)90sin(2

2

B

B

rrr

NN

Fraction of crystal: r/2-

)90sin( Br

Page 32: Crystallography 10
Page 33: Crystallography 10

diffracted energy:equally distributed (2Rsin2B) the relative intensity per unit length 1/sin2B. 2B

3

cossin41

2sincos

2sin1cos

2sin1factor Lorentz

2

2

BBB

B

Lorentz–polarization factor:(omitting constant)

cossin2cos1factor onpolarizati-Lorentz

2

2

Lorentz factor:

Page 34: Crystallography 10
Page 35: Crystallography 10

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

Lo

rent

z-Po

lariz

atio

n Fa

ctor

2 (Degrees)

Page 36: Crystallography 10

Absorption factor:

X-ray absorbed during its in and out of the sample.Hull/Debye-Scherrer Camera: A(); A() as .

ldx

I0

2

A

B

CdID

x

Incident beam: I0; 1cm2

incident angle . Beam incident on the plate: )(

0ABeI

: linear absorption coefficient

a: volume fraction of the specimen that are at the right angle for diffractionb: diffracted intensity/unit volume

1cmDiffractometer:

volume = l dx 1cm = ldx.actual diffracted volume = aldxDiffracted intensity:Diffracted beam escaping from the sample:

dxeablI AB)(0

dxeeablI BCAB )()(0

Page 37: Crystallography 10

sin;

sin;

sin1 xBCxABl

dxeabIdIx

D

sin

1sin

10

sin

If = = dxeabIdI xD

sin/20

sin

2sin2

20

0sin2

00

abIxdeabIdIIx

x

xx

x DD

Infinite thickness ~ dID(x = 0)/dID(x = t) = 1000 and = = ).

Page 38: Crystallography 10

Temperature factor (Debye Waller factor):Atoms in lattice vibrate (Debye model)

d

u

d

u

high Blow B

Lattice vibration is more significant at high B

(u/d) as B

Temperature (1) lattice constants 2 ; (2) Intensity of diffracted lines ; (3) Intensity of the background scattering .

Page 39: Crystallography 10

Meff 0Formally, the factor is included in f asBecause F = |f 2| factor e-2M shows upWhat is M?

2222

2

22 sinsin222

BB Bu

duM

u0u

02 u

: Mean square displacement

Debye:

2u2

2

2 sin4

)(6

Bxx

mkThM

h: Plank’s constant;T: absolute temperature;m: mass of vibrating atom;: Debye temperature of the substance; x = /T;(x): tabulated function

Page 40: Crystallography 10

e-2M

sin /

12

4

2

2 1015.16

A

Tmk

Thm atomic weight (A):

Temperature (Thermal) diffuse scattering (TDS) as I as

peak width B slightly as T

TDSI

2 or sin/

0

Page 41: Crystallography 10

SummaryIntensities of diffraction peaks from polycrystalline samples:

MeApFNI 22

222 )(

cossin2cos1

Diffractometer:

MepFNI 22

222

cossin2cos1

Perturbation: preferred orientation; Extinction (large crystal)

Other diffraction methods:

Match calculation? Exactly: difficult; qualitatively matched.

Page 42: Crystallography 10

ExampleDebye-Scherrer powder pattern of Cu made withCu radiation

1 2 3 4 5 6 7 8line hkl h2+k2+l2 sin2 sin (o) sin/(Å-1) fCu

12345678

111200220311222400331420

3481112161920

0.13650.18200.3640.5000.5460.7280.8650.910

0.3690.4270.6030.7070.7390.8530.9300.954

21.725.337.145.047.658.568.472.6

0.240.270.390.460.480.550.600.62

22.120.916.814.814.212.511.511.1

Cu: Fm-3m, a = 3.615 Å

Page 43: Crystallography 10

1 9 10 11 12 13 14

line |F|2 P Relative integrated intensityCalc.(x105) Calc. Obs.

12345678

78106990452035003230250021201970

86

122486

2424

12.038.503.702.832.743.184.816.15

7.52 3.562.012.380.710.482.452.91

10.04.72.73.20.90.63.33.9

VsSssmwss

cossin2cos1

2

2

If h, k, l are unmixedIf h, k, l are mixed

CufF 4

0F

111200220311222400331420

Structure Factor

Page 44: Crystallography 10

2

222

2

1a

lkhdhkl

3111ad

542.1sin3

615.32542.1sin2 111111111 d

24.0542.13694.0sin 111

o111111 68.213694.0sin

0 0.1 0.2 0.3 0.429 27.19 23.63 19.90 16.48

sin

1.2263.2390.19

2.03.090.19

24.03.0 111111

Cu

Cu

ff

Page 45: Crystallography 10

7814)4( 21112111 CufF

}111{ p = 8 (23 = 8)

05.12cossin2cos1

1111112

1112

MeApFNI 22

222 )(

cossin2cos1

753370I

Page 46: Crystallography 10

Dynamic Theory for Single crystal Kinematical theoryDynamical theory

K0 K0 K1

S0 S

K1

K2 K2

K1 K2(hkl)

RefractionPRIMARY EXTINCTIONK0 & K1 : /2; K1 & K2 : /2 K0 & K2 : ; destructive interference

2|2cos|1

2sin||

38 2

2

2

FNmceI I |F| not |F|2!

Negligible absorption

e: electron charge; m: electron mass; N: # of unit cell/unit volume.

Page 47: Crystallography 10

2|2cos|1

2sin||2

2

2

FNmces

FWHM for Darwincurve = 2.12s

5 arcs < < 20 arcs

Width of the diffraction peak (~ 2s)