cs 6170: computational topology, spring 2019 lecture 22 · cs 6170: computational topology, spring...

16
CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/ ~ beiwang [email protected] March 27, 2019

Upload: others

Post on 30-Jun-2020

17 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

CS 6170: Computational Topology, Spring 2019Lecture 22

Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of ComputingScientific Computing and Imaging Institute (SCI)

University of Utahwww.sci.utah.edu/~beiwang

[email protected]

March 27, 2019

Page 2: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Extended Persistence(Edelsbrunner and Harer, 2010, VII.3)

Page 3: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Extended filtration

f : M→ Ra1 < a2 < · · · < an: homological critical values of f

Find interleaved values bi:

b0 < a1 < b1 < · · · < an < bn

Sublevel sets Mbi = f−1(−∞, bi], 2-manifolds with boundary

Superlevel sets Mbi = [bi,∞)

Fix dimension p, sequence of homology groups:

0 = Hp(Mb0)→ Hp(Mb1)→ · · · → Hp(Mbn)

= Hp(M,Mbn)→ Hp(M,Mbn−1)→ · · · → Hp(M,Mb0) = 0

Absolute homology, e.g. Hp(Mb)

Relative homology, e.g. Hp(M,Mb)

Page 4: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Extended persistence on 2-manifold

(dim 0) [a2, a3), [a1, a10);

(dim 1) [a4, a7), [a5, a6), [a6, a5), [a7, a4), [a8, a9), [a9, a8);

(dim 2) [a10, a1), [a3, a2).

Page 5: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Elevation Functions and Protein DockingAgarwal et al. (2006); Wang et al. (2011, 2005)

Page 6: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Motivation

Identify cavities and protrusions of macromolecules for the purpose ofprotein docking.

Goal: compute elevation maxima faster in practice!

Page 7: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Persistence

Persistence for a single variable function f : R→ Rf can be extended to f : M→ RConnectivity of sub level set changes at a critical value

Topological feature has persistence at f(y)− f(x).

Page 8: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Stability of persistence diagrams

Given f, g : X→ R, define ||f − g||∞ = supx∈X|f(x)− g(x)|, anddB(Dgmf,Dgmg) = infγ supx ||x− γ(x)||∞, then we have

dB(Dgmf,Dgmg) ≤ ||f − g||∞.

Page 9: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Elevation on 1-manifold

For u ∈ S1, p(x) = p(y) = |hu(x)− hu(y)|E : M→ R, s.t. E(x) = p(x).

Page 10: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Critical points and elevation maxima

Top: critical points.

Bottom: elevation local maxima are sets of critical points that are pairedby the persistence algorithm in a given height direction.

Page 11: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Elevation on 2-manifold

For u ∈ S2, p(x) = p(y) = |hu(x)− hu(y)|.E : M→ R, s.t., E(x) = p(x)

Page 12: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Critical region of a vertex on the Gauss sphere

Smooth case, a vertex is critical in two directions, u and −uPL approximation, a vertex is generally critical for an entire region ofdirections

The critical region of a vertex is the closure of the set of directions alongwhich it is critical

Page 13: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Protein surfaces

Page 14: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Examples of critical regions

Page 15: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

Protein docking using elevation function

Generate rigid motions from feature sets φA and φB obtained byanalyzing the shapes of two proteins A and B

A feature consists of two points u and its partner v with commonsurface normals nv = nu and common elevation E(v) = E(u).

Its length is the Euclidean distance between them ||u− v||.Each maximum of the elevation function is defined by k = {2, 3, 4}points and give rise to

(k2

)features.

Wang et al. (2005)

Page 16: CS 6170: Computational Topology, Spring 2019 Lecture 22 · CS 6170: Computational Topology, Spring 2019 Lecture 22 Topological Data Analysis for Data Scientists Dr. Bei Wang School

References I

Agarwal, P. K., Edelsbrunner, H., Harer, J., and Wang, Y. (2006).Extreme elevation on a 2-manifold. Discrete & ComputationalGeometry, 36(4):553–572.

Edelsbrunner, H. and Harer, J. (2010). Computational Topology: AnIntroduction. American Mathematical Society, Providence, RI, USA.

Wang, B., Edelsbrunner, H., and Morozov, D. (2011). Computingelevation maxima by searching the gauss sphere. Journal ofExperimental Algorithmics (JEA), 16(1-13).

Wang, Y., Agarwal, P. K., Brown, P., Edelsbrunner, H., and Rudolph, J.(2005). Coarse and reliable geometric alignment for protein docking.Pacific Symposium on Biocomputing, pages 64–75.