cse/neubeh 528 modeling synapses and networks · cse/neubeh 528 modeling synapses and networks...

16
1 R. Rao, 528: Lecture 9 CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s book 2 R. Rao, 528: Lecture 9 Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA, covariance analysis) Poisson model of spiking F Neural Decoding Spike-train based decoding of stimulus Stimulus Discrimination based on firing rate Population decoding (Bayesian estimation) F Single Neuron Models RC circuit model of membrane Integrate-and-fire model Conductance-based Models

Upload: others

Post on 26-Jun-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

1 R. Rao, 528: Lecture 9

CSE/NEUBEH 528

Modeling Synapses and Networks (Chapter 7)

Image from Wikimedia Commons

Lecture figures are from Dayan & Abbott’s book

2 R. Rao, 528: Lecture 9

Course Summary (thus far)

F Neural Encoding

What makes a neuron fire? (STA, covariance analysis)

Poisson model of spiking

F Neural Decoding

Spike-train based decoding of stimulus

Stimulus Discrimination based on firing rate

Population decoding (Bayesian estimation)

F Single Neuron Models

RC circuit model of membrane

Integrate-and-fire model

Conductance-based Models

Page 2: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

3 R. Rao, 528: Lecture 9

Today’s Agenda

F Computation in Networks of Neurons

Modeling synaptic inputs

From spiking to firing-rate based networks

Feedforward Networks

Linear Recurrent Networks

4 R. Rao, 528: Lecture 9

SYNAPSES!

Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbklab

Page 3: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

5 R. Rao, 528: Lecture 9

What do synapses do?

Increase or decrease postsynaptic membrane potential

Spike

Image Source: Wikimedia Commons

6 R. Rao, 528: Lecture 9

An Excitatory Synapse

Input spike Neurotransmitter release

(e.g., Glutamate) Binds to receptors Ion channels open

positive ions (e.g. Na+) enter cell

Depolarization due to EPSP (excitatory

postsynaptic potential)

Image Source: Wikimedia Commons

Spike

Page 4: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

7 R. Rao, 528: Lecture 9

An Inhibitory Synapse

Input spike Neurotransmitter

release (e.g., GABA) Binds to receptors Ion channels open positive ions (e.g.,

K+) leave cell Hyperpolarization due

to IPSP (inhibitory postsynaptic potential)

Image Source: Wikimedia Commons

Spike

8 R. Rao, 528: Lecture 9

Flashback Membrane Model

lyequivalentor ,)(

A

I

r

EV

dt

dVc e

m

Lm

meLm RIEVdt

dV )(

m = rmcm= RmCm

membrane time

constant

V

Page 5: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

9 R. Rao, 528: Lecture 9

Flashback! The Integrate-and-Fire Model

V

meLm RIEVdt

dV )( mV 70LE

If V > Vthreshold Spike

Then reset: V = Vreset

(resting potential)

mV 50thresholdV

Lreset EV

Models a

passive leaky

membrane

10 R. Rao, 528: Lecture 9

Flashback! Hodgkin-Huxley Model

)()()( 3

max,

4

max,max, NaNaKKLLm

emm

EVhmgEVngEVgi

A

Ii

dt

dVc

EL = -54 mV, EK = -77 mV, ENa = +50 mV

L K Na

Page 6: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

11 R. Rao, 528: Lecture 9

How do we model the effects of a synapse on

the membrane potential V ?

Synapse ?

12 R. Rao, 528: Lecture 9

V

srelss

messmLm

PPgg

RIEVgrEVdt

dV

max,

)()(

Probability of transmitter release given an input spike

Probability of postsynaptic channel opening

(= fraction of channels opened)

Synaptic

conductance

Modeling Synaptic Inputs

Synapse

Page 7: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

13 R. Rao, 528: Lecture 9

Basic Synapse Model

F Assume Prel = 1

F Model the effect of a single spike input on Ps

F Kinetic Model of postsynaptic channels:

sssss PP

dt

dP )1(

s

s

Opening rate Closing rate

Fraction of channels closed Fraction of channels open

Closed Open

fraction of

channels

opened

14 R. Rao, 528: Lecture 9

What does Ps look like over time?

Exponential function K(t) gives reasonable fit to biological data

(other options: difference of exponentials, “alpha” function)

s

t

s

etK

1

)(

Page 8: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

15 R. Rao, 528: Lecture 9

Linear Filter Model of Synaptic Input to a Neuron

dtKw

ttKwtI

t

bb

tt

ibb

i

)()(

)()(

Synaptic current for b:

b(t) = i δ(t-ti) (ti are the input spike times)

Filter for synapse b: s

t

s

etK

1

)(

wb Input Spike

Train b(t)

Synaptic weight

16 R. Rao, 528: Lecture 9

Modeling Networks of Neurons

F Option 1: Use spiking neurons Advantages: Model computation and learning based on:

Spike Timing

Spike Correlations/Synchrony between neurons

Disadvantages: Computationally expensive

F Option 2: Use neurons with firing-rate outputs (real

valued outputs) Advantages: Greater efficiency, scales well to large networks

Disadvantages: Ignores spike timing issues

F Question: How are these two approaches related?

Page 9: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

17 R. Rao, 528: Lecture 9

From Spiking to Firing Rate Models

wN

Firing rate ub(t)

Spikes

1(t)

b

t

bb

b

t

bbs

dutKw

dtKwtI

)()(

)()()(

)()( tItIb

bs Total synaptic current

Spike train b(t)

w1 Spikes

N(t)

18 R. Rao, 528: Lecture 9

Synaptic Current Dynamics in Firing Rate Model

F Suppose synaptic kernel K is exponential:

Differentiating w.r.t. time t,

we get

b

t

bbs dutKwtI )()()(

uw

s

b

bbss

s

I

uwIdt

dI

s

t

s

etK

1

)(

Page 10: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

19 R. Rao, 528: Lecture 9

Output Firing-Rate Dynamics

F How is the output firing rate v related to synaptic inputs?

F Looks very much like membrane equation:

F On-board derivations of special cases obtained from

comparing the relative magnitudes of r and s …

(see also pages 234-236 in the text)

))(( tIFvdt

dvsr

meLm RIEVdt

dV )(

uw ss

s Idt

dI

20 R. Rao, 528: Lecture 9

How good are Firing Rate Models?

Firing rate model v(t) = F(I(t)) describes this well but not this case

Input I(t) = I0 + I1cos(t)

Page 11: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

21 R. Rao, 528: Lecture 9

Feedforward versus Recurrent Networks

)MW( vuvv

Fdt

d

For feedforward networks, matrix M = 0

Output Decay Input Feedback

22 R. Rao, 528: Lecture 9

Example: Linear Feedforward Network

uvv

Wdt

dDynamics:

Steady State (set dv/dt to 0): uv Wss

1

2

2

2

1

10001

11000

01100

00110

00011

10001

W u What is vss?

Page 12: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

23 R. Rao, 528: Lecture 9

Linear Feedforward Network

0

1

0

0

1

0

1

2

2

2

1

10001

11000

01100

00110

00011

10001

Wuv ss

What is the network doing?

24 R. Rao, 528: Lecture 9

Linear Filtering for Edge Detection

0

1

0

0

1

0

Output

1

2

2

2

1

Input

W) in versionsshifted (and

00110 Filter

Input

Output

Page 13: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

25 R. Rao, 528: Lecture 9

Example of Edge Detection in a 2D Image

http://www.alexandria.nu/ai/blog/entry.asp?E=51

26 R. Rao, 528: Lecture 9

Edge detectors in the visual system

Examples of

receptive

fields in

primary

visual cortex

(V1)

V1

(From Nicholls et al., 1992)

Page 14: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

27 R. Rao, 528: Lecture 9

Filtering network is computing derivatives!

)()1(ionapproximat Discrete

)()(lim

0

xfxf

h

xfhxf

dx

df

h

)1()(2)1(

)1()()()1(approx. Disc.

)()(lim

02

2

xfxfxf

xfxfxfxf

h

xfhxf

dx

fd

h

00110

01210

28 R. Rao, 528: Lecture 9

Feedforward Networks: Example 2

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Output: Premotor Cortex Neuron with Body-Based Tuning Curves

Coordinate Transformation

(From Section 7.3 in Dayan & Abbott)

Page 15: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

29 R. Rao, 528: Lecture 9

Output of Coordinate Transformation Network

Same tuning curve

regardless of gaze angle

Premotor cortex neuron responds

to stimulus location relative to

body, not retinal image location

Head fixed;

gaze shifted to g1 g2 g3

(See section 7.3 in Dayan & Abbott for details)

30 R. Rao, 528: Lecture 9

Linear Recurrent Networks

vuvv

MW dt

d

Output Decay Input Feedback

Page 16: CSE/NEUBEH 528 Modeling Synapses and Networks · CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s

31 R. Rao, 528: Lecture 9

Next Class: Recurrent Networks

F To Do:

Homework 2

Find a final project topic and partner(s)